首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel series of 2- and 9-disubstituted heterocyclic-fused 4-oxo-indeno[1,2-e]pyrazin derivatives was synthesized. One of them, the 9-(1H-tetrazol-5-ylmethyl)-4-oxo-5,10-dihydroimidazo[1,2-a]indeno[1,2-e]pyrazin-2-yl phosphonic acid 4i exhibited a strong and a selective binding affinity for the AMPA receptor (IC50 = 13 nM) and demonstrated potent antagonist activity (IC50 = 6nM) at the ionotropic AMPA receptor. This compound also displayed good anticonvulsant properties against electrically-induced convulsions after ip and iv administration with ED50 values between 0.8 and 1 mg/kg. Furthermore, a strong increase in potency was observed when given iv 3 h before test (ED50 = 3.5 instead of 25.6 mg/kg for the corresponding 9-carboxymethyl-2-carboxylic acid analogue). These data confirmed that there is an advantage in replacing the classical carboxy substituents by their bioisosteres such as tetrazole or phosphonic acid groups.  相似文献   

2.
A novel series of readily water soluble 8-methylureido-4,5-dihydro-4-oxo-10H-imidazo[1,2-a]indeno[1,2-e]++ +pyrazines were synthesized. The -10-yl acetic acid ((+)-3) and -10-carboxylidene (4) derivatives exhibit potent affinities (IC50=4 and 19 nM, respectively) and antagonist properties (IC50 = 2 and 3 nM, respectively) at the ionotropic AMPA receptor. These compounds also display anticonvulsant properties against both electrically and sound-induced convulsions in mice after ip, sc and iv administration with ED50 values between 0.9 and 11 mg/kg, thus suggesting adequate brain penetration.  相似文献   

3.
The binding of alpha-[3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid ([3H]AMPA), a selective ligand for the ion channel-linked quisqualate receptor, was evaluated in Triton X-100-treated membranes of human cerebral cortex. The presence of chaotropic ions produced divergent effects on specific [3H]AMPA binding: A twofold increase in the binding was observed with thiocyanide at 100 mM, although iodide (100 mM) and perchlorate (100 mM) reduced the binding. Chemical modifications of the sulfhydryl group with p-chloromercuriphenylsulfonic acid (PCMBS) produced threefold increases in specific [3H]-AMPA binding in the absence of KSCN as well as in the presence of KSCN. Treatment with dithiothreitol restored the enhanced specific [3H]AMPA binding by PCMBS to the basal level. Although specific [3H]AMPA binding in the absence of KSCN showed a single site (KD = 220 nM, Bmax = 235 fmol/mg of protein), curvilinear Scatchard plots of specific [3H]AMPA binding in the presence of 100 mM KSCN can be resolved into two binding sites with the following parameters: KD1 = 5.82 nM, Bmax1 = 247 fmol/mg of protein; KD2 = 214 nM, Bmax2 = 424 fmol/mg of protein. Quisqualate and AMPA were the most potent inhibitors of the [3H]AMPA binding in the presence of KSCN. Potent inhibitors of the binding included beta-N-oxalylamino-L-alanine (L-BOAA), cysteine-S-sulfate, L-glutamate, 6-cyano-7-nitroquinoxaline-2,3-dione, and 6,7-dinitroquinoxaline-2,3-dione. Kainate, L-homocysteine sulfinic acid, and L-homocysteic acid were active with an IC50 value of a micromolar concentration, whereas L-cysteic acid and L-cysteine sulfinic acid were weakly active.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Synthesis and structure-activity relationships of 2-substituted-5,7-diarylcyclopenteno[1,2-b]pyridine-6-carboxylic acids, a novel class of endothelin receptor antagonists, were described. Derivatization of a lead structure 1 (IC(50)=2.4nM, 170-fold selectivity) by incorporating a substituent such as an alkyl, alkoxy, alkylthio, or alkylamino group into the 2-position of the cyclopenteno[1,2-b]pyridine skeleton was achieved via the key intermediate 8. Introduction of an alkyl group led to the identification of potent ET(A)/ET(B) mixed receptor antagonists, a butyl (2d: IC(50)=0.21nM, 52-fold selectivity) and an isobutyl (2f: IC(50)=0.32nM, 26-fold selectivity) analogue. In contrast, installment of a primary amino group resulted in ET(A) selective antagonists, a propylamino 2p (IC(50)=0.12nM, 520-fold selectivity) and an isopropylamino 2q (IC(50)=0.10nM, 420-fold selectivity) analogue. These results suggested that a substituent at the 2-position of the 5,7-diarylcyclopenteno[1,2-b]pyridine-6-carboxylic acids played a key role in the binding affinity for both ET(A) and ET(B) receptors.  相似文献   

