首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By polymerase chain reaction mutagenesis techniques, an NdeI restriction site was introduced at the initiation codon of the mannitol dehydrogenase (MDH) gene (mtlK) of Rhodobacter sphaeroides Si4. The mtlK gene was then subcloned from plasmid pAK74 into the NdeI site of the overexpression vector pET24a+ to give plasmid pASFG1. Plasmid pASFG1 was introduced into Escherichia coli BL21(DE3), which was grown in a 1.5-l bioreactor at 37 °C and pH 7.0. Overexpression of MDH in Escherichia coli BL21(DE3) [pASFG1] was determined by enzymatic analysis and sodium dodecyl sulfate (SDS)/polyacrylamide gel electrophoresis. Under standard growth conditions, E. coli produced considerable amounts of a polypeptide that correlated with MDH in SDS gels, but the activity yield was low. Decreasing the growth temperature to 27 °C and omitting pH regulation resulted in a significant increase in the formation of soluble and enzymatically active MDH up to a specific activity of 12.4 U/mg protein and a yield of 26 000 U/l, which corresponds to 0.38 g/l MDH. This was an 87-fold overexpression of MDH compared to that of the natural host R. sphaeroides Si4, and a 236-fold improvement of the volumetric yield. MDH was purified from E. coli BL21(DE3) [pASFG1] with 67% recovery, using ammo-nium sulfate precipitation, hydrophobic interaction chromatography, and gel filtration. Partial characterization of the recombinant MDH revealed no significant differences to the wild-type enzyme. Received: 18 February 1997 / Received revision: 27 March 1997 / Accepted: 27 March 1997  相似文献   

2.
A novel microorganism was isolated which is able to produce mannitol when grown in the presence of fructose and glucose as carbon sources. In flask culture in a medium containing 150 g fructose l–1, it yielded 67 g mannitol l–1 after 168 h. In fed-batch culture with 3–12% (w/v) fructose, production reached a maximum of 209 g mannitol l–1 after 200 h, corresponding to an 83% yield and a 1.03 g l–1 h–1 productivity. The isolated strain was identified as Candida magnoliae based on identical sequences in the D1/D2 domain of its 26S rDNA and a similar carbon source utilization pattern with C. magnoliae reference strains.  相似文献   

3.
A higher Coenzyme Q10 (CoQ10) concentration of 25.04 mg/l was found in airlift bioreactor than the value of 18.11 mg/l obtained in stirred tank under the aerobic-dark cultivation of Rhodobacter sphaeroides. Aeration rate didn’t show obvious impact to CoQ10 production in airlift bioreactor. The fed-batch operation in airlift bioreactor could increase the biomass concentration and led to the maximum CoQ10 concentration of 33.91 mg/l measured, but a lower CoQ10 cell content (3.5 mg CoQ10/DCW) was observed in the fed-batch operation as compared to the batch operation. To enhance the CoQ10 content, an aeration-change strategy was proposed in the fed-batch operation of airlift bioreactor. This strategy led to the maximum CoQ10 concentration of 45.65 mg/l, a 35% increase as compared to the simple fed-batch operation. The results of this study suggested that a fed-batch operation in airlift bioreactor accompanying aeration-change could be suitable for CoQ10 production.  相似文献   

4.
Growth kinetics ofSaccharomyces cerevisiae in glucose syrup from cassava starch and sugarcane molasses were studied using batch and fed-batch cultivation. The optimum temperature and pH required for growth were 30°C and pH 5.5, respectively. In batch culture the productivity and overall cell yield were 0.31 g L–1 h–1 and 0.23 g cells g–1 sugar, respectively, on glucose syrup and 0.22 g L–1 h–1 and 0.18 g cells g–1 sugar, respectively, on molasses. In fed-batch cultivation, a productivity of 3.12 g L–1 h–1 and an overall cell yield of 0.52 g cells g–1 sugar in glucose syrup cultivation and a productivity of 2.33 g L–1 h–1 and an overall cell yield of 0.46 g cells g–1 sugar were achieved in molasses cultivation by controlling the reducing sugar concentration at its optimum level obtained from the fermentation model. By using an on-line ethanol sensor combined with a porous Teflon® tubing method in automating the feeding of substrate in the fed-batch culture, a productivity of 2.15 g L–1 h–1 with a yield of 0.47 g cells g–1 sugar was achieved using glucose syrup as substrate when ethanol concentration was kept at a constant level by automatic control.  相似文献   

