首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated reactions of the 5-phosphonoethyl and 5-phosphonoethenyl analogs of pyridoxal 5'-phosphate in the coenzyme site of cytosolic aspartate aminotransferase. Acid dissociation constants and equilibrium constants for hydration and for tautomerization have been evaluated for these compounds. In confirmation of previous results, both compounds are partially active. They bind to apoenzyme well and undergo conversion in the presence of glutamate to amine forms which show induced circular dichroism comparable to that of native enzyme. A normal "external" Schiff base is evidently formed with 2-methylaspartate, but the amounts of quinonoid intermediate formed with erythro-3-hydroxyaspartate are less than those formed with pyridoxal phosphate. The pKa of the imine group of the enzyme reconstituted with the phosphonoethyl analog is more than two units lower than that in the native enzyme. Binding of the dicarboxylates glutarate, 2-oxoglutarate, and succinate shifts the pKa upward. The absorption spectra of the resulting complexes indicate the existence of at least three low pH species. A shift of 2.3 to 2.9 ppm to a lower frequency was observed for the 31P NMR signal upon binding of these dicarboxylates or of 2-methylaspartate. Enzyme containing the analogs crystallizes. Polarized absorption spectra suggest that the coenzyme has an orientation similar to that of pyridoxal phosphate in the native enzyme.  相似文献   

2.
A methyl group at the 2-position of methyl mesopyropheophorbide-a was transformed to the 2-formyl group to give methyl mesopyropheophorbide-f, one of the chlorophyll-f analogs. The 2-formylation moved the redmost electronic absorption band in a solution to a longer wavelength and the bathochromic shift was comparable to that by the 3-formylation. Zinc complex of the synthetic compound in solutions showed similar visible absorption spectra as those of naturally occurring chlorophyll-f.  相似文献   

3.
3-O-Immobilized and 6-immobilized pyridoxal 5′-phosphate analogs of Sepharose were bound to the allosteric site of nucleoside diphosphatase with very high affinity. Active immobilized nucleoside diphosphatase was prepared by reduction of the Schiff base linkage between the enzyme and pyridoxal 5′-phosphate bound to Sepharose with NaBH4. 3-O-Immobilized pyridoxal 5′-phosphate analog gave more active immobilized enzyme than the 6-analog; the immobilized enzyme on the 3-O-immobilized pyridoxal 5′-phosphate analog showed about 90% of activity of free enzyme. The immobilized enzyme thus prepared was less sensitive to ATP, an allosteric effector, and showed a higher heat stability than the free enzyme. When an assay mixture containing inosine diphosphate and MgCl2 was passed through a column of the immobilized enzyme at 37 °C, inosine diphosphate liberated inorganic phosphate almost quantitatively. Properties of the immobilized enzyme on the pyridoxal 5′-phosphate analog were compared with those of the immobilized enzyme on CNBr-activated Sepharose.  相似文献   

4.
31P-nuclear magnetic resonance and absorption spectra of cytosolic chicken aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1) have been recorded in the pH range from 5 to 8.5. The 31P chemical shift was found to be pH-dependent with a pK of 6.85; the chemical shift change was 0.35 ppm. The pK value found by spectrophotometric titration of the enzyme proved to be about 6.0. The monoanion-dianion transition of the 5'-phosphate group of a model Schiff base of pyridoxal phosphate with 2-aminobutanol in methanol is accompanied by a change in the 31P chemical shift of 5.2 ppm. It is inferred that the phosphate group of the protein-bound coenzyme is in a dianionic form throughout the investigated pH range; the pH-dependence of the 31P chemical shift may be due to a conformational change at the active site. In the presence of 100 mM succinate, 6 mM aminooxyacetate or 25 mM cycloserine, the 31P chemical shift is insensitive to pH variations.  相似文献   

