首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies indicate that insulin stimulation of glucose transporter (GLUT)4 translocation requires at least two distinct insulin receptor-mediated signals: one leading to the activation of phosphatidylinositol 3 (PI-3) kinase and the other to the activation of the small GTP binding protein TC10. We now demonstrate that TC10 is processed through the secretory membrane trafficking system and localizes to caveolin-enriched lipid raft microdomains. Although insulin activated the wild-type TC10 protein and a TC10/H-Ras chimera that were targeted to lipid raft microdomains, it was unable to activate a TC10/K-Ras chimera that was directed to the nonlipid raft domains. Similarly, only the lipid raft-localized TC10/ H-Ras chimera inhibited GLUT4 translocation, whereas the TC10/K-Ras chimera showed no significant inhibitory activity. Furthermore, disruption of lipid raft microdomains by expression of a dominant-interfering caveolin 3 mutant (Cav3/DGV) inhibited the insulin stimulation of GLUT4 translocation and TC10 lipid raft localization and activation without affecting PI-3 kinase signaling. These data demonstrate that the insulin stimulation of GLUT4 translocation in adipocytes requires the spatial separation and distinct compartmentalization of the PI-3 kinase and TC10 signaling pathways.  相似文献   

2.
TC10 is a member of the Rho family of small GTP-binding proteins that has previously been implicated in the regulation of insulin-stimulated GLUT4 translocation in adipocytes. In a manner similar to Cdc42-stimulated actin-based motility, we have observed that constitutively active TC10 (TC10/Q75L) can induce actin comet tails in Xenopus oocyte extracts in vitro and extensive actin polymerization in the perinuclear region when expressed in 3T3L1 adipocytes. In contrast, expression of TC10/Q75L completely disrupted adipocyte cortical actin, which was specific for TC10, because expression of constitutively active Cdc42 was without effect. The effect of TC10/Q75L to disrupt cortical actin was abrogated after deletion of the amino terminal extension (DeltaN-TC10/Q75L), whereas this deletion retained the ability to induce perinuclear actin polymerization. In addition, alteration of perinuclear actin by expression of TC10/Q75L, a dominant-interfering TC10/T31N mutant or a mutant N-WASP protein (N-WASP/DeltaVCA) reduced the rate of VSV G protein trafficking to the plasma membrane. Furthermore, TC10 directly bound to Golgi COPI coat proteins through a dilysine motif in the carboxyl terminal domain consistent with a role for TC10 regulating actin polymerization on membrane transport vesicles. Together, these data demonstrate that TC10 can differentially regulate two types of filamentous actin in adipocytes dependent on distinct functional domains and its subcellular compartmentalization.  相似文献   

3.
Insulin stimulation results in the activation of cyclin-dependent kinase-5 (CDK5) in lipid raft domains via a Fyn-dependent phosphorylation on tyrosine residue 15. In turn, activated CDK5 phosphorylates the Rho family GTP-binding protein TC10alpha on threonine 197 that is sensitive to the CDK5 inhibitor olomoucine and blocked by small interfering RNA-mediated knockdown of CDK5. The phosphorylation deficient mutant T197A-TC10alpha was not phosphorylated and excluded from the lipid raft domain, whereas the phosphorylation mimetic mutant (T197D-TC10alpha) was lipid raft localized. Insulin resulted in the GTP loading of T197D-TC10alpha but not T197A-TC10alpha and in parallel, T197D-TC10alpha but not T197A-TC10alpha depolymerized cortical actin and inhibited insulin-stimulated GLUT4 translocation. These data demonstrate that CDK5-dependent phosphorylation maintains TC10alpha in lipid raft compartments thereby disrupting cortical actin, whereas subsequent dephosphorylation of TC10alpha through inactivation of CDK5 allows for the re-assembly of F-actin. Because cortical actin reorganization is required for insulin-stimulated GLUT4 translocation, these data are consistent with a CDK5-dependent TC10alpha cycling between lipid raft and non-lipid raft compartments.  相似文献   