5.
Changes of polyol contents in the mycelium and fruit-bodies ofFlammulina velutipes were measured. The results suggested that arabinitol is accumulated in the fruit-bodies as the end-product after its translocation from the mycelium, while mannitol in the fruit-bodies is converted into fructose by the action of mannitol dehydrogenase (MDH). The development of fruit-bodies was promoted by feeding of mannitol to the mycelial colony. A14C tracer experiment indicated that half of mannitol translocated from mycelium to fruit-bodies was utilized for fruit-body development. NAD-linked MDH andd-arabinitol dehydroganase (D-ADH) were detected in both mycelium and fruit-bodies. The activities of MDH and ADH in the mycelium reached their maximum levels in the inital stage of fruit-body development and decreased thereafter. In contrast, the activity of MDH in the fruit-bodies showed a peak in the middle stage of development. The activity of ADH in the fruit-bodies was less than half of that of MDH. MDH showed a lower Km value for mannitol (1.3 ×10−3M) than for fructose (6.0×10−2 M). The Km value of ADH for arabinitol was extremely high (1.3×10−1M).  相似文献   

6.
Mannitol biosynthesis in Candida magnoliae HH-01 (KCCM-10252), a yeast strain that is currently used for the industrial production of mannitol, is catalyzed by mannitol dehydrogenase (MDH) (EC 1.1.1.138). In this study, NAD(P)H-dependent MDH was purified to homogeneity from C. magnoliae HH-01 by ion-exchange chromatography, hydrophobic interaction chromatography, and affinity chromatography. The relative molecular masses of C. magnoliae MDH, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size-exclusion chromatography, were 35 and 142 kDa, respectively, indicating that the enzyme is a tetramer. This enzyme catalyzed both fructose reduction and mannitol oxidation. The pH and temperature optima for fructose reduction and mannitol oxidation were 7.5 and 37°C and 10.0 and 40°C, respectively. C. magnoliae MDH showed high substrate specificity and high catalytic efficiency (kcat = 823 s−1, Km = 28.0 mM, and kcat/Km = 29.4 mM−1 s−1) for fructose, which may explain the high mannitol production observed in this strain. Initial velocity and product inhibition studies suggest that the reaction proceeds via a sequential ordered Bi Bi mechanism, and C. magnoliae MDH is specific for transferring the 4-pro-S hydrogen of NADPH, which is typical of a short-chain dehydrogenase reductase (SDR). The internal amino acid sequences of C. magnoliae MDH showed a significant homology with SDRs from various sources, indicating that the C. magnoliae MDH is an NAD(P)H-dependent tetrameric SDR. Although MDHs have been purified and characterized from several other sources, C. magnoliae MDH is distinguished from other MDHs by its high substrate specificity and catalytic efficiency for fructose only, which makes C. magnoliae MDH the ideal choice for industrial applications, including enzymatic synthesis of mannitol and salt-tolerant plants.  相似文献   

7.
P64k is a Neisseria meningitidis high molecular weight protein present in meningococcal vaccine preparations. The lpdA gene, codifying for this protein, was cloned in Escherichia coli and the P64k protein was expressed in Escherichia coli K12 W3110 under the control of the tryptophan promoter. The recombinant bacteria were grown in batch or fed-batch cultures. P64k was expressed as an intracellular soluble form at about 40% of the total cellular protein. A final productivity of 215 mg l–1 h–1 and 11 g cell dry wt l–1 were obtained when the fed-batch culture conditions were optimised, compared to 30% of total protein, and a productivity of 76 mg l–1 h–1 and 5.1 g cell dry wt l–1 in batch cultivation.  相似文献   