5.
Water soluble 8-methylureido-10-amino-10-methyl-imidazo[1,2-a]indeno[1,2-e]pyraz ine-4-one 4 represents a novel class of highly potent and selective AMPA receptors antagonists with in vivo activity. The dextrorotatory isomer (+)-4 was found to display the highest affinity with an IC50 of 10 nM. It also exhibited very good anticonvulsant effects after i.p., s.c. and i.v. administration in mice subjected to electrical convulsions (MES) and i.p. in audiogenic seizure-e in DBA/2 mice (ED50's < or = 10 mg/kg).  相似文献   

6.
Kainic acid (KA), quisqualic acid (QUIS), and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) stimulated D-[3H]aspartate release from cultured cerebellar granule cells in a concentration-dependent way. The EC50 values were 50 microM for KA (Gallo et al., 1987) and 20 microM for both QUIS and AMPA, but the efficacy of QUIS appeared to be greater than that of AMPA. The release of D-[3H]aspartate induced by KA, QUIS, and AMPA was blocked, in a dose-dependent way, by the new glutamate receptor antagonist 6-cyano-2,3-dihydroxy-7-nitroquinoxaline (CNQX); IC50 values were 0.7 microM in the case of AMPA (50 microM) and 1 microM in the case of KA (50 microM). AMPA (50-300 microM) inhibited the effect of 50 microM KA on D-[3H]aspartate release. At 300 microM AMPA, the effect of KA plus AMPA was not antagonized by the KA receptor antagonist kynurenic acid (KYN). In contrast, when KA was used at an ineffective concentration (10 microM), the addition of AMPA at concentrations below the EC50 value (10-20 microM) resulted in a synergistic effect on D-[3H]aspartate release. In this case, the evoked release of D-[3H]aspartate was sensitive to KYN. KA stimulated the formation of cyclic GMP, whereas QUIS, AMPA, and glutamate were ineffective. The accumulation of cyclic GMP elicited by KA (100 microM) was prevented not only by the antagonists CNQX (IC50 = 1.5 microM) and KYN (IC50 = 200 microM), but also by the agonists AMPA (IC50 = 50 microM) QUIS (IC50 = 3.5 microM), and glutamate (IC50 = 100 microM). We conclude that AMPA, like QUIS, may act as a partial agonist at KA receptors. Moreover, CNQX effectively antagonizes non-N-methyl-D-aspartate receptor-mediated responses in cultured cerebellar granule cells.  相似文献   

7.
Chemical modification of the bicyclo[3.1.0]hexane ring C-3 position led to the discovery of 3-alkoxy-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid, 3-benzylthio-, and 3-benzylamino-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid derivatives, metabotropic glutamate receptor 2 (mGluR2) antagonists. In particular, 3-(3,4-dichlorobenzyloxy)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (15ae), (1R,2S,5R,6R)-2-amino-3-(3,4-dichlorobenzylthio)-6-fluorobicyclo[3.1.0]hexane-2,6-carboxylic acid (15at), and (1R,2S,5R,6R)-2-amino-3-(N-(3,4-dichlorobenzylamino))-6-fluorobicyclo[3.1.0]hexane-2,6-carboxylic (15ba) showed high affinity for the mGluR2 receptor (15ae: K(i) = 2.51 nM, 15at: K(i) = 1.96 nM, and 15ba: K(i) = 3.29 nM) and potent antagonist activity for mGluR2 (15ae; IC50 = 34.21 nM, 15at; IC50 = 13.34 nM, and 15ba; IC50 = 35.96 nM). No significant agonist activity for mGluR2 was observed with 15ae, 15at, or 15ba. This paper reports on the synthesis, in vitro pharmacological profile, and structure-activity relationships (SARs) of 3-substituted-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid.  相似文献   

