首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have recently demonstrated that the Arg-X-Lys/Arg-Arg sequence is a signal for precursor cleavage catalyzed by furin, a mammalian homologue of the yeast precursor-processing endoprotease Kex2, within the constitutive secretory pathway. In this study, we further examined sequence requirements for the constitutive precursor cleavage by expression of various prorenin mutants with amino acid substitutions around the native Lys-Arg cleavage site in Chinese hamster ovary cells. The results delineate the following sequence rules that govern the constitutive precursor cleavage. (a) A basic residue (Lys or Arg) at the 4th (position -4) or 6th (position -6) residue upstream of the cleavage site besides basic residues at positions -1 and -2 is necessary. (b) At position -2, a Lys residue is more preferable than Arg. (c) At position -4, an Arg residue is more preferable than Lys. (d) At position 1, a hydrophobic aliphatic amino acid is not suitable.  相似文献   

2.
It is well known that precursor cleavage at paired basic amino acids (e.g., Lys-Arg, Arg-Arg) within the regulated secretory pathway is one of the key steps to produce bioactive peptides. On the other hand, we have recently shown that precursors with an Arg residue at the fourth residue upstream of the cleavage site besides the basic pair, i.e. with the Arg-X-Lys/Arg-Arg (RXK/RR) motif, are cleaved within the constitutive secretory pathway. To discriminate between the precursor cleavage at RXK/RR sites within the constitutive pathway and that at dibasic sites within the regulated pathway, we examined the effects of drugs affecting the secretory process, intracellular Ca2+ depletion, and a protease inhibitor on these cleavages. Chloroquine (a weak base), depletion of intracellular Ca2+ by A23187 (a Ca2+ ionophore), and the Pittsburgh-type mutant of alpha 1-protease inhibitor differentially affected these two cleavages. Brefeldin A, which impedes protein transport from the endoplasmic reticulum to the Golgi complex, inhibited both cleavages. Colchicine (an anti-microtubular drug) had no discernible effect on either cleavage. These observations support the notion that the precursor cleavages at dibasic and RXK/RR sites occur in different subcellular compartments, and are catalyzed by different processing endoproteases.  相似文献   

3.
Regulatory peptides are synthesized as part of larger precursors that are subsequently processed into the active substances. After cleavage of the signal peptide, further proteolytic processing occurs predominantly at basic amino acid residues. Rules have been proposed in order to predict which putative proteolytic processing sites are actually used, but these rules have been established for vertebrate peptide precursors and it is unclear whether they are also valid for insects. The aim of this paper is to establish the validity of these rules to predict proteolytic cleavage sites at basic amino acids in insect neuropeptide precursors. Rules describing the cleavage of mono- and dibasic potential processing sites in insect neuropeptide precursors are summarized below. Lys-Arg pairs not followed by an aliphatic or basic amino acid residue are virtually always cleaved in insect regulatory peptide precursors, but cleavages of Lys-Arg pairs followed by either an aliphatic or a basic amino acid residue are ambiguous, as is processing at Arg-Arg pairs. Processing at Arg-Lys pairs has so far not been demonstrated in insects and processing at Lys-Lys pairs appears very rare. Processing at single Arg residues occurs only when there is a basic amino acid residue in position -4, -6, or -8, usually an Arg, but Lys or His residues work also. Although the current number of such sites is too limited to draw definitive conclusions, it seems plausible that cleavage at these sites is inhibited by the presence of aliphatic residues in the +1 position. However, cleavage at single Arg residues is ambiguous. When several potential cleavage sites overlap the one most easily cleaved appears to be processed. It cannot be excluded that some of the rules formulated here will prove less than universal, as only a limited number of cleavage sites have so far been identified. It is likely that, as in vertebrates, ambiguous processing sites exist to allow differential cleavage of the same precursor by different convertases and it seems possible that the precursors of allatostatins and PBAN are differentially cleaved in different cell types. Arch. Insect Biochem. Physiol. 43:49-63, 2000.  相似文献   

