共查询到20条相似文献,搜索用时 15 毫秒
1.
Sato Takashi Onoma Noriyasu Fujikake Hiroyuki Ohtake Norikuni Sueyoshi Kuni Ohyama Takuji 《Plant and Soil》2001,237(1):129-135
Soybean nodules contain four major leghemoglobin (Lb) components, Lba, Lbc1, Lbc2 and Lbc3. A sensitive and selective method for quantitative analysis of the four Lb components was devised with capillary isoelectric focusing (CIEF). The changes in the concentrations of four Lb components in nodules during the initial stages of development were compared between hypernodulating soybean mutant NOD1–3 and its parent cv. Williams. The hydroponically cultivated soybean plants were periodically sampled. All the visible nodules were collected from the roots, and then the four Lb components in the largest nodules were analyzed with the CIEF method. In NOD1–3 Lbs were initially detected at 19 days after sowing (DAS), a few days earlier than in Williams at 22 DAS. The Lbcs (Lbc1, Lbc2 and Lbc3) were the main component at the earliest nodule growth stage, and the relative proportion of Lba increased with nodule growth in both NOD1–3 and Williams. This result is in agreement with previous observation, and the CIEF method is considered to be useful for Lb components analysis to define their function and gene expression. 相似文献
2.
Summary The early events in the development of nodules induced byBradyrhizobium japonicum were studied in serial sections of a wild type (cv. Bragg), a supernodulating mutant (nts 382) and four non-nodulating mutants (nod49, nod139, nod772, andrj
1) of soybean (Glycine max [L.] Merrill). Cultivar Bragg responded to inoculation in a similar manner to that described previously for cv. Williams; centres of sub-epidermal cell divisions were observed both with and without associated infection threads and most infection events were blocked before the formation of a nodule meristem. The non-nodulating mutants (nod49, nod772, andrj
1) had, at most, a few centres of sub-epidermal cell divisions. In general, these were devoid of infection threads and did not develop beyond the very early stages of nodule ontogeny. Sub-epidermal cell divisions or infection threads were never observed on mutant nodl39. This mutant is not allelic to the other non-nodulating mutants and represents a defect in a separate complementation group or gene that is required for nodulation. The supernodulating mutant nts382, which is defective in autoregulation of nodulation, had a similar number of sub-epidermal cell divisions as the wild-type Bragg, but a much greater proportion of these developed to an advanced stage of nodule ontogeny. Mutant nts382, like Bragg, possessed other infection events that were arrested at an early stage of development. The results are discussed in the context of the progression of events in nodule formation and autoregulation of nodulation in soybean.Abbreviations nts
nitrate tolerant symbiosis
- RT
root tip (i.e., position of the tap root tip at the time of inoculation)
- SERH
shortest emerging root hair (i.e., position of the shortest emerging root hair on the tap root at the time of inoculation)
- SCD
subepidermal cell divisions 相似文献
3.
Deborah Landau-Ellis Sieglinde Angermüller Randy Shoemaker Peter M. Gresshoff 《Molecular & general genetics : MGG》1991,228(1-2):221-226
Summary The genetic locus (nts) controlling nitrate-tolerant nodulation, supernodulation, and diminished autoregulation of nodulation of soybean (Glycine max (L.) Merill) was mapped tightly to the pA-132 molecular marker using a restriction fragment length polymorphism (RFLP) detected by subclone pUTG-132a. The nts (nitrate-tolerant symbiotic) locus of soybean was previously detected after its inactivation by chemical mutagenesis. Mutant plant lines were characterized by abundant nodulation (supernodulation) and tolerance to the inhibitory effects of nitrate on nodule cell proliferation and nitrogen fixation. The large number of RFLPs between G. max line nts382 (homozygous for the recessive nts allele) and the more primitive soybean G. soja (P1468.397) allowed the detection of co-segregation of several diagnostic markers with the supernodulation locus in F2 families. We located the nts locus on the tentative RFLP linkage group E about 10 cM distal to pA-36 and directly next to marker pA-132. This very close linkage of the molecular marker and the nts locus may allow the application of this clone as a diagnostic probe in breeding programs as well as an entry point for the isolation of the nts gene. 相似文献
4.
