首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Articular cartilage is an enduring tissue. For most individuals, articular cartilage facilitates a lifetime of pain-free ambulation, supporting millions of loading cycles from activities of daily living. Although early studies into osteoarthritis focused on the role of mechanical fatigue in articular cartilage degeneration, much is still unknown regarding its strength and endurance characteristics. The compressive strength of juvenile, bovine articular cartilage explants was determined to be loading rate-dependent, reaching a maximum strength of 29.5 ± 4.8 MPa at a strain rate of 0.10 %/sec. The fatigue and endurance properties of articular cartilage were characterized utilizing a material testing system, as well as a custom, validated instrument termed the two degrees-of-freedom endurance meter (endurometer). These instruments characterized fatigue in articular cartilage explants at loading levels ranging from 10 to 80 % strength (%S), up to 100,000 cycles. Cartilage explants displayed characteristics of fatigue – fatigue life increased as the loading magnitude decreased. All explants failed within 14,000 cycles at loading levels between 50 and 80 %S. At 10 and 20 %S, all explants endured 100,000 loading cycles. There was no significant difference in equilibrium compressive modulus between run-out explants and unloaded controls, although the pooled modulus increased in response to testing. Histological staining and biochemical assays revealed no material changes in collagen, sulfated glycosaminoglycan, or hydration content between unloaded controls and explants cyclically loaded to run-out. These results suggest articular cartilage may have a putative endurance limit of 20 %S (5.86 MPa), with implications for articular cartilage biomechanics and mechanobiology.  相似文献   

2.
The effects of the lysosomal proteinase cathepsin D on the mechanical properties of adult human articular cartilage were examined in detail in 7 joints within the age range 21 to 72 years. The results of a preliminary study on the effects of the lysosomal proteinase cathepsin B1 and clostridial collagenase on the mechanical properties of cartilage are also presented. Cartilage which had been incubated with either cathepsin D or cathepsin B1 showed increased deformation in uniaxial compression perpendicular to the articular surface. The enzyme-treated cartilage also showed decreased tensile stiffness at low values of stress. This effect was more pronounced in specimens from the deeper zone of cartilage than in specimens from the superficial zone. It was also more pronounced in specimens which were aligned perpendicular to the predominant alignment of the collagen fibres in the superficial zone than in specimens which were parallel to the collagen fibres. At higher stresses the tensile stiffness of the treated cartilage was not significantly different from that of the untreated tissue. The tensile fracture stress of the cartilage was also not significantly reduced by the action of cathepsin D. In contrast to the effects observed with the cathepsins, the preliminary results obtained by incubating cartilage for 24 h with clostridial collagenase showed that both the tensile stiffness and the fracture stress were considerably lower than the corresponding values for the untreated tissue. Biochemical analysis of the incubation media, and the specimens, revealed that a large proportion of the proteoglycans was released from the cartilage by each of the three enzymes. The proportion of the total collagen which was released from the cartilage was different for each enzyme: cathepsin D released between 0 and 1.5 per cent, cathepsin B1 released between 2.3 and 4.3 per cent and collagenase released between 5.3 and 27.8 per cent of the collagen after 24 h.  相似文献   