4.
Lakshmi Devi 《FEBS letters》1991,280(2):189-194
Many regulatory peptide precursors undergo post-translational processing at mono- and/or dibasic residues. Comparison of amino acids around the monobasic cleavage sites suggests that these cleavages follow certain sequence motifs and can be described as the rules that govern monobasic cleavages: (i) a basic amino acid it present at either 3, 5, or 7 amino acids N-terminal to the cleavage site, (ii) hydrophobic aliphatic amino acids (leucine, isoleucine, valine, or methionine) are never present in the position C-terminal to the monobasic amino acid at the cleavage site, (iii) a cysteine is never present in the vicinity of the cleavage site, and (iv) an aromatic amino acid is never present at the position N-terminal to the monobasic amino acid at the cleavage site. In addition to these rules, the monobasic cleavages follow certain tendencies: (i) the amino acid at the cleavage site tends to be predominantly arginine, (ii) the amino acid at the position C-terminal to the cleavage site tends to be serine, alanine or glycine in more than 60% of the cases, (iii) the amino acid at either 3, 5, or 7 position N-terminal to the cleavage site tends to be arginine, (iv) aromatic amino acids are rare at the position C-terminal to the monobasic amino acid at the cleavage site, and (v) aliphatic amino acids tend to be in the two positions N-terminal to and the two positions C-terminal to the cleavage site, except as noted above. When compared with a large number of sequence containing single basic amino acids, these rules and tendencies are capable of not only correctly predicting the processing sites, but also are capable of excluding most of the single basic sequences that are known to be uncleaved. Many or these rules can also be applied to correctly predict the dibasic and multibasic cleavage sites suggesting that the rules and tendencies could govern endoproteolytic processing at the monobasic, dibasic and multibasic sites.  相似文献   

5.
Many peptide hormones are produced from larger precursors by endoproteolysis at pairs of basic amino acids (e.g. Lys-Arg and Arg-Arg) within the regulated secretory pathway in endocrine cells. However, many other secretory and membrane proteins appear to be produced from precursors through cleavage at multiple, rather than paired, basic residues within the constitutive secretory pathway in non-endocrine cells. By surveying various precursors processed constitutively, we noticed that most of them have the consensus sequence, Arg-X-Lys/Arg-Arg (RXK/RR), at the cleavage site. When expressed in endocrine and non-endocrine cells, a precursor with the RXKR sequence was cleaved in both types of cells, whereas that with the Lys-Arg pair was cleaved only in the endocrine cells. When the RXKR precursor was coexpressed with furin and PC3, both of which are mammalian homologues of the yeast precursor-processing endoprotease Kex2, in non-endocrine cells, enhancement of the precursor cleavage by furin but not by PC3 was observed. By contrast, when the Lys-Arg precursor was coexpressed with the two mammalian proteases in endocrine cells with no endogenous processing activity at dibasic sites, it was cleaved only by PC3. These results indicate that the basic pair and the RXK/RR sequence are the signals for precursor cleavages catalyzed by PC3 within the regulated secretory pathway and by furin within the constitutive pathway, respectively.  相似文献   

6.
Although cleavage of peptides at sites marked by paired basic amino acids is a common feature of prohormone processing, little is known about the properties of endoprotease(s) responsible for cleavage of the precursor. To examine the cleavage specificity of a processing endoprotease, we have altered the Lys-Arg cleavage site of human prorenin to Arg-Arg, Lys-Lys and Arg-Lys by site-directed mutagenesis, and expressed the native and mutated precursors in mouse pituitary AtT-20 cells which are known to process foreign prohormones, including prorenin, at paired basic sites during the regulated secretory process. All native and mutated human prorenins were sorted into the regulated secretory pathway. The mutated precursor with Arg-Arg instead of the Lys-Arg native pair was processed at about half the efficiency of the native one, while the Lys-Lys and Arg-Lys mutants were not processed. Rat prorenin, which naturally has a Lys-Lys pair, was not processed in the cells. In addition, mouse Ren2 prorenin, which has a Ser residue next to the Lys-Arg pair, but not mouse Ren1 prorenin, which has a Pro residue next to the pair, was processed. These results suggest that the Arg residue at the COOH side of the basic pair is essential for cleavage of prorenins by a processing enzyme during the regulated secretory process in AtT-20 cells, although the NH2-side Lys residue also plays a role. The results also demonstrate that the processing enzyme cannot cleave the Arg-Pro peptide bond.  相似文献   