8.
We have previously shown that (RS)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-yl)isoxazol -4-yl] propionic acid (2-Me-Tet-AMPA) is a selective agonist at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, markedly more potent than AMPA itself, whereas the isomeric compound 1-Me-Tet-AMPA is essentially inactive. We here report the enantiopharmacology of 2-Me-Tet-AMPA in radioligand binding and cortical wedge electrophysiological assay systems, and using cloned AMPA (GluR1-4) and kainic acid (KA) (GluR5, 6, and KA2) receptor subtypes expressed in Xenopus oocytes. 2-Me-Tet-AMPA was resolved using preparative chiral HPLC. Zwitterion (-)-2-Me-Tet-AMPA was assigned the (R)-configuration based on an X-ray crystallographic analysis supported by the elution order of (-)- and (+)-2-Me-Tet-AMPA using four different chiral HPLC columns and by circular dichroism spectra. None of the compounds tested showed detectable affinity for N-methyl-D-aspartic acid (NMDA) receptor sites, and (R)-2-Me-Tet-AMPA was essentially inactive in all of the test systems used. Whereas (S)-2-Me-Tet-AMPA showed low affinity (IC(50) = 11 microM) in the [(3)H]KA binding assay, it was significantly more potent (IC(50) = 0.009 microM) than AMPA (IC(50) = 0.039 microM) in the [(3)H]AMPA binding assay, and in agreement with these findings, (S)-2-Me-Tet-AMPA (EC(50) = 0.11 microM) was markedly more potent than AMPA (EC(50) = 3.5 microM) in the electrophysiological cortical wedge model. In contrast to AMPA, which showed comparable potencies (EC(50) = 1.3-3.5 microM) at receptors formed by the AMPA receptor subunits (GluR1-4) in Xenopus oocytes, more potent effects and a substantially higher degree of subunit selectivity were observed for (S)-2-Me-Tet-AMPA: GluR1o (EC(50) = 0.16 microM), GluR1o/GluR2i (EC(50) = 0.12 microM), GluR3o (EC(50) = 0.014 microM) and GluR4o (EC(50) = 0.009 microM). At the KA-preferring receptors GluR5 and GluR6/KA2, (S)-2-Me-Tet-AMPA showed much weaker agonist effects (EC(50) = 8.7 and 15.3 microM, respectively). It is concluded that (S)-2-Me-Tet-AMPA is a subunit-selective and highly potent AMPA receptor agonist and a potentially useful tool for studies of physiological AMPA receptor subtypes.  相似文献   

9.
J Staley  D Coy  J E Taylor  S Kim  T W Moody 《Peptides》1991,12(1):145-149
A series of bombesin (BN) analogues lacking the C-terminal methionine at the 14 position were evaluated as BN receptor antagonists. [D-Phe6]BN(6-13)amide inhibited specific 125I-GRP binding to lung cancer cell line NCI-H720 with an IC50 value of 12 nM. In contrast, [D-Phe6]BN(6-13)propylamide, butylamide and methylester were more potent with IC50 values of 3, 5 and 5 nM whereas [D-Phe6,Sta13]BN(6-13)amide was less potent with an IC50 value of 180 nM. [D-Phe6]BN(6-13)propylamide antagonized the ability of BN to elevate cytosolic Ca2+, whereas [D-Phe6]BN(6-13)butylamide was a partial agonist. In a small cell lung cancer (SCLC) growth assay, [D-Phe6]BN(6-13)propylamide inhibited colony formation. In summary, BN analogues which lack a C-terminal methionine may function as useful SCLC BN receptor antagonists.  相似文献   

10.
The binding of alpha-[3H]amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ([3H]AMPA), a structural Glu analog, to rat striatal membranes was studied. In the absence of potassium thiocyanate and Cl-/Ca2+, saturation-curve analysis of [3H]AMPA binding suggested that a single class of noninteracting binding sites with a KD value of 340 +/- 27 nM was involved, although AMPA inhibition of [3H]AMPA binding set at a concentration of 100 nM suggested, in contrast, the presence of multiple populations of striatal binding sites. Several other excitatory amino acid receptor agonists and antagonists were tested, and the most potent and selective quisqualic acid (QA) receptor agonists (QA, L-Glu, and AMPA) were found to represent the most potent inhibitors of [3H]AMPA binding. N-Methyl-D-aspartate receptor agonists and antagonists were ineffective as displacers of the [3H]AMPA binding. Lesions of intrastriatal neurons (using kainic acid local injections) and of corticostriatal afferent fibers led 2-3 weeks later to large decreases (63 and 30%, respectively) in striatal [3H]AMPA binding, whereas selective lesion of the nigrostriatal dopaminergic pathway (using nigral injection of 6-hydroxy-dopamine) was without any influence. Taken together, these results suggest that [3H]AMPA binding is primarily associated with postsynaptic intrastriatal neurons. Some [3H]AMPA binding sites may also be located presynaptically on corticostriatal nerve endings. So, in addition to the possibility that [3H]AMPA binding sites may be involved in corticostriatal synaptic transmission, it is interesting that these putative QA-preferring excitatory amino acid receptor sites may also play some role in autoregulatory processes underlying this excitatory synaptic transmission.  相似文献   