3.
The extracellular matrix surrounding chondrocytes within a chondron is likely to affect the metabolic activity of these cells. In this study we investigated this by analyzing protein synthesis by intact chondrons obtained from different types of cartilage and compared this with chondrocytes. Chondrons and chondrocytes from goats from different cartilage sources (articular cartilage, nucleus pulposus, and annulus fibrosus) were cultured for 0, 7, 18, and 25 days in alginate beads. Real‐time polymerase chain reaction analyses indicated that the gene expression of Col2a1 was consistently higher by the chondrons compared with the chondrocytes and the Col1a1 gene expression was consistently lower. Western blotting revealed that Type II collagen extracted from the chondrons was cross‐linked. No Type I collagen could be extracted. The amount of proteoglycans was higher for the chondrons from articular cartilage and nucleus pulposus compared with the chondrocytes, but no differences were found between chondrons and chondrocytes from annulus fibrosus. The expression of both Mmp2 and Mmp9 was higher by the chondrocytes from articular cartilage and nucleus pulposus compared with the chondrons, whereas no differences were found with the annulus fibrosus cells. Gene expression of Mmp13 increased strongly by the chondrocytes (>50‐fold), but not by the chondrons. Taken together, our data suggest that preserving the pericellular matrix has a positive effect on cell‐induced cartilage production. J. Cell. Biochem. 110: 260–271, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
The objective of this study was to develop an in vitro cartilage degradation model that emulates the damage seen in early-stage osteoarthritis. To this end, cartilage explants were collagenase-treated to induce enzymatic degradation of collagen fibers and proteoglycans at the articular surface. To assess changes in mechanical properties, intact and degraded cartilage explants were subjected to a series of confined compression creep tests. Changes in extracellular matrix structure and composition were determined using biochemical and histological approaches. Our results show that collagenase-induced degradation increased the amount of deformation experienced by the cartilage explants under compression. An increase in apparent permeability as well as a decrease in instantaneous and aggregate moduli was measured following collagenase treatment. Histological analysis of degraded explants revealed the presence of surface fibrillation, proteoglycan depletion in the superficial and intermediate zones and loss of the lamina splendens. Collagen cleavage was confirmed by the Col II–3/4Cshort antibody. Degraded specimens experienced a significant decrease in proteoglycan content but maintained total collagen content. Repetitive testing of degraded samples resulted in the gradual collapse of the articular surface and the compaction of the superficial zone. Taken together, our data demonstrates that enzymatic degradation with collagenase can be used to emulate changes seen in early-stage osteoarthritis. Further, our in vitro model provides information on cartilage mechanics and insights on how matrix changes can affect cartilage's functional properties. More importantly, our model can be applied to develop and test treatment options for tissue repair.  相似文献   

5.
The effects of the lysosomal proteinase cathepsin D on the mechanical properties of adult human articulage were examined in detail in 7 joints within the age rangee 21 to 72 years. The results of preliminary study on the effects of the lysosomal proteinase cathepsin B1 and clostridial collagenase on the mechanical properties of cartilage are also presented.Cartilage which had been incubated with either cathepsin D or cathepsin B1 showed increased deformation in unixial compression perpendicular to the articular surface.The enzyme-treated cartilage also showed decreased tensile stiffness at low values of stress. This effect was more pronounced in specimens from the deeper zone of cartilage than in specimens from the superficial zone. It was also more pronounced in specimens which were aligned perpendicular to the predominant alignment of the collagen fibres in the superficial zone than in specimens which were parallel to the collagen fibres.At higher stresses the tensile stiffness of the treated cartilage was not significantly different from that of the untreated tissue. The tensile fracture stress of the cartilage was not significantly reduced by the action of cathepsin D.In contrast to the effects observed with the cathepsins, the preliminary results obtained by incubating cartilage for 24 h with clostridial collagenase showed that both the tensile stiffness and the fracture stress were considerably lower than the corresponding values for the untreated tissue.Biochemical analysis of the incubation media, and the specimens, reveled that a large proportion of the proteoglycans was released from the cartilage by each of the freeze enzymes. The proportion of the total collagen which was released from the cartilage was different for each enzyme: cathepsin D released between 0 and 1.5 per cent, cathepsin B1 released between 2.3 and 4.3 per cent and collagenase relesed between 5.3 and 27.8 per cent of the collagen after 24 h.  相似文献   