Partitioning of nitrogen by soybeans ( Glycine max L. Merr. cv. Hodgson) grown in natural conditions was studied by successive exposures of root systems to 15 N2 and periodical measurements of 15 N distribution. Nitrogen derived from the atmosphere was mainly found in the aerial parts of the plants, and the stage of development exerted a strong influence on the initial 15 N distribution (measured one week after incorporation). Until day 69 after sowing, leaf blades contained 47 to 57% of the fixed N. After that, reproductive structures attracted increasing proportions, 10 to 60% between days 69 and 92. Around day 82, stems and petioles stored up to 30% of the newly fixed N. During pod development and pod filling and until maturity, fixed N was remobilized from vegetative tissues and pod walls to seeds. These transfers first concerned the newly incorporated N, but at maturity 80 to 90% of the total was recovered in the seeds. The high mobility of N originating from the atmosphere as compared to that coming from the soil (vegetative tissues exported only 50% of their total N) seems to indicate that fixed N was at least partially integrated in a special pool. This was certainly the case at the later stage of N2 fixation, when a large portion of fixed N accumulated in the stems and petioles, probably in the form of storage compounds such as ureides for later transfer to the developing seeds. Further research is needed in order to investigate the nature and role of this pool in the nitrogen nutrition of soybeans. 相似文献
5.
The cortex of soybean ( Glycine max L. cv. Centennial) nodules contain an organellerich layer of vascular parenchyma tissue, which encircles the elaborate vascular tissue of the nodule. Peroxisomes with small, electron-opaque nucleoids are found in the vascular parenchyma cells. Positive cytochemical staining for catalase (EC 1.11.1.6) confirms their morphological identification as peroxisomes. Activities of both glycolate oxidase (EC 1.1.3.1) and urate oxidase (EC 1.7.3.3) were detected cytochemically in these peroxisomes. Nodule-specific urate oxidase was localized principally in the nucleoid region of these vascular parenchyma peroxisomes, as indicated by immunogold labelling using antibodies against nodulin-35, the nodule-specific urate oxidase. The density of urate oxidase immunogold labelling in the vascular parenchyma peroxisome nucleoid is similar to that of the more well-characterized interstitial cell peroxisomes of the infected zone. These results show that the induction of nodule-specific urate oxidase may be induced in tissue outside of the infected zone. 相似文献
6.
Brett J. Ferguson Dongxue Li April H. Hastwell Dugald E. Reid Yupeng Li Scott A. Jackson Peter M. Gresshoff 《Plant biotechnology journal》2014,12(8):1085-1097
Legume plants regulate the number of nitrogen‐fixing root nodules they form via a process called the Autoregulation of Nodulation (AON). Despite being one of the most economically important and abundantly consumed legumes, little is known about the AON pathway of common bean (Phaseolus vulgaris). We used comparative‐ and functional‐genomic approaches to identify central components in the AON pathway of common bean. This includes identifying PvNARK, which encodes a LRR receptor kinase that acts to regulate root nodule numbers. A novel, truncated version of the gene was identified directly upstream of PvNARK, similar to Medicago truncatula, but not seen in Lotus japonicus or soybean. Two mutant alleles of PvNARK were identified that cause a classic shoot‐controlled and nitrate‐tolerant supernodulation phenotype. Homeologous over‐expression of the nodulation‐suppressive CLE peptide‐encoding soybean gene, GmRIC1, abolished nodulation in wild‐type bean, but had no discernible effect on PvNARK‐mutant plants. This demonstrates that soybean GmRIC1 can function interspecifically in bean, acting in a PvNARK‐dependent manner. Identification of bean PvRIC1, PvRIC2 and PvNIC1, orthologues of the soybean nodulation‐suppressive CLE peptides, revealed a high degree of conservation, particularly in the CLE domain. Overall, our work identified four new components of bean nodulation control and a truncated copy of PvNARK, discovered the mutation responsible for two supernodulating bean mutants and demonstrated that soybean GmRIC1 can function in the AON pathway of bean. 相似文献
7.