7.
We have recently shown that the Arg/Lys-X-Lys/Arg-Arg or Arg/Lys-X-X-X-Lys/Arg-Arg sequence serves as a signal for cleavage of precursor proteins within the constitutive secretory pathway, and this cleavage is catalyzed by furin, a mammalian homolog of the yeast Kex2 protease. In this study, we further examined sequence requirements for the constitutive precursor cleavage. Based on the data concerning cleavage efficiencies of various prorenin mutants with amino acid substitution(s) around the native cleavage site expressed in CHO cells, we revised the sequence rules that govern the constitutive cleavage as follows: (i) the Arg residue at position −1 is essential; (ii) in addition to the Arg at position −1, at least two out of the three basic residues at positions −2, −4, and −6 are required for efficient cleavage (the presence of all the three basic residues results in most efficient cleavage); (iii) at position +1, a hydrophobic aliphatic amino acid is not suitable.  相似文献   

8.
Mitochondrial processing peptidase (MPP) specifically cleaves off the N-terminal presequence of the mitochondrial protein precursor. Previous studies demonstrated that Arg at position -2 from the cleavage site, which is found among many precursors, plays a critical role in recognition by MPP. We analyzed the structural elements of bovine cytochrome P450 side-chain cleavage enzyme precursor [pre-P450(SCC)], which has Ala at position -2, for recognition by MPP. Replacement of Ala position -2 of pre-P450(SCC) with Arg resulted in an increase in the cleavage rate. Replacement with Gly caused a reduction in the cleavage rate and the appearance of an additional cleavage site downstream of the authentic site. A pre-P450(SCC) mutant with Met at position -2 retained cleavage efficiency equal to that of the wild type. These results indicate that -2 Ala of pre-P450(SCC) is recognized by MPP as a determinant for precise cleavage, and that the amino acid at -2 is required to have a straight methylene chain for interaction with the S(2) site. The preference for distal basic residues, a hydrophobic residue at +1, and hydroxyl residues at +2 and +3, was almost the same as those of the precursors with Arg at -2, indicating that the recognition mechanism of pre-P450(SCC) by MPP is essentially the same as that of the precursors with Arg at position -2.  相似文献   

9.
10.
Cleavage at four sites (3/4A, 4A/4B, 4B/5A, and 5A/5B) in the hepatitis C virus polyprotein requires a viral serine protease activity residing in the N-terminal one-third of the NS3 protein. Sequence comparison of the residues flanking these cleavage sites reveals conserved features including an acidic residue (Asp or Glu) at the P6 position, a Cys or Thr residue at the P1 position, and a Ser or Ala residue at the P1' position. In this study, we used site-directed mutagenesis to assess the importance of these and other residues for NS3 protease-dependent cleavages. Substitutions at the P7 to P2' positions of the 4A/4B site had varied effects on cleavage efficiency. Only Arg at the P1 position or Pro at P1' substantially blocked processing at this site. Leu was tolerated at the P1 position, whereas five other substitutions allowed various degrees of cleavage. Substitutions with positively charged or other hydrophilic residues at the P7, P3, P2, and P2' positions did not reduce cleavage efficiency. Five substitutions examined at the P6 position allowed complete cleavage, demonstrating that an acidic residue at this position is not essential. Parallel results were obtained with substrates containing an active NS3 protease domain in cis or when the protease domain was supplied in trans. Selected substitutions blocking or inhibiting cleavage at the 4A/4B site were also examined at the 3/4A, 4B/5A, and 5A/5B sites. For a given substitution, a site-dependent gradient in the degree of inhibition was observed, with a 3/4A site being least sensitive to mutagenesis, followed by the 4A/4B, 4B/5A, and 5A/5B sites. In most cases, mutations abolishing cleavage at one site did not affect processing at the other serine protease-dependent sites. However, mutations at the 3/4A site which inhibited cleavage also interfered with processing at the 4B/5A site. Finally, during the course of these studies an additional NS3 protease-dependent cleavage site has been identified in the NS4B region.  相似文献   