6.
Type X collagen is a short chain, non-fibrilforming collagen synthesized primarily by hypertrophic chondrocytes in the growth plate of fetal cartilage. Previously, we have also identified type X collagen in the extracellular matrix of fibrillated, osteoarthritic but not in normal articular cartilage using biochemical and immunohistochemical techniques (von der Mark et al. 1992 a). Here we compare the expression of type X with types I and II collagen in normal and degenerate human articular cartilage by in situ hybridization. Signals for cytoplasmic α1(X) collagen mRNA were not detectable in sections of healthy adult articular cartilage, but few specimens of osteoarthritic articular cartilage showed moderate expression of type X collagen in deep zones, but not in the upper fibrillated zone where type X collagen was detected by immunofluorescence. This apparent discrepancy may be explained by the relatively short phases of type X collagen gene activity in osteoarthritis and the short mRNA half-life compared with the longer half-life of the type X collagen protein. At sites of newly formed osteophytic and repair cartilage, α1(X) mRNA was strongly expressed in hypertrophic cells, marking the areas of endochondral bone formation. As in hypertrophic chondrocytes in the proliferative zone of fetal cartilage, type X collagen expression was also associated with strong type II collagen expression.  相似文献   

7.
The function of articular cartilage as a weight-bearing tissue depends on the specific arrangement of collagen types II and IX into a three-dimensional organized collagen network that can balance the swelling pressure of the proteoglycan/ water gel. To determine whether cartilage engineered in vitro contains a functional collagen network, chondrocyte-polymer constructs were cultured for up to 6 weeks and analyzed with respect to the composition and ultrastructure of collagen by using biochemical and immunochemical methods and scanning electron microscopy. Total collagen content and the concentration of pyridinium crosslinks were significantly (57% and 70%, respectively) lower in tissue-engineered cartilage that in bovine calf articular cartilage. However, the fractions of collagen types II, IX, and X and the collagen network organization, density, and fibril diameter in engineered cartilage were not significantly different from those in natural articular cartilage. The implications of these findings for the field of tissue engineering are that differentiated chondrocytes are capable of forming a complex structure of collagen matrix in vitro, producing a tissue similar to natural articular cartilage on an ultrastructural scale. J. Cell. Biochem. 71:313–327, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Articular cartilage function depends on the molecular composition and structure of its extracellular matrix (ECM). The collagen network (CN) provides cartilage with tensile integrity, but must also remodel during growth. Such remodeling may depend on matrix molecules interacting with the CN to modulate the tensile behavior of cartilage. The objective of this study was to determine the effects of increasingly selective matrix depletion on tensile properties of immature and mature articular cartilage, and thereby establish a framework for identifying molecules involved in CN remodeling. Depletion of immature cartilage with guanidine, chondroitinase ABC, chondroitinase AC, and Streptomyces hyaluronidase markedly increased tensile integrity, while the integrity of mature cartilage remained unaltered after depletion with guanidine. The enhanced tensile integrity after matrix depletion suggests that certain ECM components of immature matrix serve to inhibit CN interactions and may act as modulators of physiological alterations of cartilage geometry and tensile properties during growth/maturation.  相似文献   

9.
A method for determining DNA and chondrocyte content of articular cartilage   总被引:1,自引:0,他引:1  
A novel and precise method was devised to study the DNA and chondrocyte content of articular cartilage. It involved the sequential digestion of cartilage matrix with hyaluronidase, trypsin, and collagenase to release the chondrocytes. A direct cell count and DNA assays were then performed on the cells. The concentration of cells was the quotient of the total number of cells and the weight of cartilage used. The DNA content of cartilage is identical to the amount of DNA in the chondrocytes. Our data also confirmed the earlier findings that cell density and DNA content of articular cartilage decreased gradually to a relatively constant level as animals matured to adulthood.  相似文献   