4.
Rhodamine-labeled phalloidin staining of morphologically differentiated 3T3L1 adipocytes demonstrated that F-actin predominantly exists juxtaposed to and lining the inner face of the plasma membrane (cortical actin) with a smaller amount of stress fiber and/or ruffling actin confined to the cell bottom in contact with the substratum. The extent of cortical actin disruption with various doses of either latrunculin B or Clostridium difficile toxin B (a Rho family small GTP-binding protein toxin) directly correlated with the inhibition of insulin-stimulated glucose uptake and GLUT4 translocation. The dissolution of the cortical actin network had no significant effect on proximal insulin receptor signaling events including insulin receptor autophosphorylation, tyrosine phosphorylation of insulin receptor substrate and Cbl, or serine/threonine phosphorylation of Akt. Surprisingly, however, stabilization of F-actin with jasplakinolide also resulted in a dose-dependent inhibition of insulin-stimulated glucose uptake and GLUT4 translocation. In vivo time-lapse confocal fluorescent microscopy of actin-yellow fluorescent protein demonstrated that insulin stimulation initially results in cortical actin remodeling followed by an increase in polymerized actin in the peri-nuclear region. Importantly, the insulin stimulation of cortical actin rearrangements was completely blocked by treatment of the cells with latrunculin B, C. difficile toxin B, and jasplakinolide. Furthermore, expression of the dominant-interfering TC10/T31N mutant completely disrupted cortical actin and prevents any insulin-stimulated actin remodeling. Together, these data demonstrate that cortical actin, but not stress fibers, lamellipodia, or filopodia, plays an important regulatory role in insulin-stimulated GLUT4 translocation. In addition, cortical F-actin does not function in a static manner (e.g. barrier or scaffold), but insulin-stimulated dynamic cortical actin remodeling is necessary for the GLUT4 translocation process.  相似文献   

5.
Dynamic actin remodeling has been implicated in the translocation of the insulin-responsive glucose transporter 4 (GLUT4) to the plasma membrane in adipocytes. Here we show that fully differentiated 3T3L1 adipocytes have unique cortical filamentous actin structure, designated Cav-actin (caveolae-associated F-actin). During 3T3L1 adipocyte differentiation, rhodamine-phalloidin staining demonstrated the formation of a cortical actin cytoskeleton that is composed of small dot-like F-actin spikes lining the inside of the plasma membrane. Double labeling with a caveolin antibody indicated that these F-actin spikes emanate from organized rosette-like clusters of caveolae/lipid raft microdomains. In contrast, there was no obvious relationship between F-actin and caveolin localization and/or organization in 3T3L1 preadipocytes (fibroblasts). Treatments of differentiated adipocytes with latrunculin B, Clostridium difficile toxin B or a dominant-interfering TC10 mutant (TC10/T31N) disrupted the Cav-actin structure without significantly affecting the organization of clustered caveolae. Similarly, disruption of the clustered caveolae with methyl-beta-cyclodextrin also dispersed the Cav-actin structure. These data demonstrate that this novel Cav-actin structure is organized through clustered caveolae but that the formation of caveolae-rosettes are not dependent upon F-actin.  相似文献   

6.
To examine the structural determinants necessary for TC10 trafficking, localization, and function in adipocytes, we generated a series of point mutations in the carboxyl-terminal targeting domain of TC10. Wild-type TC10 (TC10/WT) localized to secretory membrane compartments and caveolin-positive lipid raft microdomains at the plasma membrane. Expression of a TC10/C206S point mutant resulted in a trafficking and localization pattern that was indistinguishable from that of TC10/WT. In contrast, although TC10/C209S or the double TC10/C206,209S mutant was plasma membrane localized, it was excluded from both the secretory membrane system and the lipid raft compartments. Surprisingly, inhibition of Golgi membrane transport with brefeldin A did not prevent plasma membrane localization of TC10 or H-Ras. Moreover, inhibition of trans-Golgi network exit with a 19 degrees C temperature block did not prevent the trafficking of TC10 or H-Ras to the plasma membrane. These data demonstrate that TC10 and H-Ras can both traffic to the plasma membrane by at least two distinct transport mechanisms in adipocytes, one dependent upon intracellular membrane transport and another independent of the classical secretory membrane system. Moreover, the transport through the secretory pathway is necessary for the localization of TC10 to lipid raft microdomains at the plasma membrane.  相似文献   

