首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetically modified mice are popular experimental models for studying the molecular bases and mechanisms of cardiac arrhythmia. A postgenome challenge is to classify the functional roles of genes in cardiac function. To unveil the functional role of various genetic isoforms of ion channels in generating cardiac pacemaking action potentials (APs), a mathematical model for spontaneous APs of mouse sinoatrial node (SAN) cells was developed. The model takes into account the biophysical properties of membrane ionic currents and intracellular mechanisms contributing to spontaneous mouse SAN APs. The model was validated by its ability to reproduce the physiological exceptionally short APs and high pacing rates of mouse SAN cells. The functional roles of individual membrane currents were evaluated by blocking their coding channels. The roles of intracellular Ca(2+)-handling mechanisms on cardiac pacemaking were also investigated in the model. The robustness of model pacemaking behavior was evaluated by means of one- and two-parameter analyses in wide parameter value ranges. This model provides a predictive tool for cellular level outcomes of electrophysiological experiments. It forms the basis for future model development and further studies into complex pacemaking mechanisms as more quantitative experimental data become available.  相似文献   

2.
The interaction of antipsychotic drugs (AP) with lipids and the subsequent lipid reorganization on model membranes was assessed using a combination of several complementary biophysical approaches (calorimetry, plasmon resonance, fluorescence microscopy, X-ray diffraction and molecular modeling). The effect of haloperidol (HAL), risperidone (RIS), and 9-OH-risperidone (9-OH-RIS) was examined on single lipid and mixtures comprising lipids of biological origin. All APs interact with lipids and induced membrane reorganization. APs showed higher affinity for sphingomyelin than for phosphatidylcholine. Cholesterol increased AP affinity for the lipid bilayer and led to the following AP ranking regarding affinity and structural changes: RIS >9-OH-RIS >HAL. Liquid-ordered domain formation and bilayer thickness were differentially altered by AP addition. Docking calculations helped understanding the observed differences between the APs and offer a representation of their conformation in the lipid bilayer. Present results indicate that AP drugs may change membrane compartmentalization which could differentially modulate the signaling cascade of the dopamine D2 receptor for which APs are ligands.  相似文献   

3.
4.
Translational arrest peptides (APs) are short stretches of polypeptides that induce translational stalling when synthesized on a ribosome. Mechanical pulling forces acting on the nascent chain can weaken or even abolish stalling. APs can therefore be used as in vivo force sensors, making it possible to measure the forces that act on a nascent chain during translation with single-residue resolution. It is also possible to score the relative strengths of APs by subjecting them to a given pulling force and ranking them according to stalling efficiency. Using the latter approach, we now report an extensive mutagenesis scan of a strong mutant variant of the Mannheimia succiniciproducens SecM AP and identify mutations that further increase the stalling efficiency. Combining three such mutations, we designed an AP that withstands the strongest pulling force we are able to generate at present. We further show that diproline stretches in a nascent protein act as very strong APs when translation is carried out in the absence of elongation factor P. Our findings highlight critical residues in APs, show that certain amino acid sequences induce very strong translational arrest and provide a toolbox of APs of varying strengths that can be used for in vivo force measurements.  相似文献   