11.
Using quantitative autoradiography, we have investigated the binding sites for the potent competitive non-N-methyl-D-aspartate (non-NMDA) glutamate receptor antagonist [3H]6-cyano-7-nitro-quinoxaline-2,3-dione ([3H]-CNQX) in rat brain sections. [3H]CNQX binding was regionally distributed, with the highest levels of binding present in hippocampus in the stratum radiatum of CA1, stratum lucidum of CA3, and molecular layer of dentate gyrus. Scatchard analysis of [3H]CNQX binding in the cerebellar molecular layer revealed an apparent single binding site with a KD = 67 +/- 9.0 nM and Bmax = 3.56 +/- 0.34 pmol/mg protein. In displacement studies, quisqualate, L-glutamate, and kainate also appeared to bind to a single class of sites. However, (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) displacement of [3H]CNQX binding revealed two binding sites in the cerebellar molecular layer. Binding of [3H]AMPA to quisqualate receptors in the presence of potassium thiocyanate produced curvilinear Scatchard plots. The curves could be resolved into two binding sites with KD1 = 9.0 +/- 3.5 nM, Bmax = 0.15 +/- 0.05 pmol/mg protein, KD2 = 278 +/- 50 nM, and Bmax = 1.54 +/- 0.20 pmol/mg protein. The heterogeneous anatomical distribution of [3H]CNQX binding sites correlated to the binding of L-[3H]glutamate to quisqualate receptors and to sites labeled with [3H]AMPA. These results suggest that the non-NMDA glutamate receptor antagonist [3H]CNQX binds with equal affinity to two states of quisqualate receptors which have different affinities for the agonist [3H]AMPA.  相似文献   

12.
The synthesis and structure-activity relationships of ureas as CCR3 antagonists are described. Optimization starting with lead compound 2 (IC(50)=190 nM) derived from initial screening hit compound 1 (IC(50)=600 nM) led to the identification of (S)-N-((1R,3S,5S)-8-((6-fluoronaphthalen-2-yl)methyl)-8-azabicyclo[3.2.1]octan-3-yl)-N-(2-nitrophenyl)pyrrolidine-1,2-dicarboxamide 27 (IC(50)=4.9 nM) as a potent CCR3 antagonist.  相似文献   