7.
Recruitment of intracellular glucose transporter 4 (GLUT4) to the plasma membrane of fat and muscle cells in response to insulin requires phosphatidylinositol (PI) 3-kinase as well as a proposed PI 3-kinase-independent pathway leading to activation of the small GTPase TC10. Here we show that in cultured adipocytes insulin causes acute cortical localization of the actin-regulatory neural Wiskott-Aldrich syndrome protein (N-WASP) and actin-related protein-3 (Arp3) as well as cortical F-actin polymerization by a mechanism that is insensitive to the PI 3-kinase inhibitor wortmannin. Expression of the dominant inhibitory N-WASP-DeltaWA protein lacking the Arp and actin binding regions attenuates the cortical F-actin rearrangements by insulin in these cells. Remarkably, the N-WASP-DeltaWA protein also inhibits insulin action on GLUT4 translocation, indicating dependence of GLUT4 recycling on N-WASP-directed cortical F-actin assembly. TC10 exhibits sequence similarity to Cdc42 and has been reported to bind N-WASP. We show the inhibitory TC10 (T31N) mutant, which abrogates insulin-stimulated GLUT4 translocation and glucose transport, also inhibits both cortical localization of N-WASP and F-actin formation in response to insulin. These findings reveal that N-WASP likely functions downstream of TC10 in a PI 3-kinase-independent insulin signaling pathway to mobilize cortical F-actin, which in turn promotes GLUT4 responsiveness to insulin.  相似文献   

8.
Insulin regulates glucose uptake into fat and skeletal muscle cells by modulating the translocation of GLUT4 between the cell surface and interior. We investigated a role for cortactin, a cortical actin binding protein, in the actin filament organization and translocation of GLUT4 in Chinese hamster ovary (CHO-GLUT4myc) and L6-GLUT4myc myotube cells. Overexpression of wild-type cortactin enhanced insulin-stimulated GLUT4myc translocation but did not alter actin fiber formation. Conversely, cortactin mutants lacking the Src homology 3 (SH3) domain inhibited insulin-stimulated formation of actin stress fibers and GLUT4 translocation similar to the actin depolymerizing agent cytochalasin D. Wortmannin, genistein, and a PP1 analog completely blocked insulin-induced Akt phosphorylation, formation of actin stress fibers, and GLUT4 translocation indicating the involvement of both PI3-K/Akt and the Src family of kinases. The effect of these inhibitors was even more pronounced in the presence of overexpressed cortactin suggesting that the same pathways are involved. Knockdown of cortactin by siRNA did not inhibit insulin-induced Akt phosphorylation but completely inhibited actin stress fiber formation and glucose uptake. These results suggest that the actin binding protein cortactin is required for actin stress fiber formation in muscle cells and that this process is absolutely required for translocation of GLUT4-containing vesicles to the plasma membrane.  相似文献   

9.
10.
Ras-membrane interactions play important roles in signaling and oncogenesis. H-Ras and K-Ras have nonidentical membrane anchoring moieties that can direct them to different membrane compartments. Ras-lipid raft interactions were reported, but recent studies suggest that activated K-Ras and H-Ras are not raft resident. However, specific interactions of activated Ras proteins with nonraft sites, which may underlie functional differences and phenotypic variation between different Ras isoforms, are unexplored. Here we used lateral mobility studies by FRAP to investigate the membrane interactions of green fluorescent protein-tagged H- and K-Ras in live cells. All Ras isoforms displayed stable membrane association, moving by lateral diffusion and not by exchange with a cytoplasmic pool. The lateral diffusion rates of constitutively active K- and H-Ras increased with their expression levels in a saturable manner, suggesting dynamic association with saturable sites or domains. These sites are distinct from lipid rafts, as the activated Ras mutants are not raft resident. Moreover, they appear to be different for H- and K-Ras. However, wild-type H-Ras, the only isoform preferentially localized in rafts, displayed cholesterol-sensitive interactions with rafts that were independent of its expression level. Our findings provide a mechanism for selective signaling by different Ras isoforms.  相似文献   