5.
Sensory rhodopsin I (SR-I) is a retinal-containing pigment which functions as a phototaxis receptor in Halobacterium halobium. We have obtained resonance Raman vibrational spectra of the native membrane-bound form of SR587 and used these data to determine the structure of its retinal prosthetic group. The similar frequencies and intensities of the skeletal fingerprint modes in SR587, bacteriorhodopsin (BR568), and halorhodopsin (HR578) as well as the position of the dideuterio rocking mode when SR-I is regenerated with 12,14-D2 retinal (915 cm-1) demonstrate that the retinal chromophore has an all-trans configuration. The shift of the C = N stretching mode from 1628 cm-1 in H2O to 1620 cm-1 in D2O demonstrates that the chromophore in SR587 is bound to the protein by a protonated Schiff base linkage. The small shift of the 1195 cm-1 C14-C15 stretching mode in D2O establishes that the protonated Schiff base bond has an anti configuration. The low value of the Schiff base stretching frequency together with its small 8 cm-1 shift in D2O indicates that the Schiff base proton is weakly hydrogen bonded to its protein counterion. This suggests that the red shift in the absorption maximum of SR-I (587 nm) compared with HR (578 nm) and BR (568 nm) is due to a reduction of the electrostatic interaction between the protonated Schiff base group and its protein counterion.  相似文献   

6.
A visual pigment is composed of retinal bound to its apoprotein by a protonated Schiff base linkage. Light isomerizes the chromophore and eventually causes the deprotonation of this Schiff base linkage at the meta II stage of the bleaching cycle. The meta II intermediate of the visual pigment is the active form of the pigment that binds to and activates the G protein transducin, starting the visual cascade. The deprotonation of the Schiff base is mandatory for the formation of meta II intermediate. We studied the proton binding affinity, pKa, of the Schiff base of both octopus rhodopsin and the gecko cone pigment P521 by spectral titration. Several fluorinated retinal analogs have strong electron withdrawing character around the Schiff base region and lower the Schiff base pKa in model compounds. We regenerated octopus and gecko visual pigments with these fluorinated and other retinal analogs. Experiments on these artificial pigments showed that the spectral changes seen upon raising the pH indeed reflected the pKa of the Schiff base and not the denaturation of the pigment or the deprotonation of some other group in the pigment. The Schiff base pKa is 10.4 for octopus rhodopsin and 9.9 for the gecko cone pigment. We also showed that although the removal of Cl- ions causes considerable blue-shift in the gecko cone pigment P521, it affects the Schiff base pKa very little, indicating that the lambda max of visual pigment and its Schiff base pKa are not tightly coupled.  相似文献   

7.
To establish the state of protonation of quinonoid species formed nonenzymically from pyridoxal phosphate (PLP) and diethyl aminomalonate, we have studied absorption spectra of the rapidly established steady-state mixture of species. We have evaluated the formation constant and the spectrum of the mixture of Schiff base and quinonoid species. For N-methyl-PLP a singly protonated species with a peak at 464 nm is formed from the unprotonated aldehyde and the conjugate acid of diethyl aminomalonate with a formation constant Kf of 240 M-1. The very intense absorption band with characteristic vibrational structure (most evident as a shoulder at 435 nm) is accompanied by a weaker, structured band at about 380 nm and a weak, broad band at 330 nm. We suggest that the 380-nm band may represent a tautomeric form of the quinonoid compound. Protonation of the phosphate group appears to affect the spectrum only slightly. The corresponding mixture of Schiff base and quinonoid species formed from PLP has a very similar spectrum at pH 6-7. It has a formation constant Kf of 230 M-1 and a pKa of 7.8, which must be attributed to the ring nitrogen atom. The dissociated species, which may be largely carbanionic, has a strong structured absorption band at 430 nm and a weaker one, again possibly a tautomer, in the 330-nm region. The analysis establishes that in all species a proton remains on either the phenolic oxygen or the imine nitrogen. Proton NMR spectroscopy, under some conditions, reveals only two components: free PLP and what appears to be Schiff base. However, we suggest that the latter may, in fact, be a quinonoid form, either alone or in rapid equilibrium with the Schiff base. Absorption spectra of quinonoid species formed in enzymes are analyzed and compared with the spectra of the nonenzymic species.  相似文献   