13.
The high inhibitory potency of the previously developed bombesin antagonist [Leu13, psi CH2NHLeu14]bombesin (analogue I) (IC50 values of 30 and 18 nM for inhibition of bombesin-stimulated amylase secretion from guinea pig acinar cells and Swiss 3T3 cell growth, respectively) diminished considerably when shorter chain lengths were examined. For instance, [Leu13, psi CH2NHLeu14]bombesin-(5-14),[Leu13, psi CH2NHLeu14] bombesin-(6-14), and [Leu9, psi CH2NHLeu10]neuromedin C had IC50 values of 150, 150, and 280 nM, respectively. Incorporation of a D-Phe residue at position 6 of [Leu13, psi CH2NHLeu14] bombesin did not significantly change the various biological parameters. However, its presence in [Leu13, psi CH2NHLeu14]bombesin-(6-14) and at position 2 of psi-neuromedin C-(2-10) resulted in about 10-fold increases in potency up to and above that of the original antagonist. For instance, [D-Phe6,Leu13,psi CH2NHLeu14]bombesin-(6-14) and des-Gly1-[D-Phe2,Leu9,psi CH2NHLeu10]neuromedin C exhibited IC50 values of 5 and 28 nM, respectively. Analogues based on the litorin sequence which contains an NH2-terminal pyroglutamic acid residue at the bombesin position 6 equivalent were also quite potent. The ability of various analogues to interact with bombesin receptors on pancreatic acini correlated reasonably well with potencies derived from inhibition of bombesin-stimulated growth of Swiss 3T3 cells. Additional studies of NH2- and COOH-terminal structure-activity relationships resulted in the synthesis of [D-Phe6,Leu13,psi CH2NHPhe14]bombesin-(6-14), which was particularly effective in inhibiting 3T3 cell growth at high picomolar concentrations (IC50 = 0.72 nM and Ki = 3.1 nM for 3T3 cells; IC50 = 7.5 nM and Ki = 9.9 nM for acini). Detailed investigations with one of the most potent antagonists, [D-Phe6,Leu13,psi CH2NHLeu14]bombesin-(6-14) (Ki = 14 nM for acini cells and 7.1 for 3T3 cells), demonstrated that this analogue was a competitive inhibitor of bombesin and that this activity was specific for the bombesin receptor. Thus, inhibitory potencies have been improved generally up to 25 times over previously reported structures; and, given that bombesin itself has a Ki of 1.2 nM for 3T3 cell binding, some of these analogues are extraordinarily high affinity receptor antagonists. They can also be synthesized more readily and offer fewer proteolytic degradation sites than the original pseudopeptide and should be excellent candidates for in vivo studies aimed at inhibition of bombesin-dependent human small cell lung carcinoma growth.  相似文献   

14.
The discovery, synthesis and structure-activity relationships of a series of novel benzofuro[3,2-b]pyridines as non-selective endothelin ET(A)/ET(B) as well as selective ET(B) receptor antagonists are described. The most potent non-selective inhibitor 7s displayed an IC50 of 21 nM and 41 nM for ET(A) and ET(B) receptors, respectively, whereas 7ee merely showed affinity for the ET(B) receptor (IC50 = 3.6 nM).  相似文献   

15.
The over-stimulation of excitatory amino acid receptors such as the glutamate AMPA receptor has been suggested to be associated with neurodegenerative disorders. Here we describe an original series of readily water soluble 4-oxo-imidazo[1,2-a]indeno[1,2-e]pyrazin-8- and -9-carboxylic (acetic) acid derivatives. One of these compounds, 4f, exhibited nanomolar binding affinity, potent competitive antagonism at the ionotropic AMPA receptor and a long duration of anticonvulsant activity after administration by parenteral route in vivo.  相似文献   

16.
Excessive release of glutamate, a potent excitatory neurotransmitter, is thought to play an important role in a variety of acute and chronic neurological disorders, suggesting that excitatory amino acid antagonists may have broad therapeutic potential in neurology. Here, we describe the synthesis, pharmacological properties and neuroprotective activity of 9-carboxymethyl-imidazo-[1-2a]indeno[1-2e]pyrazin-4-one-2-carboxylic acid (RPR117824), an original selective AMPA antagonist. RPR117824 can be obtained through a six-step synthesis starting from (1-oxo-indan-4-yl) acetic acid, which has been validated on a gram-scale with an overall yield of 25%. Monosodium or disodium salts of the compound exhibit excellent solubility in saline (> or = 10 g/L), enabling intravenous administration. RPR117824 displays nanomolar affinity (IC(50)=18 nM) for AMPA receptors and competitive inhibition of electrophysiological responses mediated by AMPA receptors heterologously expressed in Xenopus oocytes (K(B)=5 nM) and native receptors in rat brain slices (IC(50)=0.36 microM). In in vivo testing, RPR117824 behaves as a powerful blocker of convulsions induced in mice or rats by supramaximal electroshock or chemoconvulsive agents such as pentylenetetrazole, bicuculline, isoniazide, strychnine, 4-aminopyridine and harmaline with half maximal effective doses ranging from 1.5 to 10 mg/kg following subcutaneous or intraperitoneal administration. In disease models in rats and gerbils, RPR117824 possesses significant neuroprotective activity in global and focal cerebral ischemia, and brain and spinal cord trauma.  相似文献   