5.
Polar transport of the plant hormone auxin is regulated at the cellular level by inhibition of efflux from a plasma membrane (PM) carrier. Binding of the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) to a regulatory site associated with the carrier has been characterized, but the NPA-binding protein(s) have not been identified. Experimental disparities between levels of high-affinity NPA binding and auxin transport inhibition can be explained by the presence of a low-affinity binding site and in vivo hydrolysis of NPA. In Arabidopsis, colocalization of NPA amidase and aminopeptidase (AP) activities, inhibition of auxin transport by artificial beta-naphthylamide substrates, and saturable displacement of NPA by the AP inhibitor bestatin suggest that PM APs may be involved in both low-affinity NPA binding and hydrolysis. We report the purification and molecular cloning of NPA-binding PM APs and associated proteins from Arabidopsis. This is the first report of PM APs in plants. PM proteins were purified by gel permeation, anion exchange, and NPA affinity chromatography monitored for tyrosine-AP activity. Lower affinity fractions contained two orthologs of mammalian APs involved in signal transduction and cell surface-extracellular matrix interactions. AtAPM1 and ATAPP1 have substrate specificities and inhibitor sensitivities similar to their mammalian orthologs, and have temporal and spatial expression patterns consistent with previous in planta histochemical data. Copurifying proteins suggest that the APs interact with secreted cell surface and cell wall proline-rich proteins. AtAPM1 and AtAPP1 are encoded by single genes. In vitro translation products of ATAPM1 and AtAPP1 have enzymatic activities similar to those of native proteins.  相似文献   

6.
Supramolecular systems that respond to the hydrolysis of adenosine phosphates (APs) are attractive for biosensing and to fabricate bioinspired self‐assembled materials. Here, we report on the formation of supramolecular complexes between an achiral guanidinium derivative bearing two pyrene moieties, with each of the three adenosine phosphates: AMP, ADP, and ATP. By combining results from circular dichroism spectroscopy and molecular modeling simulations, we explore the induced chirality, the dynamics of the complexes, and the interactions at play, which altogether provide insights into the supramolecular self‐assembly between APs and the guanidinium‐bispyrene. Finally, we identify the chiroptical signals of interest in mixtures of the guanidinium derivative with the three APs in different proportions. This study constitutes a basis to evolve toward a chiroptical detection of the hydrolysis of APs based on organic supramolecular probes.  相似文献   

7.
Offshore oil production releases large amounts of lipophilic compounds in produced water into the ocean. In 2004, 143 million m(3) produced water, containing approximately 13 tons of long-chain (>C(4)) alkylphenols (AP), was discharged from installations in the Norwegian sector of the North Sea. Long-chain APs are known to cause endocrine disruption in a number of species. However, relatively little is known about their long-term effects in the marine environment. In the present study, Atlantic cod (Gadus morhua) were exposed (0.02 to 80 mg AP/kg) to a mixture (1:1:1:1) of APs (4-tert-butylphenol, 4-n-pentylphenol, 4-n-hexylphenol and 4-n-heptylphenol) or 17 beta-estradiol (5 mg E2/kg) for 5 weeks and the effect on the fatty acid profile and cholesterol content in the membrane lipids from the liver and the brain was studied. We also determined the interaction between different para-substituted APs and glycerophospholipids (native phospholipids extracted from cod liver and brain) and model phosphatidylcholine (PC 16:0/22:6 n-3) in monolayers with the Langmuir-Blodget technique. The study demonstrated that APs and E2 alter the fatty acid profile in the polar lipids (PL) from the liver to contain more saturated fatty acids (SFA) and less n-3 polyunsaturated fatty acids (n-3 PUFA) compared with control. In the brain of the exposed groups a similar effect was demonstrated, although with higher saturation of the fatty acids found in the neutral lipids (mainly cholesterol ester), but not in the polar lipids. The AP and E2 exposure also gave a decline in the cholesterol levels in the brain. The in vitro studies showed that APs increased the mean molecular areas of the PLs in the monolayers at concentrations down to 5 microM, most likely due to intercalation of the APs between PL molecules. The increase in molecular area increased with the length of the alkyl side chain.  相似文献   

8.
Microtubules isolated from brain extracts by in vitro assembly (1, 19, 23) are composed principally of two tubulins and two high molecular weight proteins (microtubule-associated proteins [MAPS] 1 and 2) (2,5,7,20). Recently, it was demonstrated that in vitro-assembled brain microtubules (neurotubules) are coated with filaments (5, 7) which are similar to the filaments attached to neurotubules in situ (4, 15, 21, 24, 25), and it was suggested that the filaments are composed of the higher molecular weight MAPs (5, 7, 12). In this study, microtubules were assembled in the presence and absence of the MAPs, and thin sections of the microtubules were examined by electron microscopy. The results show that the filaments only occur on microtubules assembled in the presence of the MAPs and it is therefore concluded that the filaments are composed of the high molecular weight MAP's.  相似文献   

