首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Eukaryotic chromosomal replication is a complicated process with many origins firing at different efficiencies and times during S phase. Prereplication complexes are assembled on all origins in G(1) phase, and yet only a subset of complexes is activated during S phase by DDK (for Dbf4-dependent kinase) (Cdc7-Dbf4). The yeast mcm5-bob1 (P83L) mutation bypasses DDK but results in reduced intrinsic firing efficiency at 11 endogenous origins and at origins located on minichromosomes. Origin efficiency may result from Mcm5 protein assuming an altered conformation, as predicted from the atomic structure of an archaeal MCM (for minichromosome maintenance) homologue. Similarly, an intragenic mutation in a residue predicted to interact with P83L suppresses the mcm5-bob1 bypass phenotype. We propose DDK phosphorylation of the MCM complex normally results in a single, highly active conformation of Mcm5, whereas the mcm5-bob1 mutation produces a number of conformations, only one of which is permissive for origin activation. Random adoption of these alternate states by the mcm5-bob1 protein can explain both how origin firing occurs independently of DDK and why origin efficiency is reduced. Because similar mutations in mcm2 and mcm4 cannot bypass DDK, Mcm5 protein may be a unique Mcm protein that is the final target of DDK regulation.  相似文献   

7.
8.
The AGAMOUS gene of Arabidopsis thaliana is a homeotic gene involved in the development of stamens and carpels. This gene encodes a putative DNA-binding protein sharing a homologous region with the DNA-binding domains, MADS boxes, of yeast MCM1 and mammalian SRF. To examine the DNA-binding activity of the AGAMOUS protein, double-stranded oligonucleotides with random sequences of 40 bp in the central region were synthesized and mixed with the AGAMOUS MADS domain overproduced in Escherichia coli . Oligonucleotides which bound to the MADS domain were recovered by repeated immunoprecipitation with an antibody which recognizes the overproduced protein. From a comparison of the recovered DNA sequences, the consensus sequence of the high-affinity binding-sites for the AGAMOUS MADS domain was determined to be 5'-TT(A/T/G) CC(A/T)6GG(A/T/C)AA-3'. DNase I footprinting and methylation interference experiments showed that the MADS domain binds to this motif. Comparisons with the binding-site sequences of other MADS-box proteins revealed that the MCM1 binding-sites in a-mating type-specific promoters of Saccharomyces cerevisiae show similarities with the binding-site sequence of the AGAMOUS MADS domain. A synthetic MCM1 binding-site in the upstream region of the STE2 gene is recognized by the AGAMOUS MADS domain.  相似文献   

9.
10.
11.
Fruiting body formation in ascomycetes is a highly complex process that is under polygenic control and is a fundamental part of the fungal sexual life cycle. However, the molecular determinants regulating this cellular process are largely unknown. Here we show that the sterile pro40 mutant is defective in a 120-kDa WW domain protein that plays a pivotal role in fruiting body maturation of the homothallic ascomycete Sordaria macrospora. Although WW domains occur in many eukaryotic proteins, homologs of PRO40 are present only in filamentous ascomycetes. Complementation analysis with different pro40 mutant strains, using full-sized or truncated versions of the wild-type pro40 gene, revealed that the C terminus of PRO40 is crucial for restoring the fertile phenotype. Using differential centrifugation and protease protection assays, we determined that a PRO40-FLAG fusion protein is located within organelles. Further microscopic investigations of fusion proteins with DsRed or green fluorescent protein polypeptides showed a colocalization of PRO40 with HEX-1, a Woronin body-specific protein. However, the integrity of Woronin bodies is not affected in mutant strains of S. macrospora and Neurospora crassa, as shown by fluorescence microscopy, sedimentation, and immunoblot analyses. We discuss the function of PRO40 in fruiting body formation.  相似文献   

12.
13.
14.
We describe a new minichromosome maintenance factor, Mcm10, and show that this essential protein is involved in the initiation of DNA replication in Saccharomyces cerevisiae. The mcm10 mutant has an autonomously replicating sequence-specific minichromosome maintenance defect and arrests at the nonpermissive temperature with dumbbell morphology and 2C DNA content. Mcm10 is a nuclear protein that physically interacts with several members of the MCM2-7 family of DNA replication initiation factors. Cloning and sequencing of the MCM10 gene show that it is identical to DNA43, a gene identified independently for its putative role in replicating DNA. Two-dimensional DNA gel analysis reveals that the mcm10-1 lesion causes a dramatic reduction in DNA replication initiation at chromosomal origins, including ORI1 and ORI121. Interestingly, the mcm10-1 lesion also causes replication forks to pause during elongation through these same loci. This novel phenotype suggests a unique role for the Mcm10 protein in the initiation of DNA synthesis at replication origins.  相似文献   

15.
Anincreasingnumberofhomeoticgenescontrollingplantflowerdevelopmenthasbeenclonedinrecentyears.Thesestudieshavebeenfacilitatingourunderstandingofmolecularmechanismofplantdevelopment[1].Ithasbeenknownthatdifferenttypesofgenesareinvolvedininflorescencemeri…  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号