11.
We demonstrate that the precursor of the major light-harvesting chlorophyll a/b binding protein (LHCP of Photosystem II), encoded by a Type I gene, contains distinct determinants for processing at two sites during in vitro import into the chloroplast. Using precursors from both pea and wheat, it is shown that primary site processing, and release of a approximately 26-kD peptide, depends on an amino-proximal basic residue. Substitution of an arginine at position -4 resulted in an 80% reduction in processing, with the concomitant accumulation of a high molecular weight intermediate. Cleavage occurred normally when arginine was changed to lysine. The hypothesis that a basic residue is a general requirement for transit peptide removal was tested. We find that the precursors for the small subunit of Rubisco and Rubisco activase do not require a basic residue within seven amino acids of the cleavage site for maturation. In the wheat LHCP precursor, determinants for efficient cleavage at a secondary site were identified carboxy to the primary site, beyond what is traditionally called the transit peptide, within the sequence ala-lys-ala-lys (residues 38-41). Introduction of this sequence into the pea precursor, which has the residues thr-thr-lys-lys in the corresponding position, converted it to a substrate with an efficiently recognized secondary site. Our results indicate that two different forms of LHCP can be produced with distinct NH2-termini by selective cleavage of a single precursor polypeptide.  相似文献   

12.
Catestatin is an active 21-residue peptide derived from the chromogranin A (CgA) precursor, and catestatin is secreted from neuroendocrine chromaffin cells as an autocrine regulator of nicotine-stimulated catecholamine release. The goal of this study was to characterize the primary sequences of high molecular mass catestatin intermediates and peptides to define the proteolytic cleavage sites within CgA that are utilized in the biosynthesis of catestatin. Catestatin-containing polypeptides, demonstrated by anti-catestatin western blots, of 54-56, 50, 32, and 17 kDa contained NH(2)-terminal peptide sequences that indicated proteolytic cleavages of the CgA precursor at KK downward arrow, KR downward arrow, R downward arrow, and KR downward arrow basic residue sites, respectively. The COOH termini of these catestatin intermediates were defined by the presence of the COOH-terminal tryptic peptide of the CgA precursor, corresponding to residues 421-430, which was identified by MALDI-TOF mass spectrometry. Results also demonstrated the presence of 54-56 and 50 kDa catestatin intermediates that contain the NH(2) terminus of CgA. Secretion of catestatin intermediates from chromaffin cells was accompanied by the cosecretion of catestatin (CgA(344)(-)(364)) and variant peptide forms (CgA(343)(-)(368) and CgA(332)(-)(361)). These determined cleavage sites predicted that production of high molecular mass catestatin intermediates requires cleavage at the COOH-terminal sides of paired basic residues, which is compatible with the cleavage specificities of PC1 and PC2 prohormone convertases. However, it is notable that production of catestatin itself (CgA(344)(-)(364)) utilizes more unusual cleavage sites at the NH(2)-terminal sides of downward arrow R and downward arrow RR basic residue sites, consistent with the cleavage specificities of the chromaffin granule cysteine protease "PTP" that participates in proenkephalin processing. These findings demonstrate that production of catestatin involves cleavage of CgA at paired basic and monobasic residues, necessary steps for catestatin peptide regulation of nicotinic cholinergic-induced catecholamine release.  相似文献   

13.
The cytomegalovirus maturational proteinase is synthesized as a precursor that undergoes at least three processing cleavages. Two of these were predicted to be at highly conserved consensus sequences--one near the carboxyl end of the precursor, called the maturational (M) site, and the other near the middle of the precursor, called the release (R) site. A third less-well-conserved cleavage site, called the inactivation (I) site, was also identified near the middle of the human cytomegalovirus 28-kDa assemblin homolog. We have used site-directed mutagenesis to verify all three predicted sequences in the simian cytomegalovirus proteinase, and have shown that the proteinase precursor is active without cleavage at these sites. We have also shown that the P4 tyrosine and the P2 lysine of the R site were more sensitive to substitution than the other R- and M-site residues tested: substitution of alanine for P4 tyrosine at the R site severely reduced cleavage at that site but not at the M site, and substitution of asparagine for lysine at P2 of the R site reduced M-site cleavage and nearly eliminated I-site cleavage but had little effect on R-site cleavage. With the exception of P1' serine, all R-site mutations hindered I-site cleavage, suggesting a role for the carboxyl end of assemblin in I-site cleavage. Pulse-chase radiolabeling and site-directed mutagenesis indicated that assemblin is metabolically unstable and is degraded by cleavage at its I site. Fourteen amino acid substitutions were also made in assemblin, the enzymatic amino half of the proteinase precursor. Among those tested, only 2 amino acids were identified as essential for activity: the single absolutely conserved serine and one of the two absolutely conserved histidines. When the highly conserved glutamic acid (Glu22) was substituted, the proteinase was able to cleave at the M and I sites but not at the R site, suggesting either a direct (e.g., substrate recognition) or indirect (e.g., protein conformation) role for this residue in determining substrate specificity.  相似文献   