9.
Electrophysiological characterization of murine HL-5 atrial cardiomyocytes   总被引:1,自引:0,他引:1  
HL-5 cells are cultured murine atrial cardiomyocytes and have been used in studies to address important cellular and molecular questions. However, electrophysiological features of HL-5 cells have not been characterized. In this study, we examined such properties using whole cell patch-clamp techniques. Membrane capacitance of the HL-5 cells was from 8 to 62 pF. The resting membrane potential was –57.8 ± 1.4 mV (n = 51). Intracellular injection of depolarizing currents evoked action potentials (APs) with variable morphologies in 71% of the patched cells. Interestingly, the incidence of successful, current-induced APs positively correlated with the hyperpolarizing degrees of resting membrane potentials (r = 0.99, P < 0.001). Only a few of the patched cells (4 of 51, 7.8%) exhibited spontaneous APs. The muscarinic agonist carbachol activated the acetylcholine-activated K+ current and significantly shortened the duration of APs. Immunostaining confirmed the presence of the muscarinic receptor type 2 in HL-5 cells. The hyperpolarization-activated cation current (If) was detected in 39% of the patched cells. The voltage to activate 50% of If channels was –73.4 ± 1.2 mV (n = 12). Voltage-gated Na+, Ca2+, and K+ currents were observed in the HL-5 cells with variable incidences. Compared with the adult mouse cardiomyocytes, the HL-5 cells had prolonged APs and small outward K+ currents. Our data indicate that HL-5 cells display significant electrophysiological heterogeneity of morphological appearance of APs and expression of functional ion channels. Compared with adult murine cardiomyocytes, HL-5 cells show an immature phenotype of cardiac AP morphology. action potential; ion channel; muscarinic receptor  相似文献   

10.
Trypanosoma congolense is a haemoprotozoan parasite that causes African animal trypanosomosis, a wasting disease of cattle and small ruminants. Current control methods are unsatisfactory and no conventional vaccine exists due to antigenic variation. An anti-disease vaccine approach to control T. congolense has been proposed requiring the identification of parasitic factors that cause disease. Immunoprecipitation of T. congolense antigens using sera from infected trypanotolerant cattle allowed the identification of several immunogenic antigens including two M1 type aminopeptidases (APs). The two APs were cloned and expressed in Escherichia coli. As the APs were expressed as insoluble inclusion bodies it was necessary to develop a method for solubilisation and subsequent refolding to restore conformation and activity. The refolded APs both showed a distinct substrate preference for H-Ala-AMC, an optimum pH of 8.0, puromycin-sensitivity, inhibition by bestatin and amastatin, and cytoplasmic localisation. The two APs are expressed in procyclic metacyclic and bloodstream form parasites. Down-regulation of both APs by RNAi resulted in a slightly reduced growth rate in procyclic parasites in vitro.  相似文献   

11.
Autophagic flux is an important process during autophagy maturation in coronary arterial myocytes (CAMs). Here, we defined the role and molecular mechanism of the motor protein dynein in the regulation of autophagic flux in CAMs. In mouse CAMs, dynein protein is abundantly expressed. Pharmacological or genetic inhibition of dynein activity dramatically enhanced 7-ketocholesterol (7-Ket)-induced expression of the autophagic marker LC3B and increased the cellular levels of p62, a selective substrate for autophagy. Inhibition of dynein activity increased 7-Ket-induced formation of autophagosomes (APs), but reduced the number of autophagolysosomes (APLs) in CAMs. Furthermore, 7-Ket increased the fusion of APs with lysosomes and the velocity of APs movement in mouse CAMs, which was abolished when the dynein activity in these cells was inhibited. Interestingly, 7-Ket increased lysosomal Ca2 + release and stimulated dynein ATPase activity, both of which were abolished by NAADP antagonists, NED-19 and PPADS. Taken together, our data suggest that NAADP-mediated Ca2 + release plays a crucial role in regulating dynein activity, which mediates APs trafficking and fusion with lysosomes to form APLs thus regulating autophagic flux in CAMs under atherogenic stimulation.  相似文献   