17.
Bombesin-related peptides have a large number of physiological functions as well as having an autocrine growth mechanism for the regulation of small cell lung cancer cells. In the present study we have synthesized 21 des-Met amide or alkylamide analogues of bombesin and compared their abilities to function as bombesin receptor antagonists in guinea pig pancreatic acini and Swiss 3T3 cells with those of the previously most potent antagonist described, [Leu13 psi(CH2NH)Leu14]bombesin (analogue I). All des-Met analogues functioned as antagonists. Bn(1-13)NH2 was approximately equipotent to I (Ki = 60-80 nM) whereas Bn(6-13)NH2 was 30-fold less potent (Ki = 1800 nM). Formation of an ethylamide, Bn(6-13)ethylamide, increased the potency 30-fold such that this octapeptide was equipotent to I. The addition of a D-Phe6 moiety to I did not change potency but caused a 30-fold increase in potency of Bn(6-13)NH2 and a 8-fold increase in the potency of Bn(6-13)ethylamide (Ki = 16 nM). Additional studies of both NH2- and COOH-terminal alterations in Bn(6-13)NH2 demonstrated that the most potent antagonist was [D-Phe6]Bn(6-13)propylamide (PA), having IC50's of 1.6 nM and 0.8 nM for bombesin-stimulated amylase release and Swiss 3T3 cell growth, respectively. Detailed studies of the most potent amide analogue, [D-Phe6]Bn(6-13)NH2, and alkylamide analogue, [D-Phe6]Bn(6-13)PA, demonstrated that these analogues functioned as competitive antagonists and that their action was selective for the bombesin receptor. These results demonstrate that, as with CCK- and gastrin-related peptides, the C-terminal amino acid is important for initiating a biologic response but not essential for determining receptor affinity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have previously described (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) as a potent agonist at the (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of (S)-glutamic acid (Glu) receptors. We now report the chromatographic resolution of ACPA and (RS)-2-amino-3-(3-carboxy-4-isoxazolyl)propionic acid (demethyl-ACPA) using a Sumichiral OA-5000 column. The configuration of the enantiomers of both compounds have been assigned based on X-ray crystallographic analyses, supported by circular dichroism spectra and elution orders on chiral HPLC columns. Furthermore, the enantiopharmacology of ACPA and demethyl-ACPA was investigated using radioligand binding and cortical wedge electrophysiological assay systems and cloned metabotropic Glu receptors. (S)-ACPA showed high affinity in AMPA binding (IC(50) = 0.025 microM), low affinity in kainic acid binding (IC(50) = 3.6 microM), and potent AMPA receptor agonist activity on cortical neurons (EC(50) = 0.25 microM), whereas (R)-ACPA was essentially inactive. Like (S)-ACPA, (S)-demethyl-ACPA displayed high AMPA receptor affinity (IC(50) = 0.039 microM), but was found to be a relatively weak AMPA receptor agonist (EC(50) = 12 microM). The stereoselectivity observed for demethyl-ACPA was high when based on AMPA receptor affinity (eudismic ratio = 250), but low when based on electrophysiological activity (eudismic ratio = 10). (R)-Demethyl-ACPA also possessed a weak NMDA receptor antagonist activity (IC(50) = 220 microM). Among the enantiomers tested, only (S)-demethyl-ACPA showed activity at metabotropic receptors, being a weak antagonist at the mGlu(2) receptor subtype (K(B) = 148 microM).  相似文献   

19.
Opioid binding site in EL-4 thymoma cell line   总被引:1,自引:0,他引:1  
E Fiorica  S Spector 《Life sciences》1988,42(2):199-206
Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of [3H] bremazocine indicated a single site with a KD = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10(6) cells (51 pmols/mg total cell proteins). To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of [3H] bremazocine with an IC50 value = 0.57 microM. The two stereoisomers levorphanol and dextrorphan showed the same affinity for this site (IC50 = 2.9 microM and 1.9 microM respectively). While morphine, [D-Pen2, D-Pen5] enkephalin and beta-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC50 = 60 microM, that was similar to naloxone (IC50 = 69 microM).  相似文献   

20.
Hexahydro-pyrrolo- and hexahydro-1H-pyrido[1,2-b]pyridazin-2-one analogs were discovered as a novel class of inhibitors of genotype 1 HCV NS5B polymerase. Among these, compound 4c displayed potent inhibitory activities in biochemical and replicon assays (IC(50) (1b) <10 nM; EC(50) (1b)=34 nM) as well as good stability towards human liver microsomes (HLM t(1/2) =59 min).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号