8.
Gluconobacter oxydans LMG 1489 was selected as the best strain for NAD(P)-dependent polyol dehydrogenase production. The highest enzyme activities were obtained when this strain was cultivated on a medium consisting of 30 g glycerol l–1, 7.2 g peptone l–1 and 1.8 g yeast extract l–1. Two D-fructose reducing, NAD-dependent intracellular enzymes were present in the G. oxydans cell-free extract: sorbitol dehydrogenase, and mannitol dehydrogenase. Substrate reduction occurred optimally at a low pH (pH 6), while the optimum for substrate oxidation was situated at alkaline pHs (pH 9.5–10.5). The mannitol dehydrogenase was more thermostable than the sorbitol dehydrogenase. The cell-free extract could be used to produce D-mannitol and D-sorbitol enzymatically from D-fructose. Efficient coenzyme regeneration was accomplished by formate dehydrogenase-mediated oxidation of formate into CO2.  相似文献   

9.
A new fermentation strategy using cell recycle membrane system was developed for the efficient production of poly(3-hydroxybutyrate) (PHB) from whey by recombinant Escherichia coli strain CGSC 4401 harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes. By cell recycle, fed-batch cultivation employing an external membrane module, the working volume of fermentation could be constantly maintained at 2.3 l. The final cell concentration, PHB concentration and PHB content of 194 g l–1, 168 g l–1 and 87%, respectively, were obtained in 36.5 h by the pH-stat cell recycle fed-batch culture using whey solution concentrated to contain 280 g lactose l–1 as a feeding solution, resulting in a high productivity of 4.6 g PHB l–1 h–1.  相似文献   

10.
A new expression system was developed for Bacillus subtilis.This system uses a shuttle vector (B. subtilisEschericia coli) carrying a phosphate starvation-inducible promoter (pst) and on a fed-batch cultivation strategy. The pst-promoter proved to be very strong and retain its tight regulation also when present on a multi-copy plasmid. The expression system developed showed promising results when applied to the production of recombinant Bacillusphytase – phytase activity at the end of cultivation reached 28.7 U ml–1.  相似文献   

11.
The natural lignan podophyllotoxin, a dimerized product of two phenylpropanoid moieties which occurs in a few plant species, is a pharmacologically important compound for its anticancer activities. It is used as a precursor for the chemical synthesis of the anticancer drugs etoposide, teniposide and etopophose. The availability of this lignan is becoming increasingly limited because of the scarce occurrence of its natural sources and also because synthetic approaches for its production are still commercially unacceptable. Biotechnological production using cell culture may be considered as an alternative source. Selection of the best performing cell line, its maintenance and stabilization are necessary prerequisites for its production in bioreactors and subsequent scale-up of the cultivation process to the industrial level. Scale-up of growth and product yield depends on a multitude of factors, such as growth medium, physicochemical conditions, seed inoculum, type of reactor and processing conditions. The composition of the growth medium, elicitors and precursors, etc. can markedly influence the production. Optimum levels of parameters that facilitate high growth and product response in cell suspensions of Podophyllum hexandrum have already been determined by statistical design. P. hexandrum cells have successfully been cultivated in a 3-l stirred-tank bioreactor under low shear conditions in batch and fed-batch modes of operation. The batch kinetic data were used to identify the mathematical model which was then used to develop nutrient-feeding strategies for fed-batch cultivation to prolong the productive log phase of cultivation. An improvement in the production of podophyllotoxin to 48.8 mg l–1 in a cell culture of P. hexandrum was achieved, with a corresponding volumetric productivity of 0.80 mg l–1 day–1, when the reactor was operated in continuous cell-retention mode. Efforts are being made to further enhance its production levels by the development of hairy root culture or by varying the channeling of precursors towards the desired biosynthetic pathway by molecular approaches.  相似文献   