12.
Huang M  Volgushev M  Wolf F 《PloS one》2012,7(5):e37629
Generation of action potentials (APs) is a crucial step in neuronal information processing. Existing biophysical models for AP generation almost universally assume that individual voltage-gated sodium channels operate statistically independently, and their avalanche-like opening that underlies AP generation is coordinated only through the transmembrane potential. However, biological ion channels of various types can exhibit strongly cooperative gating when clustered. Cooperative gating of sodium channels has been suggested to explain rapid onset dynamics and large threshold variability of APs in cortical neurons. It remains however unknown whether these characteristic properties of cortical APs can be reproduced if only a fraction of channels express cooperativity, and whether the presence of cooperative channels has an impact on encoding properties of neuronal populations. To address these questions we have constructed a conductance-based neuron model in which we continuously varied the size of a fraction [Formula: see text] of sodium channels expressing cooperativity and the strength of coupling between cooperative channels [Formula: see text]. We show that starting at a critical value of the coupling strength [Formula: see text], the activation curve of sodium channels develops a discontinuity at which opening of all coupled channels becomes an all-or-none event, leading to very rapid AP onsets. Models with a small fraction, [Formula: see text], of strongly cooperative channels generate APs with the most rapid onset dynamics. In this regime APs are triggered by simultaneous opening of the cooperative channel fraction and exhibit a pronounced biphasic waveform often observed in cortical neurons. We further show that presence of a small fraction of cooperative Na+ channels significantly improves the ability of neuronal populations to phase-lock their firing to high frequency input fluctuation. We conclude that presence of a small fraction of strongly coupled sodium channels can explain characteristic features of cortical APs and has a functional impact of enhancing the spike encoding of rapidly varying signals.  相似文献   

13.
Using eight-channel metal microelectrodes (diameter of a separate channel 12 μm), we extracellularly recorded the impulse activity of 186 single neurons or their small groups (usually, pairs) localized in the motor cortex of rats anesthetized with ketamine. In 60 cases (32.3%), action potentials (APs) of two single neurons were generated in a parallel manner and demonstrated fixed time relations with each other. This is interpreted as being a result of excitation of two neighboring functionally connected (coupled) cells. These AP pairs could be recorded via one and the same or two neighboring microelectrode channels. Second APs in the pair were elicited exclusively in the case where an AP was preliminarily generated by another neuron, while APs of the latter in some cases could arrive independently. Therefore, “leading” and “accompanying” cells could be identified in such neuronal pairs. The coupling coefficient in the generation of APs by an accompanying unit with respect to APs generated by a leading cell was close to 100%, with no dependence on the discharge frequency in the latter. Intervals between APs of two neurons in different coupled pairs varied from about 1.0 to 22-23 msec. In the case of minimum values of these interspike intervals, APs generated by coupled neurons overlapped each other; this resulted in the formation of spikes looking like “complex APs.” Within some time intervals, interspike intervals could increase, and such APs began to be decomposed. The above-described data are considered electrophysiological proof of the existence of tight functional coupling between a significant part of cortical neurons spatially close to each other, i.e., members of a micropopulation, which was obtained in an in vivo experiment.  相似文献   

