首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ectothermic organisms often face dramatic traverses of environmentaltemperature on a daily or seasonal basis; exemplars among thisgroup are invertebrates and fish of the rocky intertidal zone.Because of the extremes of temperature exposure, intertidalanimals have served as an excellent study system to examinethe expression of heat shock proteins (Hsps) in response tonatural variation in environmental temperature. Ecologicallyrelevant variation in Hsp expression has been observed withseasonal acclimatization, with small-scale temperature gradientsthat occur in microhabitats and between species with differentintertidal distributions. The maturing understanding of Hspexpression patterns in marine organisms has established a solidfoundation on which to build the next set of questions. In thispaper, I present an overview of the variation of Hsp expressionin intertidal animals in nature and then address two emergingareas of investigation in the ecological physiology of Hsps.One area addresses the plasticity of Hsp expression in marineinvertebrates and focuses on the mechanism of regulation ofHsp gene expression by environmental temperature. A second emergingarea of investigation concerns whether Hsps as molecular chaperonesdisplay functional diversity that correlates with species' adaptationtemperature.  相似文献   

2.
3.
Heat shock genes are the most evolutionarily ancient among the systems responsible for adaptation of organisms to a harsh environment. The encoded proteins (heat shock proteins, Hsps) represent the most important factors of adaptation to adverse environmental conditions. They serve as molecular chaperones, providing protein folding and preventing aggregation of damaged cellular proteins. Structural analysis of the heat shock genes in individuals from both phylogenetically close and very distant taxa made it possible to reveal the basic trends of the heat shock gene organization in the context of adaptation to extreme conditions. Using different model objects and nonmodel species from natural populations, it was demonstrated that modulation of the Hsps expression during adaptation to different environmental conditions could be achieved by changing the number and structural organization of heat shock genes in the genome, as well as the structure of their promoters. It was demonstrated that thermotolerant species were usually characterized by elevated levels of Hsps under normal temperature or by the increase in the synthesis of these proteins in response to heat shock. Analysis of the heat shock genes in phylogenetically distant organisms is of great interest because, on one hand, it contributes to the understanding of the molecular mechanisms of evolution of adaptogenes and, on the other hand, sheds the light on the role of different Hsps families in the development of thermotolerance and the resistance to other stress factors.  相似文献   

4.
SYNOPSIS. Larvae of the fruit fly, Drosophila melanogaster,live within necrotic fruit, a challenging environment in whichlarvae can experience severe thermal stress. One response tothermal stress, the expression of heat-shock proteins (Hsps),has evolved distinctively in this species; the gene encodingHsp70 has undergone extensive duplication and accounts for thebulk of Hsps that are expressed upon heat shock. Genetic engineeringof hsp70 copy number is sufficient to affect thermotoleranceat some (but not all) life stages. Increases in Hsp70, moreover,can protect intact larvae against thermal inactivation of theenzyme alcohol dehydrogenase and thermal inhibition of feeding.Deleterious consequences of high levels of Hsp70, however, maylimit further evolutionary proliferation of hsp70 genes. Thesefindings illustrate how the perspectives of integrative andcomparative biology, if applied to even well-studied model organisms,can lead to novel findings.  相似文献   

5.
6.
All organisms show a common defensive mechanism that results in the expression of conserved heat shock proteins (Hsps). These proteins function in a wide range of stressful conditions. We have monitored their levels in species of regenerating echinoderms with different mechanisms of regeneration and from different geographical locations. The effect of an artificial higher temperature on expression of Hsps was also studied. Two stress proteins (Hsp72 and ubiquitin) that are important in processes such as development and protein degradation were investigated. Using Western blot analysis and immunocytochemistry, we found significant changes in the level (Hsp72) and pattern of conjugation (ubiquitin) that corresponded with the repair phase (early regenerative stages) and with the later growth and regeneration of new tissues. Animals from the intertidal environment showed a distinctly sustained expression pattern of Hsp72 compared with benthic animals which suggests a functionally adaptative and dynamic stress response program. Accepted March 1, 2000.  相似文献   

7.
8.
9.
10.
In the natural environment, organisms are exposed to large variations in physical conditions. Quantifying such physiological responses is, however, often performed in laboratory acclimation studies, in which usually only a single factor is varied. In contrast, field acclimatization may expose organisms to concurrent changes in several environmental variables. The interactions of these factors may have strong effects on organismal function. In particular, rare events that occur stochastically and have relatively short duration may have strong effects. The present experiments studied levels of expression of several genes associated with cellular stress and metabolic regulation in a field population of limpet Cellana toreuma that encountered a wide range of temperatures plus periodic rain events. Physiological responses to these variable conditions were quantified by measuring levels of mRNA of genes encoding heat‐shock proteins (Hsps) and metabolic sensors (AMPKs and Sirtuin 1). Our results reveal high ratios of individuals in upregulation group of stress‐related gene expression at high temperature and rainy days, indicating the occurrence of stress from both prevailing high summer temperatures and occasional rainfall during periods of emersion. At high temperature, stress due to exposure to rainfall may be more challenging than heat stress alone. The highly variable physiological performances of limpets in their natural habitats indicate the possible differences in capability for physiological regulation among individuals. Our results emphasize the importance of studies of field acclimatization in unravelling the effects of environmental change on organisms, notably in the context of multiple changes in abiotic factors that are accompanying global change.  相似文献   