8.
1-methyl-DL-Trp, beta-(3-benzofuranyl)-DL-alanine (the oxygen analog of Trp), and beta-[3-benzo(b)thienyl]-DL-alanine (the sulfur analog of Trp), each of which has a substitution at the indole nitrogen atom, were found to be the first examples of potent substrate analog competitive inhibitors (Ki 7-70 microM) with respect to the substrates D-Trp and L-Trp for rabbit small intestinal indoleamine 2,3-dioxygenase. Binding studies using optical absorption and CD spectroscopy demonstrated that these three inhibitors cause spectral changes upon binding to the native ferric, ferrous, ferrous-CO, and ferrous-NO enzymes. Such spectral effects of 1-methyl-DL-Trp on all of these enzyme derivatives were similar to those caused by L-Trp, while the sulfur and the oxygen analogs of Trp exhibit relatively small effects except for those observed for the sulfur analog with CD spectroscopy. Each of these three Trp analog inhibitors competes with L-Trp for the ferrous-CO enzyme, a model for the ferrous-O2 enzyme. The present findings demonstrate that, although substitution of a methyl group for the hydrogen atom on the indole nitrogen or of a more electron-inductive sulfur or oxygen atom for the indole nitrogen atom does not prevent the binding of the resulting Trp analog to indoleamine 2,3-dioxygenase, the free form of the indole nitrogen base is an important physical and/or electronic structural requirement for Trp to be metabolized by the enzyme. The inability of 1-methyl-Trp to serve as a substrate for the dioxygenase supports a view that singlet oxygen is not the reactive oxygen species involved in the dioxygenation of Trp by the enzyme.  相似文献   

9.
Morollo AA  Petsko GA  Ringe D 《Biochemistry》1999,38(11):3293-3301
The structure of alanine racemase from Bacillus stearothermophilus with the inhibitor propionate bound in the active site was determined by X-ray crystallography to a resolution of 1.9 A. The enzyme is a homodimer in solution and crystallizes with a dimer in the asymmetric unit. Both active sites contain a pyridoxal 5'-phosphate (PLP) molecule in aldimine linkage to Lys39 as a protonated Schiff base, and the pH-independence of UV-visible absorption spectra suggests that the protonated PLP-Lys39 Schiff base is the reactive form of the enzyme. The carboxylate group of propionate bound in the active site makes numerous interactions with active-site residues, defining the substrate binding site of the enzyme. The propionate-bound structure therefore approximates features of the Michaelis complex formed between alanine racemase and its amino acid substrate. The structure also provides evidence for the existence of a carbamate formed on the side-chain amino group of Lys129, stabilized by interactions with one of the residues interacting with the carboxylate group of propionate, Arg136. We propose that this novel interaction influences both substrate binding and catalysis by precisely positioning Arg136 and modulating its charge.  相似文献   

10.
The chemical and spectroscopic properties of 6-fluoropyridoxal 5'-phosphate, of its Schiff base with valine, and of 6-fluoropyridoxamine 5'-phosphate have been investigated. The modified coenzymes have also been combined with the apo form of cytosolic aspartate aminotransferase, and the properties of the resulting enzymes and of their complexes with substrates and inhibitors have been recorded. Although the presence of the 6-fluoro substituent reduces the basicity of the ring nitrogen over 10 000-fold, the modified coenzymes bind predominately in their dipolar ionic ring forms as do the natural coenzymes. Enzyme containing the modified coenzymes binds substrates and dicarboxylate inhibitors normally and has about 42% of the catalytic activity of the native enzyme. The fluorine nucleus provides a convenient NMR probe that is sensitive to changes in the state of protonation of both the ring nitrogen and the imine or the -OH group of free enzyme and of complexes with substrates or inhibitors. The NMR measurements show that the ring nitrogen of bound 6-fluoropyridoxamine phosphate is protonated at pH 7 or below but becomes deprotonated at high pH around a pKa of 8.2. The bound 6-fluoropyridoxal phosphate, which exists as a Schiff base with a dipolar ionic ring at high pH, becomes protonated with a pKa of approximately 7.1, corresponding to the pKa of approximately 6.4 in the native enzyme. Below this pKa a single 19F resonance is seen, but there are two light absorption bands corresponding to ketoenamine and enolimine tautomers of the Schiff base. The tautomeric ratio is altered markedly upon binding of dicarboxylate inhibitors. From the chemical shift values, we conclude that during the rapid tautomerization a proton is synchronously moved from the ring nitrogen (in the ketoenamine) onto the aspartate-222 carboxylate (in the enolimine). The possible implications for catalysis are discussed.  相似文献   