14.
The endoproteolytic activity previously detected in rat intestinal mucosal extracts (Beinfeld M., Bourdais, J., Kuks, P., Morel, A., and Cohen, P. (1989) J. Biol. Chem. 264, 4460-4465), was purified to homogeneity as a 65-kDa molecular species. This putative proprotein-processing enzyme cleaves the peptide bond on the carboxyl side of a single arginine residue in hepta-[Leu62-Gln-Arg-Ser-Ala-Asn-Ser68] or trideca-[Asp56-Glu-Met-Arg-Leu-Glu-Leu-Gln-Arg-Ser-Ala-Asn-+ ++Ser68] peptides, reproducing the prosomatostatin sequence around Arg64, the locus for endoproteolytic release of either somatostatin-28 or its NH2-terminal fragment, somatostatin-28-(1-12), from their common precursor. This enzyme exhibits a strict selectivity for arginyl residues, as demonstrated with related substrates, and did not cleave at lysyl residues. Moreover, only arginyl residues belonging to peptides of the prosomatostatin family were cleaved, since no hydrolysis of peptides from other prohormones was detected. In addition, the arginine residue situated at position -5 on the NH2-terminal side of Arg64 not only did not function as a cleavage locus, but had no effect on the overall cleavage kinetics of the prosomatostatin-(56-68) peptide substrate. This enzyme also cleaved, but with much less efficiency, the peptide bond on the carboxyl side of an arginine in peptides containing either an Arg-Lys or a Lys-Arg doublet corresponding to prohormone cleavage sites. This enzyme was insensitive to divalent cation chelators, was completely inhibited by aprotinin and leupeptin, and was somewhat inhibited by other serine-protease inhibitors. It is concluded that this endoprotease is a serine protease and could be involved in prohormone or proprotein post-translational processing at single arginine cleavage sites.  相似文献   

15.
16.
Renin is produced from a larger, inactive precursor, prorenin, through endoproteolytic cleavage at paired basic amino acids. Recently, we have purified and characterized an enzyme, which catalyzes the endoproteolytic process, from mouse submandibular gland. The enzyme, named prorenin converting enzyme, specifically cleaves the peptide bond on the COOH-side of the Arg residue at the Lys-Arg pair of mouse Ren 2 prorenin, but does not cleave mouse Ren 1 and human prorenins. In this study, by synthesizing a series of mutant mouse prorenins using site-directed mutagenesis and the Xenopus oocyte expression system, we have investigated the role of the basic pair as the recognition signal for the enzyme as well as the determinant of the substrate specificity. The results indicate that the basic amino acid at the COOH-side but not at the NH2-side of the basic pair of Ren 2 prorenin is essential for processing directed by prorenin converting enzyme, and that the Arg residue at the COOH-side is more preferable for processing than the Lys. The results also demonstrated that the presence of a Pro residue next to the Lys-Arg pair prevents the processing of Ren 1 prorenin.  相似文献   

17.
Production of active enkephalin peptides requires proteolytic processing of proenkephalin at dibasic Lys-Arg, Arg-Arg, and Lys-Lys sites, as well as cleavage at a monobasic arginine site. A novel “prohormone thiol protease” (PTP) has been demonstrated to be involved in enkephalin precursor processing. To find if PTP is capable of cleaving all the putative cleavage sites needed for proenkephalin processing, its ability to cleave the dibasic and the monobasic sites within the enkephalin-containing peptides, peptide E and BAM-22P (bovine adrenal medulla docosapeptide), was examined in this study. Cleavage products were separated by HPLC and subjected to microsequencing to determine their identity. PTP cleaved BAM-22P at the Lys-Arg site between the two basic residues. The Arg-Arg site of both peptide E and BAM-22P was cleaved at the NH2-terminal side of the paired basic residues to generate [Met]-enkephalin. Furthermore, the monobasic arginine site was cleaved at its NH2-terminal side by PTP. These findings, together with previous results showing PTP cleavage at the Lys-Lys site of peptide F, demonstrate that PTP possesses the necessary specificity for all the dibasic and monobasic cleavage sites required for proenkephalin processing. In addition, the unique specificity of PTP for cleavage at the NH2-terminal side of arginine at dibasic or monobasic sites distinguishes it from many other putative prohormone processing enzymes, providing further evidence that PTP appears to be a novel prohormone processing enzyme.  相似文献   