10.
Cartilage tissue‐engineering strategies aim to produce a functional extracellular matrix similar to that of the native tissue. However, none of the myriad approaches taken have successfully generated a construct possessing the structure, composition, and mechanical properties of healthy articular cartilage. One possible approach to modulating the matrix composition and mechanical properties of engineered tissues is through the use of bioreactor‐driven mechanical stimulation. In this study, we hypothesized that exposing scaffold‐free cartilaginous tissue constructs to 7 days of continuous shear stress at 0.001 or 0.1 Pa would increase collagen deposition and tensile mechanical properties compared to that of static controls. Histologically, type II collagen staining was evident in all construct groups, while a surface layer of type I collagen increased in thickness with increasing shear stress magnitude. The areal fraction of type I collagen was higher in the 0.1‐Pa group (25.2 ± 2.2%) than either the 0.001‐Pa (13.6 ± 3.8%) or the static (7.9 ± 1.5%) group. Type II collagen content, as assessed by ELISA, was also higher in the 0.1‐Pa group (7.5 ± 2.1%) compared to the 0.001‐Pa (3.0 ± 2.25%) or static groups (3.7 ± 3.2%). Temporal gene expression analysis showed a flow‐induced increase in type I and type II collagen expression within 24 h of exposure. Interestingly, while the 0.1‐Pa group showed higher collagen content, this group retained less sulfated glycosaminoglycans in the matrix over time in bioreactor culture. Increases in both tensile Young's modulus and ultimate strength were observed with increasing shear stress, yielding constructs possessing a modulus of nearly 5 MPa and strength of 1.3 MPa. This study demonstrates that shear stress is a potent modulator of both the amount and type of synthesized extracellular matrix constituents in engineered cartilaginous tissue with corresponding effects on mechanical function. Biotechnol. Bioeng. 2009; 104: 809–820 © 2009 Wiley Periodicals, Inc.  相似文献   

11.
ObjectiveThe objective is to clarify the effects of Notch/p38MAPK signaling pathway on articular cartilage defect recovery by BMSCs tissue and provide a basis for clinical treatments of articular cartilage defects.MethodsA total of 96 healthy male rabbits (weighed 1.5–2.0 kg) that were fully-grown were selected and grouped as the no-treatment group, the model group, and the treatment group in a random manner. Each group included 32 rabbits in total. The no-treatment group was fed without any interventions. The model group and the treatment group were constructed into rabbit knee-joint articular cartilage defect models. In addition, rabbits in the treatment group were given intervention treatments with Notch inhibitor (DAPT) combined with p38MAPK inhibitor (SB203580). The general conditions of rabbits in each group and the conditions of the stained articular cartilage tissue samples were observed, the proliferation of chondrocytes of rabbits in each group was compared.Results(1) After drug interventions, in contrast to the rabbits in the model group, the general conditions and the chondrocyte recovering situations of rabbits in the treatment group were obviously improved; (2) 8 weeks after model construction, the articular cartilage empty bone lacuna rate of rabbits in the treatment group was (12.13 ± 1.81)%, which was obviously lower than the synchronous (21.55 ± 3.07)% articular cartilage empty bone lacuna rate of rabbits in the model group, and there was a statistical significance in the differences (P < 0.05); (3) the absorbance value (OD value) of chondrocytes in the treatment group was (0.34 ± 0.015), which was obviously higher than the (0.10 ± 0.020) OD value of chondrocytes in the model group, and there was a statistical significance in the differences (P < 0.05).ConclusionThe inhibition of Notch/p38MAPK signaling pathway can promote the recovery of articular cartilage by BMSCs tissue, accelerate the proliferation of chondrocytes, and contribute to the recovery of knee-joint injuries in rabbits, which provides a reliable basis for clinical treatments of articular cartilage defects.  相似文献   

12.
Summary Fresh frozen tissue sections of human articular cartilage was treated without and with human testicular hyaluronidase (2×106 units/l) for 60 min at 37° C and stained by the indirect immunoperoxidase technique with rabbit antihuman fibronectin. The rabbit antihuman fibronectin was purified by affinity chromatography on human fibronectin-Sepharose. Fibronectin was only found on the acellular surface of the articular cartilage in tissue sections not treated with hyaluronidase. In this surface layer, probably identical to lamina splendens, the arrangement of fibronectin was as a membrane. No collagen was seen in this area by van Gieson staining. No staining for fibronectin was found in the cartilage matrix or in the chondrocytes. Treatment of the cartilage tissue with hyaluronidase resulted in visualization of high amount of fibronectin in the cartilage matrix, with the highest intensity around the chondrocytes. The staining of the acellular surface layer of the articular cartilage was identical with the results obtained without hyaluronidase treatment. These results indicate that articular cartilage is rich in fibronectin probably in complex with hyaluronic acid, and that the chondrocytes produce fibronectin in situ. It also demonstrates the steric hindrance of hyaluronic acid aggregates in diffusion of the antibody and the value of hyaluronidase treatment of tissue before demonstration of fibronectin.  相似文献   