11.
The synthesis of a new 8-spin-labeled analog of AMP, 8-[[[(2,2,5,5-tetramethyl-1-oxy-3-pyrrolidinyl)carbamoyl]methyl]thio]adenosine 5'-phosphate (8-slAMP), is described. The procedure is facile and results in high yields. 8-slAMP is a competitive inhibitor of AMP nucleosidase with a Ki of 19 microM as compared to a Km of 100 microM for AMP. The analog is not a substrate for the enzyme and does not displace MgATP2- from the allosteric sites under the usual assay conditions. The EPR spectrum of the bound spin probe reveals a highly immobilized nitroxide group. Binding studies with 8-slAMP at 8 degrees C indicate three independent binding sites (Kd = 1.4 microM) per molecule of enzyme (Mr = 320,000). These properties make 8-slAMP a good spin probe for AMP nucleosidase. The analog may also be useful for other proteins known or suspected of binding AMP analogs in a syn conformation.  相似文献   

12.
Adenine nucleotides were immobilized on modified Sepharose 4B or Dextran T40 with glutaraldehyde and reduced with KBH4. Binding was dependent on pH and the nature of the amino group on the modified polysaccharide. ATP bound to soluble dextran retained coenzyme activity with glycerol kinase. Binding is proposed to occur via a Schiff base.  相似文献   

13.
The ribose-modified chromophoric and fluorescent analog of ATP, 2',3'-O-(2,4,6-trinitrocyclohexadienylidene)-ATP (TNP-ATP) (Hiratsuka, T., and Uchida, K. (1973) Biochim. Biophys. Acta 320, 635-647 and Hiratsuka, T. (1976) Biochim. Biophys. Acta 453, 293-297) has been widely used as an ATP analog for various ATPases. Although the corresponding analog of GTP,2',3'-O-(2,4,6-trinitrocyclohexadienylidene)-GTP (TNP-GTP) should be useful for the study of various GTP-requiring enzymes, it is difficult to prepare TNP-GTP by the conventional method. In the present study, we succeeded in the synthesis of TNP-GTP with the use of an alternative method. The analogs of GDP, GMP, and guanyl-5'-yl imidodiphosphate (Gpp(NH)p) were also synthesized. Visible absorption and fluorescent properties of TNP-GTP, TNP-GDP, TNP-GMP, and TNP-Gpp(NH)p were quite similar to those of TNP-ATP. TNP-GTP was found to be able to replace GTP as an inhibitor for bovine liver glutamate dehydrogenase. The enzyme was inhibited by TNP-GTP to a maximum extent of 54% at saturating concentrations of the analog with a KI of 2.7 microM. TNP-Gpp(NH)p and other ribose-modified fluorescent analogs of GTP,3'-O-anthraniloyl-GTP and 3'-O-(N-methylanthraniloyl)-GTP (Hiratsuka, T. (1983) Biochim. Biophys. Acta 742, 496-508), also inhibited the enzymatic activity. Binding of TNP-GTP to the enzyme was characterized by a 5.6-fold enhancement in analog fluorescence. In the presence of NADH, the limiting fluorescence enhancement of the bound analog decreased to 2.7-fold. As determined by fluorometric titration, the maximum number of TNP-GTP binding sites on the enzyme was 1.9 mol/mol of subunit with a KD of 0.66 microM in the absence of NADH and 2.2 mol/mol of subunit with two KD values of 0.11 and 0.71 microM in the presence of NADH. These observations suggest that NADH binding increases the affinity of only 1 mol of the 2 mol of TNP-GTP bound to the enzyme. These spectroscopic and biological properties of TNP-GTP should make this analog useful as a chromophoric and fluorescent probe for studies not only of glutamate dehydrogenase but also of various GTP-requiring enzymes, which have a high specificity for the base moiety of GTP.  相似文献   