11.
The localization of the GTP-binding protein TC10 to lipid raft microdomains has been suggested to play a role in the stimulation of GLUT4 translocation. The exocyst has now been identified as a downstream target for TC10, directing GLUT4-containing vesicles to the site of fusion.  相似文献   

12.
Cell culture work suggests that signaling to polymerize cortical filamentous actin (F-actin) represents a required pathway for the optimal redistribution of the insulin-responsive glucose transporter, GLUT4, to the plasma membrane. Recent in vitro study further suggests that the actin-regulatory neural Wiskott-Aldrich syndrome protein (N-WASP) mediates the effect of insulin on the actin filament network. Here we tested whether similar cytoskeletal mechanics are essential for insulin-regulated glucose transport in isolated rat epitrochlearis skeletal muscle. Microscopic analysis revealed that cortical F-actin is markedly diminished in muscle exposed to latrunculin B. Depolymerization of cortical F-actin with latrunculin B caused a time- and concentration-dependent decline in 2-deoxyglucose transport. The loss of cortical F-actin and glucose transport was paralleled by a decline in insulin-stimulated GLUT4 translocation, as assessed by photolabeling of cell surface GLUT4 with Bio-LC-ATB-BMPA. Although latrunculin B impaired insulin-stimulated GLUT4 translocation and glucose transport, activation of phosphatidylinositol 3-kinase and Akt by insulin was not rendered ineffective. In contrast, the ability of insulin to elicit the cortical F-actin localization of N-WASP was abrogated. These data provide the first evidence that actin cytoskeletal mechanics are an essential feature of the glucose transport process in intact skeletal muscle. Furthermore, these findings support a distal actin-based role for N-WASP in insulin action in vivo.  相似文献   

13.
The mechanism of TNF-α-induced insulin resistance has remained unresolved with evidence for down-regulation of insulin effector targets effects or blockade of proximal as well as distal insulin signaling events depending upon the dose, time, and cell type examined. To address this issue we examined the acute actions of TNF-α in differentiated 3T3L1 adipocytes. Acute (5-15 min) treatment with 20 ng/ml (~0.8 nm) TNF-α had no significant effect on IRS1-associated phosphatidylinositol 3-kinase. In contrast, TNF-α increased insulin-stimulated cyclin-dependent kinase-5 (CDK5) phosphorylation on tyrosine residue 15 through an Erk-dependent pathway and up-regulated the expression of the CDK5 regulator protein p35. In parallel, TNF-α stimulation also resulted in the phosphorylation and GTP loading of the Rho family GTP-binding protein, TC10α. TNF-α enhanced the depolymerization of cortical F-actin and inhibited insulin-stimulated glucose transporter-4 (GLUT4) translocation. Treatment with the MEK inhibitor, PD98059, blocked the TNF-α-induced increase in CDK5 phosphorylation and the depolymerization of cortical F-actin. Conversely, siRNA-mediated knockdown of CDK5 or treatment with the MEK inhibitor restored the impaired insulin-stimulated GLUT4 translocation induced by TNF-α. Furthermore, siRNA-mediated knockdown of p44/42 Erk also rescued the TNF-α inhibition of insulin-stimulated GLUT4 translocation. Together, these data demonstrate that TNF-α-mediated insulin resistance of glucose uptake can occur through a MEK/Erk-dependent activation of CDK5.  相似文献   

14.
Incubation of isolated GLUT4-containing vesicles with Xenopus oocyte extracts resulted in a guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) and sodium orthovanadate stimulation of actin comet tails. The in vitro actin-based GLUT4 vesicle motility was inhibited by both latrunculin B and a dominant-interfering N-WASP mutant, N-WASP/Delta VCA. Preparations of gently sheared (broken) 3T3L1 adipocytes also displayed GTP gamma S and sodium orthovanadate stimulation of actin comet tails on GLUT4 intracellular compartments. Furthermore, insulin pretreatment of intact adipocytes prior to gently shearing also resulted in a marked increase in actin polymerization and actin comet tailing on GLUT4 vesicles. In addition, the insulin stimulation of actin comet tails was completely inhibited by Clostridum difficile toxin B, demonstrating a specific role for a Rho family member small GTP-binding protein. Expression of N-WASP/Delta VCA in intact cells had little effect on adipocyte cortical actin but partially inhibited insulin-stimulated GLUT4 translocation. Taken together, these data demonstrate that insulin can induce GLUT4 vesicle actin comet tails that are necessary for the efficient translocation of GLUT4 from intracellular storage sites to the plasma membrane.  相似文献   