13.
Small membrane-bound extracellular organelles known as articular cartilage matrix vesicles (ACVs) participate in pathologic mineralization in osteoarthritic articular cartilage. ACVs are also present in normal cartilage, although they have no known functions other than mineralization. Recently, RNA was identified in extracellular vesicles derived from mast cells, suggesting that such vesicles might carry coding information from cell to cell. We found that ACVs from normal porcine and human articular cartilage and primary chondrocyte conditioned media contained 1 μg RNA/80 μg ACV protein. No DNA could be detected. RT-PCR of ACV RNA demonstrated the presence of full length mRNAs for factor XIIIA, type II transglutaminase, collagen II, aggrecan, ANKH and GAPDH. RNA in intact ACVs was resistant to RNase, despite the fact that ACV preparations contained measurable levels of active RNases. Significantly, radiolabeled RNA in ACVs could be transferred to unlabeled chondrocytes by co-incubation and produced changes in levels of chondrocyte enzymes and proteins. The demonstration that ACVs contain mRNAs suggests that they may function to shuttle genetic information between articular cells and indicate novel functions for these structures in articular cartilage.  相似文献   

14.
Collagen degradation is one of the early signs of osteoarthritis. It is not known how collagen degradation affects chondrocyte volume and morphology. Thus, the aim of this study was to investigate the effect of enzymatically induced collagen degradation on cell volume and shape changes in articular cartilage after a hypotonic challenge. Confocal laser scanning microscopy was used for imaging superficial zone chondrocytes in intact and degraded cartilage exposed to a hypotonic challenge. Fourier transform infrared microspectroscopy, polarized light microscopy, and mechanical testing were used to quantify differences in proteoglycan and collagen content, collagen orientation, and biomechanical properties, respectively, between the intact and degraded cartilage. Collagen content decreased and collagen orientation angle increased significantly (p < 0.05) in the superficial zone cartilage after collagenase treatment, and the instantaneous modulus of the samples was reduced significantly (p < 0.05). Normalized cell volume and height 20 min after the osmotic challenge (with respect to the original volume and height) were significantly (p < 0.001 and p < 0.01, respectively) larger in the intact compared to the degraded cartilage. These findings suggest that the mechanical environment of chondrocytes, specifically collagen content and orientation, affects cell volume and shape changes in the superficial zone articular cartilage when exposed to osmotic loading. This emphasizes the role of collagen in modulating cartilage mechanobiology in diseased tissue.  相似文献   

15.
Bone and cartilage consist of different organic matrices, which can both be mineralized by the deposition of nano-sized calcium phosphate particles. We have studied these mineral particles in the mineralized cartilage layer between bone and different types of cartilage (bone/articular cartilage, bone/intervertebral disk, and bone/growth cartilage) of individuals aged 54 years, 12 years, and 6 months. Quantitative backscattered electron imaging and scanning small-angle X-ray scattering at a synchrotron radiation source were combined with light microscopy to determine calcium content, mineral particle size and alignment, and collagen orientation, respectively. Mineralized cartilage revealed a higher calcium content than the adjacent bone (p<0.05 for all samples), whereas the highest values were found in growth cartilage. Surprisingly, we found the mineral platelet width similar for bone and mineralized cartilage, with the exception of the growth cartilage sample. The most striking result, however, was the abrupt change of mineral particle orientation at the interface between the two tissues. While the particles were aligned perpendicular to the interface in cartilage, they were oriented parallel to it in bone, reflecting the morphology of the underlying organic matrices. The tight bonding of mineralized cartilage to bone suggests a mechanical role for the interface of the two elastically different tissues, bone and cartilage.  相似文献   