14.
The photoreaction of 9-cis-7,8-dihydrorhodopsin was examined at liquid nitrogen temperatures (-180 degrees C) in order to elucidate the photochemical events in visual pigments. This rhodopsin analog was prepared by incubating 9-cis-7,8-dihydroretinal with bovine opsin in the dark. 9-cis-7,8-Dihydrorhodopsin (lambda max = 427 nm) was cooled to -180 degrees C, and then irradiated at -180 degrees C with a 390 nm light, resulting in formation of its bathochromic product (lambda max = 465 nm). This result indicates that the presence of four double-bonds adjacent to the Schiff base nitrogen is sufficient to allow formation of a bathochromic product. Thus, the mechanism of formation of bathorhodopsin (in bovine rhodopsin system) may be considered as some change of the interaction between the conjugated double-bond system from C-9 to the Schiff base nitrogen and its surrounding charges in opsin, caused by rotation of 11-12 double-bond.  相似文献   

15.
5-Aminolaevulinic acid dehydratase: structure, function, and mechanism.   总被引:6,自引:0,他引:6  
delta-Aminolaevulinic acid dehydratase catalyses the synthesis of porphobilinogen. The enzyme has a molecular mass of 285000 and is composed of eight similar subunits of molecular mass 35000. The N-terminal amino acid is acylated, and the number of peptides found on tryptic digestion equals the number of lysine and arginine residues per mass of 35000. The eight subunits are apparently arranged at the corners of a cube and therefore have dihedral (D4) symmetry. The bovine liver enzyme which has been cystallized contains 4--6 atoms of zinc per mole of enzyme. The apo-enzyme obtained on prolonged hydrolysis can be reactivated by the addition of zinc or cadmium ions. The dialysed enzyme must be first treated with dithiothreitol. There are two very active SH groups in a total of 6--7-SH groups per subunit. The substrate forms a Schiff base with the epsilon-amino group of a lysine residue. Reduction of the Schiff base with NaBH4 should reveal the number of active sites per mole of enzyme. It appears that only four of the eight subunits form a Schiff base with the substrate indicating that the enzyme exhibits the phenomenon of either half-site reactivity or negative cooperativity. The enzyme appears to have a strong subunit-subunit interaction for an immobilized preparation remained stable for at least a month. An immobilized enzyme preparation was treated in a manner so that it dissociated into tetramers. Both the eluate and protein still attached to the Sepharose on a column were enzymically active. The bound enzyme could not reassociate under assay conditions but still contained about 50% of the original enzyme activity. It would seem that the enzyme is active when composed with less than eight subunits.  相似文献   

16.
P1,P2-bis(5′-pyridoxal)diphosphate inactivates apophosphorylase b from rabbit muscle, but not holophosphorylase. Inactivation is stoichiometric with the incorporation of 1 mol of the pyridoxal 5′-phosphate analog per mol of enzyme monomer. One of the two pyridoxal groups of the analog is kinked to the cofactor site forming a Schiff base, and is not reduced with NaBH4. The other also forms a Schiff base, but is easily reduced by the same treatment. The residue involving in the latter binding has been identified as Lys-573. Its ε-amino group may interact with the phosphate group of the cofactor or of the substrate in the native enzyme.  相似文献   

17.
Lys-258 of aspartate aminotransferase forms a Schiff base with pyridoxal phosphate and is responsible for catalysis of the 1,3-prototropic shift central to the transamination reaction sequence. Substitution of arginine for Lys-258 stabilizes the otherwise elusive quinonoid intermediate, as assessed by the long wavelength absorption bands observed in the reactions of this mutant with several amino acid substrates. The external aldimine intermediate is not detectable during reactions of this mutant with amino acids, although the inhibitor alpha-methylaspartate does slowly and stably form this species. These results suggest that external aldimine formation is one of the rate-determining steps of the reaction. The pyridoxamine-5'-phosphate-like enzyme form (330-nm absorption maximum) is unreactive toward keto acid substrates, and the coenzyme bound to this species is not dissociable from the protein.  相似文献   

18.
31P NMR spectra of the cytosolic chicken aspartate aminotransferase have been recorded at 161.7 MHz in the pH range of 5.7 to 8.2. The 31P chemical shift was found to be pH-dependent with a pK of 6.85; difference in the chemical shift at pH 5.7 and 8.2 is only 0.35 ppm. The monoanion-dianion transition of 5'-phosphate group of a model Schiff base of pyridoxal phosphate with 2-aminobutanol in methanol is accompanied by a change in 31P chemical shift of 5.2 ppm. It is inferred that the phosphate group of the protein--bound coenzyme is in dianionic form throughout the investigated pH range; the small pH-dependent change of chemical shift may be due to a protein conformational change that affects O-P-O bond angle. In the presence of the 0.1 M succinate, 31P chemical shift of the enzyme remains constant in the pH range of 5.0 to 8.3.  相似文献   