14.
Heterotetrameric clathrin adaptor protein complexes (APs) orchestrate the formation of coated vesicles for transport among organelles of the cell periphery. AP1 binds membranes enriched for phosphatidylinositol 4‐phosphate, such as the trans Golgi network, while AP2 associates with phosphatidylinositol 4,5‐bisphosphate of the plasma membrane. At their respective membranes, AP1 and AP2 bind the cytoplasmic tails of transmembrane protein cargo and clathrin triskelions, thereby coupling cargo recruitment to coat polymerization. Structural, biochemical and genetic studies have revealed that APs undergo conformational rearrangements and reversible phosphorylation to cycle between different activity states. While membrane, cargo and clathrin have been demonstrated to promote AP activation, growing evidence supports that membrane‐associated proteins such as Arf1 and FCHo also stimulate this transition. APs may be returned to the inactive state via a regulated process involving phosphorylation and a protein called NECAP. Finally, because antiviral mechanisms often rely on appropriate trafficking of membrane proteins, viruses have evolved novel strategies to evade host defenses by influencing the conformation of APs. This review will cover recent advances in our understanding of the molecular inputs that stimulate AP1 and AP2 to adopt structurally and functionally distinct configurations.  相似文献   

15.
The four species of thermophilic campylobacters, Campylobacter jejuni, C. coli, C. upsaliensis and C. lari, are difficult to distinguish from each other because of their lack of reactivity in many conventional biochemical and physiological tests. Those tests which do discriminate sometimes give discordant results. Species-specific antibody preparations (APs), capable of discriminating between the thermophilic campylobacter species by dot-ELISA, were raised by inoculation of mice with partially purified membrane protein. The APs produced were absorbed with cells of cross-reactive species and tested by dot-ELISA against reference and natural strains, the identities of which were confirmed by DNA/DNA hybridization. The results showed that such APs could be useful as an alternative to DNA/DNA hybridization for rapid species identification, for example in epidemiological surveys. Western blotting experiments with the APs showed that the specificity of the antibodies was not due to a single antigen.  相似文献   

16.
The electrical properties of Aplysia brasiliana myogenic heart were evaluated. Two distinct types of action potentials (APs) were recorded from intact hearts, an AP with a slow rising phase followed by a slow repolarizing phase and an AP with a 'fast' depolarizing phase followed by a plateau. Although these two APs differ in their rates of depolarization (2.2 x 0.3 V/s), both APs were abolished by the addition of Co2+, Mn2+ and nifedipine or by omitting Ca2+ from the external solution. These data suggest that a Ca2+ inward current is responsible for the generation of both types of APs. Two outward currents activated at -40 mV membrane potential were prominent in isolated cardiac myocytes: a fast activating, fast inactivating outward current similar to the A-type K+ current and a slow activating outward current with kinetics similar to the delayed rectifier K+ current were recorded under voltage clamp conditions. Based on the effects of 4-AP and TEA on the electrical properties of ventricular myocytes, we suggest that the fast kinetic outward current substantially attenuates the peak values of the APs and that the slow activating outward current is involved on membrane repolarization.  相似文献   

17.
Although the supralinear summation of synchronizing excitatory postsynaptic potentials (EPSPs) and backpropagating action potentials (APs) is important for spike-timing-dependent synaptic plasticity (STDP), the spatial conditions of the amplification in the divergent dendritic structure have yet to be analyzed. In the present study, we simulated the coincidence of APs with EPSPs at randomly determined synaptic sites of a morphologically reconstructed hippocampal CA1 pyramidal model neuron and clarified the spatial condition of the amplifying synapses. In the case of uniform conductance inputs, the amplifying synapses were localized in the middle apical dendrites and distal basal dendrites with small diameters, and the ratio of synapses was unexpectedly small: 8-16% in both apical and basal dendrites. This was because the appearance of strong amplification requires the coincidence of both APs of 3-30 mV and EPSPs of over 6 mV, both of which depend on the dendritic location of synaptic sites. We found that the localization of amplifying synapses depends on A-type K+ channel distribution because backpropagating APs depend on the A-type K+ channel distribution, and that the localizations of amplifying synapses were similar within a range of physiological synaptic conductances. We also quantified the spread of membrane amplification in dendrites, indicating that the neighboring synapses can also show the amplification. These findings allowed us to computationally illustrate the spatial localization of synapses for supralinear summation of APs and EPSPs within thin dendritic branches where patch clamp experiments cannot be easily conducted.  相似文献   