15.
Heavy alcohol consumption is an independent risk factor for type 2 diabetes. Although the exact mechanism by which alcohol contributes to the increased risk is unknown, impaired glucose disposal is a likely target. Insulin-stimulated glucose disposal in adipocytes is regulated by two separate and independent pathways, the PI3K pathway and the Cbl/TC10 pathway. Previous studies suggest that chronic ethanol feeding impairs insulin-stimulated glucose transport in adipocytes in a PI3K-independent manner. In search of potential targets of ethanol that would affect insulin-stimulated glucose transport, we investigated the effects of 4-wk ethanol feeding to male Wistar rats on the Cbl/TC10 pathway in isolated adipocytes. Chronic ethanol feeding inhibited insulin-stimulated cCbl phosphorylation compared with pair feeding. Insulin receptor and Akt/PKB phosphorylation were not affected by ethanol feeding. Chronic ethanol exposure also impaired cCbl and TC10 recruitment to a lipid raft fraction isolated from adipocytes by detergent extraction. Furthermore, chronic ethanol feeding increased the amount of activated TC10 and filamentous actin in adipocytes at baseline and abrogated the ability of insulin to further activate TC10 or polymerize actin. These results demonstrate that the impairment in insulin-stimulated glucose transport observed in adipocytes after chronic ethanol feeding to rats is associated with a disruption of insulin-mediated Cbl/TC10 signaling and actin polymerization.  相似文献   

16.
Previous studies suggest that the stimulation of glucose transport by insulin involves the tyrosine phosphorylation of c-Cbl and the translocation of the c-Cbl/CAP complex to lipid raft subdomains of the plasma membrane. We now demonstrate that Cbl-b also undergoes tyrosine phosphorylation and membrane translocation in response to insulin in 3T3-L1 adipocytes. Ectopic expression of APS facilitated insulin-stimulated phosphorylation of tyrosines 665 and 709 in Cbl-b. The phosphorylation of APS produced by insulin drove the translocation of both c-Cbl and Cbl-b to the plasma membrane. Like c-Cbl, Cbl-b associates constitutively with CAP and interacts with Crk upon insulin stimulation. Cbl proteins formed homo- and heterodimers in vivo, which required the participation of a conserved leucine zipper domain. A Cbl mutant incapable of dimerization failed to interact with APS and to undergo tyrosine phosphorylation in response to insulin, indicating an essential role of Cbl dimerization in these processes. Thus, both c-Cbl and Cbl-b can initiate a phosphatidylinositol 3-kinase/protein kinase B-independent signaling pathway critical to insulin-stimulated GLUT4 translocation.  相似文献   

17.
Insulin stimulates glucose transport in adipocytes by triggering translocation of GLUT4 glucose transporters to the plasma membrane (PM) and several Rabs including Rab10 have been implicated in this process. To delineate the molecular regulation of this pathway, we conducted a TBC/RabGAP overexpression screen in adipocytes. This identified TBC1D13 as a potent inhibitor of insulin-stimulated GLUT4 translocation without affecting other trafficking pathways. To determine the potential Rab substrate for TBC1D13 we conducted a yeast two-hybrid screen and found that the GTP bound forms of Rabs 1 and 10 specifically interacted with TBC1D13 but not with eight other TBC proteins. Surprisingly, a comprehensive in vitro screen for TBC1D13 GAP activity revealed Rab35 but not Rab10 as a specific substrate. TBC1D13 also displayed in vivo GAP activity towards Rab35. Overexpression of constitutively active Rab35 but not constitutively active Rab10 reversed the block in insulin-stimulated GLUT4 translocation observed with TBC1D13 overexpression. These studies implicate an important role for Rab35 in insulin-stimulated GLUT4 translocation in adipocytes.  相似文献   