19.
Pyridoxal 5'-phosphate labeled to the extent of 90% with 13C in the 4' (aldehyde) and 5' (methylene) positions has been synthesized. 13C NMR spectra of this material and of natural abundance pyridoxal 5'-phosphate are reported, as well as 13C NMR spectra of the Schiff base formed by reaction of pyridoxal 5'-phosphate with n-butylamine, the secondary amine formed by reduction of this Schiff base, the thiazolidine formed by reaction of pyridoxal 5'-phosphate with cysteine, the hexahydropyrimidine formed by reaction of pyridoxal 5'-phosphate with 1,3-diaminobutane, and pyridoxamine 5'-phosphate. The range of chemical shifts for carbon 4' in these compounds is more than 100 ppm, and thus this chemical shift is expected to be a sensitive indicator of structure in enzyme-bound pyridoxal 5'-phosphate. The chemical shift of carbon 5', on the other hand, is insensitive to these structure changes. 13C NMR spectra have been obtained at pH 7.8 and 9.4 for D-serine dehydratase (Mr = 46,000) containing natural abundance pyridoxal 5'-phosphate and containing 13C-enriched pyridoxal 5'-phosphate. The enriched material contains two new resonances not present in the natural abundance material, one at 167.7 ppm with a linewidth of approximately 24 Hz, attributed to carbon 4' of the Schiff base in the bound coenzyme, and one at 62.7 Hz with a linewidth of approximately 48 Hz attributed to carbon 5' of the bound Schiff base. A large number of resonances due to individual amino acids are assigned. The NMR spectrum changes only slightly when the pH is raised to 9.4. The widths of the two enriched coenzyme resonances indicate that the coenzyme is rather rigidly bound to the enzyme but probably has limited motional freedom relative to the protein. 13C NMR spectra have been obtained for L-glutamate decarboxylase containing natural abundance pyridoxal 5'-phosphate and 13C-enriched pyridoxal 5'-phosphate. Under conditions where the two enriched 13C resonances are clearly visible in D-serine dehydratase, no resonances are visible in enriched L-glutamate decarboxylase, presumably because the coenzyme is rigidly bound to the protein and the 300,000 molecular weight of this enzyme produces very short relaxation times for the bound coenzyme and thus very broad lines.  相似文献   

20.
Several kynurenine analogs have been prepared and examined for their susceptibility to hydrolytic cleavage by bacterial kynureninase. In addition to L-kynurenine, 4-fluoro- and 5-fluoro-L-kynurenines were hydrolyzed rapidly. 3-Hydroxy-, 5-hydroxy-, 5-methyl-, and N'-formyl-L-kynurenines, and beta-benzoyl-DL-alanine were hydrolyzed slowly, whereas D-kynurenine, S-benzyl-L-cysteine, and L-asparagine were not hydrolyzed. Kinetic parameters for these kynurenine analogs indicate that a substituent on the benzene ring of kynurenine does not greatly affect the affinity of the enzyme for the substrate but does markedly affect the rate of hydrolysis. gamma-(o-Aminophenyl)-L-homoserine was converted into L-alanine and o-amino-benzaldehyde, suggesting that the sigma-bond electrons between the beta- and gamma-carbon atoms of this kynurenine analog remain in the alanyl moiety during the enzyme reaction. Aromatic compounds such as o-aminobenzaldehyde and o-aminoacetophenone strongly inhibited the kynurenine hydrolysis. It was shown that kynurenic acid is not produced by kynureninase by the use of isotopically labeled substrate. A small amount of pyruvate was definitely formed in the kynureninase reaction. On the basis of these results, a reaction mechanism is proposed for the enzymatic kynurenine cleavage, involving hydrolysis of the alpha, gamma-diketone intermediate to give anthranilic acid and the pyruvate-pyridoxamine 5'-phosphate Schiff base, which is further converted into the alanine-pyridoxal 5'-phosphate Schiff base, or directly hydrolyzed to give pyruvate and the pyridoxamine 5'-phosphate form of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号