12.
The kinetics of xanthan formation in Xanthomonas campestris continuous and fed-batch fermentations was studied along with metabolic changes due to growth rate variation. A maximum growth rate within the range 0.11–0.12 h–1 was obtained from the continuous culture data in defined medium, producing xanthan at rates up to 0.36 g l–1 h–1 corresponding to a maximum 67% glucose conversion at a dilution rate (D) of 0.05 h–1. Comparatively, fed-batch cultivation was more efficient, producing maximum xanthan at 0.75 g l–1 h–1 and 63% glucose conversion at 0.1 h–1. When reaching D=0.062 h–1 in continuous cultures, a change was observed and the values of the specific rate of substrate consumption shifted, initiating an uncoupled growth region expressing a lack of balance of the catabolic and anabolic reactions. The deviation was not accompanied by a change in specific xanthan production indicating that xanthan metabolism was not affected by D. For fed-batch-grown X. campestris cells within the range D=0.03–0.1 h–1, both metabolic parameters changed linearly with the growth rate showing a wide region coupled to growth. Outside that range, glucose accumulated and the specific xanthan production dropped, suggesting substrate inhibition. Correspondence to: J. C. Roseiro  相似文献   

13.
The OCT plasmid from Pseudomonas maltophilia N246-1 was transferred to Rhodopseudomonas sphaeroides M1 with very low frequency (1.4–1.9 × 10–5 per recipient cell at pH 7–8 for a 3-hour reaction time). P. maltophilia N246-1 was able to utilize C8-C14 of n-alkanes, whereas R. gas-liquid chromatography determined that the broad range of carbon numbers of n-alkanes in crude oil was remarkably degraded by the transconjugant, R. sphaeroides M1-C1, compared with donor strain N246-1. The fact that donor and transconjugant strains simultaneously lost the capacity to utilize n-alkanes on L-broth medium suggests that the OCT plasmids are unstable. It was found that the OCT plasmid of P. maltophilia N246 was incompatible with the IncP-2 group of P. aeruginosa KCTC 11245. Offprint requests to: K.-H. Min, Sookmyung Women's University.  相似文献   

14.
Dairy wastewater containing different oil and grease contents was treated in batch activated sludge systems with and without (control) an enzymatic pre-hydrolysis stage [with 0.2% (w/v) of fermented babassu cake containing Penicillium restrictum lipases]. When the oil and grease concentration in the control bioreactor was increased (400, 600 and 800 mg l–1), the COD removal efficiency fell (86%, 75% and 0%). However, in the reactor fed with pre-hydrolysed wastewater, COD removal efficiency was maintained (93%, 92% and 82%). At an oil and grease concentration of 800 mg l–1, the control bioreactor presented final volatile suspended solids (VSS) values ten times greater (2225 mg l–1) than those obtained for bioreactor fed with pre-hydrolysed wastewater (200 mg l–1).  相似文献   

15.
Exopolysaccharide (EPS) production and biosynthesis were studied in Ganoderma lucidum, a fungus used in traditional Chinese medicine, grown with lactose in a bioreactor. -Galactosidase activity, which implies the existence of a lactose permease system, was induced by lactose. Lactose feeding also increased -phosphoglucomutase activity and EPS accumulation but decreased phosphoglucose isomerase activity and lactate concentration in the culture broth. A maximum cell density of 22 g l–1 and EPS at 1.25 g l–1 were obtained in fed-batch bioreactor culture.  相似文献   

16.
Summary This study highlights data about the production of a recombinant protein (glyceraldehyde-3-phosphate dehydrogenase) byE. coli HB 101 (GAPDH) during batch and fed-batch fermentations in a complex medium. From a small number of experiments, this strain has been characterized in terms of protein production performance and glucose and acetate influences on growth and recombinant protein production. The present results show that this strain is suitable for recombinant protein production, in fed-batch culture 55 g L–1 of biomass and 6 g L–1 of GAPDH are obtained. However this strain, and especially GAPDH overproduction is sensitive to glucose availability. During fermentations, maximum yields of GAPDH production have been obtained in batch experiments for glucose concentration of 10 g L–1, and in fed-batch experiments for glucose availability of 10 g h–1 (initial volume 1.5 L). The growth of the strain and GAPDH overproduction are also inhibited by acetate. Moreover acetate has been noted as an activator of its own formation.  相似文献   