11.
12.
The genetic architecture underlying heat resistance remains partly unclear despite the well-documented involvement of heat shock proteins (Hsps). It was previously shown that factors besides Hsps are likely to play an important role for heat resistance. In this study, gene expression arrays were used to make replicate measurements of gene expression before and up to 64 hours after a mild heat stress treatment, in flies selected for heat resistance and unselected control flies, to identify genes differentially expressed in heat resistance-selected flies. We found 108 genes up-regulated and 10 down-regulated using the Affymetrix gene expression platform. Among the up-regulated genes, a substantial number are involved in the phototransduction process. Another group of genes up-regulated in selected flies is characterized by also responding to heat shock treatment several hours after peak induction of known Hsps revert to nonstress levels. These findings suggest phototransduction genes to be critically involved in heat resistance, and support a role for components of the phototransduction process in stress-sensing mechanisms. In addition, the results suggest yet-uncharacterized genes responding to heat stress several hours after treatment to be involved in heat stress resistance. These findings mark an important increase in the understanding of heat resistance.  相似文献   

13.
14.
15.
The evolutionary and ecological role of heat shock proteins   总被引:18,自引:0,他引:18  
Most heat shock proteins (Hsp) function as molecular chaperones that help organisms to cope with stress of both an internal and external nature. Here, we review the recent evidence of the relationship between stress resistance and inducible Hsp expression, including a characterization of factors that induce the heat shock response and a discussion of the associated costs. We report on studies of stress resistance including mild stress, effects of high larval densities, inbreeding and age on Hsp expression, as well as on natural variation in the expression of Hsps. The relationship between Hsps and life history traits is discussed with special emphasis on the ecological and evolutionary relevance of Hsps. It is known that up‐regulation of the Hsps is a common cellular response to increased levels of non‐native proteins that facilitates correct protein folding/refolding or degradation of non‐functional proteins. However, we also suggest that the expression level of Hsp in each species and population is a balance between benefits and costs, i.e. a negative impact on growth, development rate and fertility as a result of overexpression of Hsps. To date, investigations have focused primarily on the Hsp70 family. There is evidence that representatives of this Hsp family and other molecular chaperones play significant roles in relation to stress resistance. Future studies including genomic and proteonomic analyses will increase our understanding of molecular chaperones in stress research.  相似文献   

16.
17.
Physiological processes that set an organism's thermal limits are in part determining recent shifts in biogeographic distribution ranges due to global climate change. Several characteristics of the heat-shock response (HSR), such as the onset, maximal, and upper limit of heat-shock protein (Hsp) synthesis, contribute to setting the acute upper thermal limits of most organisms. Aquatic animals from stable, moderately variable, or highly variable thermal environments differ in their HSR. Some animals living in extremely stable thermal environments lack the response altogether. In contrast, rocky intertidal animals that experience highly variable thermal conditions start synthesizing Hsps, that is, the onset of synthesis, below the highest temperatures that they experience. Thus, these organisms experience thermal conditions in their environment that are close to the upper thermal limits in which they can defend themselves against cellular thermal insults by employing the HSR. Subtidal animals are characterized by moderately variable thermal environments, and their cells start synthesizing Hsps above the highest temperatures that they experience. The upper thermal limits against which they can defend themselves are thus much higher than the highest body temperatures they currently experience. Furthermore, the ability to acclimate to changing thermal conditions seems greatest among animals from moderately variable environments and limited in animals from stable and highly variable environments. Thus, these findings suggest that organisms with the narrowest (stenothermal) and the widest (highly eurythermal) temperature tolerance ranges live closest to their thermal limits and have a limited ability to acclimate, suggesting that they will be most affected by global climate change.  相似文献   

18.
19.
20.
棉花粉蚧热休克蛋白基因的鉴定   总被引:2,自引:0,他引:2  
热休克蛋白(heat shock proteins,Hsps)是生物体或细胞受到热胁迫后新合成的一类遗传上高度保守的蛋白,在昆虫应对外界环境因子胁迫时起着重要作用。为了系统研究棉花粉蚧Phenacoccus solenopsis Hsp基因家族,对棉花粉蚧转录组基因注释信息进行分析、获得目标序列,并应用NCBI上Blast X等软件进行比对、共鉴定出24条热激蛋白(Hsp)基因,包括3个Hsp90、8个Hsp70、2个Hsp60和11个s Hsp(small heat shock protein,s Hsp)基因。对棉花粉蚧与模式昆虫家蚕Bombyx mori、黑腹果蝇Drosophila melanogaster、赤拟谷盗Tribolium castaneum系统进化关系分析显示,昆虫的小分子量热休克蛋白s Hsp具有很强的种属特异性,Hsp70家族的保守性比s Hsp强。棉花粉蚧热激蛋白基因的鉴定为深入研究该虫Hsp与生长发育、抗逆境的相互关系奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号