18.
P.L. GRIFFITHS. G.S. MORENO AND R.W. A. PARK. 1992. The four species of thermophilic camplyobacters, Campylobacter jejuni, C. coli, C. upsaliensis and C. lari , are difficult to distinguish from each other because of their lack of reactivity in many conventional biochemical and physiological tests. Those tests which do discriminate sometimes give discordant results. Species-specific antibody preparations (APs), capable of discriminating between the thermophilic campylobacter species by dot-ELISA, were raised by inoculation of mice with partially purified membrane protein. The APs produced were absorbed with cells of cross-reactive species and tested by dot-ELISA against reference and natural strains, the identities of which were confirmed by DNA/DNA hybridization. The results showed that such APs could be useful as an alternative to DNA/DNA hybridization for rapid species identification, for example in epidemiological surveys. Western blotting experiments with the APs showed that the specificity of the antibodies was not due to a single antigen.  相似文献   

19.
Effects of a novel slow channel activator, Bay K-8644 (Bay K), were studied on slow action potential (APs) in young and old embryonic chick hearts, and on its antagonism of the effects of diacetyl monoxime (DAM). The slow APs of young hearts are mediated by slow Na+ channels, whereas those of old hearts are mediated by slow Ca2+ channels. In slow APs of old (13-18 days old) embryonic chick hearts superfused with a high (22 mM) K+ solution, Bay K (10-6 M) gradually increased the amplitude, maximum rate of rise (Vmax), and duration of the slow APs. The actions of Bay K persisted for a long time (greater than 30 min) after washout of the drug. DAM (10 mM) depressed the Vmax, duration and amplitude of the slow APs. Some of the changes in slow AP parameters produced by DAM, e.g., Vmax decrease, were antagonized by the addition of Bay K (10(-6) M). In 3-day-old embryonic chick hearts. Bay K potentiated the slow APs and DAM depressed them; Bay K antagonized these effects of DAM. Thus, the actions of Bay K and DAM are likely to be produced, respectively, via the activation and depression of slow Ca2+ channels in old embryonic chick hearts. In addition, the drugs seem to influence slow Na+ channels found in young embryonic chick hearts.  相似文献   

20.
The sinusoidal locomotion of Caenorhabditis elegans requires synchronous activities of neighboring body wall muscle cells. However, it is unknown whether the synchrony results from muscle electrical coupling or neural inputs. We analyzed the effects of mutating gap junction proteins and blocking neuromuscular transmission on the synchrony of action potentials (APs) and Ca2+ transients among neighboring body wall muscle cells. In wild-type worms, the percentage of synchronous APs between two neighboring cells varied depending on the anatomical relationship and junctional conductance (Gj) between them, and Ca2+ transients were synchronous among neighboring muscle cells. Compared with the wild type, knock-out of the gap junction gene unc-9 resulted in greatly reduced coupling coefficient and asynchronous APs and Ca2+ transients. Inhibition of unc-9 expression specifically in muscle by RNAi also reduced the synchrony of APs and Ca2+ transients, whereas expression of wild-type UNC-9 specifically in muscle rescued the synchrony defect. Loss of the stomatin-like protein UNC-1, which is a regulator of UNC-9-based gap junctions, similarly impaired muscle synchrony as unc-9 mutant did. The blockade of muscle ionotropic acetylcholine receptors by (+)-tubocurarine decreased the frequencies of APs and Ca2+ transients, whereas blockade of muscle GABAA receptors by gabazine had opposite effects. However, both APs and Ca2+ transients remained synchronous after the application of (+)-tubocurarine and/or gabazine. These observations suggest that gap junctions in C. elegans body wall muscle cells are responsible for synchronizing muscle APs and Ca2+ transients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号