17.
Decolorization of azo dyes by Rhodobacter sphaeroides   总被引:5,自引:0,他引:5  
Song ZY  Zhou JT  Wang J  Yan B  Du CH 《Biotechnology letters》2003,25(21):1815-1818
Rhodobacter sphaeroides AS1.1737 decolorized more than 90% of several azo dyes (200 mg dyes l–1) in 24 h. The optimal culture conditions were: anaerobic illumination (1990 lx), peptone as carbon source, temperature 35–40 °C and pH 7–8. Intracellular crude enzyme from this strain had azoreductase activity, optimized temperature as 45–50 °C, and decolorization kinetics which were consistent with a ping-pong mechanism.  相似文献   

18.
The growth of surplus brewers' yeast in a fed-batch process was studied with the aim of increasing the fermentation activity of the yeast cells and of optimizing the growth conditions: 20 h cultivation at 30° C and pH 5.0–5.5 using beet molasses as substrate, with a regulated feeding rate, showed satisfactory results. Under the chosen conditions, the final amount of biomass increased more than fivefold, achieving a specific growth rate of 0.1 h–1 and substrate yield coefficient of 0.54 g·g–1. The increase in fermentation activity of yeast cells during cultivation correlated very well with the concentration of reduced glutathione, which increased from 1.2 to 2.7 mg·g–1 (dry matter). At the same time the fermentation activity increased fivefold, which related to the nitrogen content of the yeast cells. Ethanol formation throughout the cultivation did not exceed 0.5 g·l–1. Correspondence to: B. Strel  相似文献   

19.
The thermotolerant methylotroph Bacillus sp. C1 possesses a novel NAD-dependent methanol dehydrogenase (MDH), with distinct structural and mechanistic properties. During growth on methanol and ethanol, MDH was responsible for the oxidation of both these substrates. MDH activity in cells grown on methanol or glucose was inversely related to the growth rate. Highest activity levels were observed in cells grown on the C1-substrates methanol and formaldehyde. The affinity of MDH for alcohol substrates and NAD, as well as V max, are strongly increased in the presence of a M r 50,000 activator protein plus Mg2+-ions [Arfman et al. (1991) J Biol Chem 266: 3955–3960]. Under all growth conditions tested the cells contained an approximately 18-fold molar excess of (decameric) MDH over (dimeric) activator protein. Expression of hexulose-6-phosphate synthase (HPS), the key enzyme of the RuMP cycle, was probably induced by the substrate formaldehyde. Cells with high MDH and low HPS activity levels immediately accumulated (toxic) formaldehyde when exposed to a transient increase in methanol concentration. Similarly, cells with high MDH and low CoA-linked NAD-dependent acetaldehyde dehydrogenase activity levels produced acetaldehyde when subjected to a rise in ethanol concentration. Problems frequently observed in establishing cultures of methylotrophic bacilli on methanol- or ethanol-containing media are (in part) assigned to these phenomena.Abbreviations MDH NAD-dependent methanol dehydrogenase - ADH NAD-dependent alcohol dehydrogenase - A1DH CoA-linked NAD-dependent aldehyde dehydrogenase - HPS hexulose-6-phosphate synthase - G6Pdh glucose-6-phosphate dehydrogenase  相似文献   

20.
A series of fed-batch experiments at different agitation speeds were performed using the industrially important strain Trichoderma reesei RUT C-30 in two different bioreactors to understand the close relationship that exists between the shear field within a bioreactor, the morphology of the microorganism, the rheology of cultivation broth, and the process performance. The two bioreactors, stirred tank bioreactor (STB) and reciprocating plate bioreactor (RPB), are characterized by a significantly different shear field to which microorganisms are exposed. Highest biomass concentration (ca. 15 g l−1) was obtained at higher agitation rates in both bioreactors due to better oxygen supply. However, better filter paper activities per mg of protein were obtained at lower agitation in both bioreactors. In both bioreactors, young and healthier fungi in the batch phase were not affected by shear even at higher agitation rates. However, during the fed-batch phase, higher degree of fragmentation of clump morphology at high agitation intensity was confirmed by image analysis. Also, the rheological analysis showed an increase in apparent viscosity during the batch phase and early fed-batch phase due to the increase in the biomass concentration. During the late stages of cultivation, the apparent viscosity decreased due to cell lysis and spore formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号