16.
Cartilage integration in vivo does not occur, such that even cartilage fissures do not heal. This could be due not only to the limited access of chondrocytes to the wound, but also to exogenous factors. In this paper, we tested the hypothesis that lubricin, a lubricating protein physiologically present in the synovial fluid, reduces the integrative cartilage repair capacity. Disk/ring composites of bovine articular cartilage were prepared using concentric circular blades and cultured for 6 weeks with or without treatment with 250 microg/ml lubricin applied three times per week. Following culture, the percentage of contact area between the disks and the rings, as assessed by light microscopy, were equal in both groups. The adhesive strength of the integration interface, as assessed by push-out mechanical tests, was markedly and significantly lower in lubricin-treated specimens (2.5 kPa) than in the controls (28.7 kPa). Histological observation of Safranin-O stained cross-sections confirmed the reduced integration in the lubricin treated composites. Our findings suggest that the synovial milieu, by providing lubrication of cartilage surfaces, impairs cartilage--cartilage integration.  相似文献   

17.
The extracellular framework and two-thirds of the dry mass of adult articular cartilage are polymeric collagen. Type II collagen is the principal molecular component in mammals, but collagens III, VI, IX, X, XI, XII and XIV all contribute to the mature matrix. In developing cartilage, the core fibrillar network is a cross-linked copolymer of collagens II, IX and XI. The functions of collagens IX and XI in this heteropolymer are not yet fully defined but, evidently, they are critically important since mutations in COLIX and COLXI genes result in chondrodysplasia phenotypes that feature precocious osteoarthritis. Collagens XII and XIV are thought also to be bound to fibril surfaces but not covalently attached. Collagen VI polymerizes into its own type of filamentous network that has multiple adhesion domains for cells and other matrix components. Collagen X is normally restricted to the thin layer of calcified cartilage that interfaces articular cartilage with bone.  相似文献   

18.
Articular cartilage is classified as permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in the epiphyseal growth plate. In the process of synovial joint development, articular cartilage originates from the interzone, developing at the edge of the cartilaginous anlagen, and establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators, such as Wnts, GDF5, Erg, and PTHLH, coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracellular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier's groove, the intra‐articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Furthermore, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. Birth Defects Research (Part C) 99:192–202, 2013 . © 2013 Wiley Periodicals, Inc .  相似文献   

19.
20.
Collagen metabolism was studied in degenerative articular cartilage of dogs with spontaneous, early onset osteoarthritis. A fraction of collagen which represented about 1.5.% of the total was extracted from cartilage samples with dilute phosphate buffer (pH 7.4) containing 0.2% sodium dodecyl sulfate. Agarose gel filtration in the presence of sodium dodecul sulfate revealed that extracts of degenerative cartilage had about 24% procollagen whereas extracts of normal samples had only 3%. The isolated procollagen fraction was rechromatographed on agarose columns in the presence of mercaptoethanol. This resulted in the identification of a collagen species which migrated between marker β and α collagen chains. The molecular weight of this collagen was estimated to be 150000. Based on incorporation of [14C]proline, its ratio of hydroxy[14C]proline to total 14C was 0.32. Procollagen was not found after limited pepsin digestion (pH 3,4°C, 16 h) of degenerative cartilage samples.Since the total collagen content (μg hydroxyproline/mg cartilage), hydroxy[14C]proline/mg cartilage, specific radioactivity of hydroxy[14C]proline (cpm/μg), in the whole cartilage, and the specific radioactivity of hydroxyproline in the extractable collagen fraction were similar for normal and degenerative cartilage we propose that procollagen accumulated in the degenerative cartilage due to a partial defect in conversion of procollagen to collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号