18.
Thurmond DC  Pessin JE 《The EMBO journal》2000,19(14):3565-3575
To examine the temporal relationship between pre- and post-docking events, we generated a Munc18c temperature-sensitive mutant (Munc18c/TS) by substitution of arginine 240 with a lysine residue. At the permissive temperature (23 degrees C), overexpression of both the wild type (Munc18c/WT) and the R240K mutant inhibited insulin-stimulated GLUT4/IRAP vesicle translocation. However, at the non-permissive temperature (37 degrees C) only Munc18c/WT inhibited GLUT4/IRAP translocation whereas Munc18c/TS was without effect. Moreover, Munc18c/WT bound to syntaxin 4 at both 23 and 37 degrees C whereas Munc18c/TS bound syntaxin 4 only at 23 degrees C. This was due to a temperature-dependent conformational change in Munc18c/TS, as its ability to bind syntaxin 4 and effects on GLUT4 translocation were rapidly reversible while protein expression levels remained unchanged. Furthermore, insulin stimulation of Munc18c/TS-expressing cells at 23 degrees C followed by temperature shift to 37 degrees C resulted in an increased rate of GLUT4 translocation compared with cells stimulated at 37 degrees C. To date, this is the first demonstration that the rate-limiting step for insulin-stimulated GLUT4 translocation is the trafficking of GLUT4 vesicles and not their fusion with the plasma membrane.  相似文献   

19.
Lipid raft microdomains act as organizing centers for signal transduction. We report here that the exocyst complex, consisting of Exo70, Sec6, and Sec8, regulates the compartmentalization of Glut4-containing vesicles at lipid raft domains in adipocytes. Exo70 is recruited by the G protein TC10 after activation by insulin and brings with it Sec6 and Sec8. Knockdowns of these proteins block insulin-stimulated glucose uptake. Moreover, their targeting to lipid rafts is required for glucose uptake and Glut4 docking at the plasma membrane. The assembly of this complex also requires the PDZ domain protein SAP97, a member of the MAGUKs family, which binds to Sec8 upon its translocation to the lipid raft. Exocyst assembly at lipid rafts sets up targeting sites for Glut4 vesicles, which transiently associate with these microdomains upon stimulation of cells with insulin. These results suggest that the TC10/exocyst complex/SAP97 axis plays an important role in the tethering of Glut4 vesicles to the plasma membrane in adipocytes.  相似文献   

20.
Cardiac glucose utilization is regulated by reversible translocation of the glucose transporter GLUT4 from intracellular stores to the plasma membrane. During the onset of diet-induced insulin resistance, elevated lipid levels in the circulation interfere with insulin-stimulated GLUT4 translocation, leading to impaired glucose utilization. Recently, we identified vesicle-associated membrane protein (VAMP) 2 and 3 to be required for insulin- and contraction-stimulated GLUT4 translocation, respectively, in cardiomyocytes. Here, we investigated whether overexpression of VAMP2 and/or VAMP3 could protect insulin-stimulated GLUT4 translocation under conditions of insulin resistance. HL-1 atrial cardiomyocytes transiently overexpressing either VAMP2 or VAMP3 were cultured for 16 h with elevated concentrations of palmitate and insulin. Upon subsequent acute stimulation with insulin, we measured GLUT4 translocation, plasmalemmal presence of the fatty acid transporter CD36, and myocellular lipid accumulation. Overexpression of VAMP3, but not VAMP2, completely prevented lipid-induced inhibition of insulin-stimulated GLUT4 translocation. Furthermore, the plasmalemmal presence of CD36 and intracellular lipid levels remained normal in cells overexpressing VAMP3. However, insulin signaling was not retained, indicating an effect of VAMP3 overexpression downstream of PKB/Akt. Furthermore, we revealed that endogenous VAMP3 is bound by the contraction-activated protein kinase D (PKD), and contraction and VAMP3 overexpression protect insulin-stimulated GLUT4 translocation via a common mechanism. These observations indicate that PKD activates GLUT4 translocation via a VAMP3-dependent trafficking step, which pathway might be valuable to rescue constrained glucose utilization in the insulin-resistant heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号