18.
Pro-opiomelanocortin (adrenocorticotropin/endorphin prohormone) is processed to yield active hormones by cleavages at paired basic amino acid residues. In this study, an enzyme that specifically cleaves at the paired basic residues of this prohormone has been purified from bovine pituitary intermediate lobe secretory vesicles, the intracellular processing site of proopiomelanocortin. This enzyme, named pro-opiomelanocortin converting enzyme, has been characterized as a glycoprotein of Mr approximately 70,000. It has an apparent isoelectric point between 3.5 and 4.0. The pH optimum of the pro-opiomelanocortin converting enzyme is between 4 and 5, but the enzyme is highly active at the intravesicular pH of 5.1-5.6. The enzyme specifically cleaved the Lys-Arg pairs of pro-opiomelanocortin to yield Mr = to 21,000-23,000 ACTH, beta-lipotropin, Mr 13,000 and 4,500 ACTH, beta-endorphin, and a Mr = 16,000 NH2-terminal glycopeptide, the products synthesized by the pituitary intermediate lobe in situ. NH2- and COOH-terminal analysis of the products indicated that the pro-opiomelanocortin converting enzyme cleaves the peptide bond either between the Lys and Arg or on the carboxyl side of the Arg at Lys-Arg pairs of pro-opiomelanocortin. The intracellular localization, pH optimum, and cleavage specificity of the enzyme suggest that it may function as a pro-opiomelanocortin processing enzyme in the pituitary intermediate lobe in vivo.  相似文献   

19.
Processing of the hepatitis C virus (HCV) H strain polyprotein yields at least nine distinct cleavage products: NH2-C-E1-E2-NS2-NS3-NS4A-NS4B-NS5A-NS5B-CO OH. As described in this report, site-directed mutagenesis and transient expression analyses were used to study the role of a putative serine proteinase domain, located in the N-terminal one-third of the NS3 protein, in proteolytic processing of HCV polyproteins. All four cleavages which occur C terminal to the proteinase domain (3/4A, 4A/4B, 4B/5A, and 5A/5B) were abolished by substitution of alanine for either of two predicted residues (His-1083 and Ser-1165) in the proteinase catalytic triad. However, such substitutions have no observable effect on cleavages in the structural region or at the 2/3 site. Deletion analyses suggest that the structural and NS2 regions of the polyprotein are not required for the HCV NS3 proteinase activity. NS3 proteinase-dependent cleavage sites were localized by N-terminal sequence analysis of NS4A, NS4B, NS5A, and NS5B. Sequence comparison of the residues flanking these cleavage sites for all sequenced HCV strains reveals conserved residues which may play a role in determining HCV NS3 proteinase substrate specificity. These features include an acidic residue (Asp or Glu) at the P6 position, a Cys or Thr residue at the P1 position, and a Ser or Ala residue at the P1' position.  相似文献   

20.
The fusion (F) protein precursor of virulent Newcastle disease virus (NDV) strains has two pairs of basic amino acids at the cleavage site, and its intracellular cleavage activation occurs in a variety of cells; therefore, the viruses cause systemic infections in poultry. To explore the protease responsible for the cleavage in the natural host, we examined detailed substrate specificity of the enzyme in chick embryo fibroblasts (CEF) using a panel of the F protein mutants at the cleavage site expressed by vaccinia virus vectors, and compared the specificity with those of mammalian subtilisin-like proteases such as furin, PC6 and PACE4 which are candidates for F protein processing enzymes. It was demonstrated in CEF cells that Arg residues at the -4, -2 and -1 positions upstream of the cleavage site were essential, and that at the -5 position was required for maximal cleavage. Phe at the +1 position was also important for efficient cleavage. On the other hand, furin and PC6 expressed by vaccinia virus vectors showed cleavage specificities against the F protein mutants consistent with that shown by the processing enzyme of CEF cells, but PACE4 hardly cleaved the F proteins including the wild type. These results indicate that the proteolytic processing enzymes of poultry for virulent NDV F proteins could be furin and/or PC6 but not PACE4. The significance of individual contribution of the three amino acids at the -5, -2 and +1 positions to cleavability was discussed in relation to the evolution of virulent and avirulent NDV strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号