8.
Faridul Alam M.A.H. Bhuiyan Sadia Sabrina Alam Tatoba R. Waghmode Pil Joo Kim 《Bioscience, biotechnology, and biochemistry》2013,77(10):1660-1668
Soybean plants require high amounts of nitrogen, which are mainly obtained from biological nitrogen fixation. A field experiment was conducted by soybean (Glycine max) genotypes, growing two varieties (Shohag and BARI Soybean6) and two advanced lines (MTD10 and BGM02026) of soybean with or without Rhizobium sp. BARIRGm901 inoculation. Soybean plants of all genotypes inoculated with Rhizobium sp. BARIRGm901 produced greater nodule numbers, nodule weight, shoot and root biomass, and plant height than non-inoculated plants. Similarly, inoculated plants showed enhanced activity of nitrogenase (NA) enzyme, contributing to higher nitrogen fixation and assimilation, compared to non-inoculated soybean plants in both years. Plants inoculated with Rhizobium sp. BARIRGm901 also showed higher pod, stover, and seed yield than non-inoculated plants. Therefore, Rhizobium sp. BARIRGm901 established an effective symbiotic relationship with a range of soybean genotypes and thus increased the nodulation, growth, and yield of soybean grown in gray terrace soils in Bangladesh. 相似文献
9.
10.
A spontaneous desynaptic mutation, affecting only microsporogenesis and causing pollen sterility, has been detected in BR97-12986H, a line of the official Brazilian soybean breeding program. In this male-sterile, female-fertile mutant, up to metaphase II, the meiotic behavior was similar to that described for the st series of synaptic mutants previously reported in soybean. Besides many univalents, few or total absence of bivalents were recorded in diakinesis. Bivalents presented one or two terminal chiasmata, while univalents retained the sister chromatid cohesion. Bivalents and most univalents congregated at the equatorial metaphase plate, although univalents frequently migrated to the poles prematurely. Laggards resulting from delay in chiasmata terminalization were also recorded. Distinctly different in their behavior from st series soybean mutants, telophase I-originated micronuclei of different sizes organized their own spindle in the second division. This behavior contributed towards an increase in genome fractionation. Several microspores and microcytes of different sizes were recorded at the end of meiosis. Pollen sterility was estimated at 91.2%. Segregation ratio for sterility in this line and its progenies reached 3:1. Allelism tests with st series of synaptic mutants are in progress. The importance of male-sterile, female-fertile mutations for soybean breeding programs is discussed. 相似文献
11.
Two different cDNAs that encode NADP-specific isocitrate dehydrogenase (NADP-IDH) isozymes of soybean (Glycine max) were characterized. The nucleotide sequences of the coding regions of these cDNAs have 74% identity to each other and give predicted amino acid sequences that have 83% identity to each other. Using PCR techniques, their coding regions were subcloned into a protein overexpression vector, pQE32, to yield pIDH4 and pIDH1, respectively. Both IDH4 and IDH1 enzymes were expressed in Escherichia coli as catalytically active His6 tagged proteins, purified to homogeneity by affinity chromatography on nickel chelate resin and rabbit polyclonal antibodies to each were generated. Surprisingly, antiserum to IDH4 did not react with IDH1 protein and IDH1 antiserum reacted only very weakly with IDH4 protein. IDH4 antibody reacts with a protein of expected molecular weight in cotyledon, young leaf, young root, mature root and nodules but the reaction with mature leaf tissue was low compared to other tissues. Western blot results show that IDH1 was not expressed in young roots but a protein that reacts with the IDH1 antibody was highly expressed in leaves, showing that there was tissue-specific accumulation of NADP-IDH isozymes in soybean. 相似文献
12.
Soybean partial-female-sterile mutant 1 (PS-1) was recovered from a gene-tagging study. The objectives were to study the inheritance, linkage, allelism, and certain aspects of the reproductive biology of the PS-1 mutant. For inheritance and linkage tests, PS-1 was crossed to flower color mutant Harosoy-w4 and to chlorophyll-deficient mutant CD-1, also recovered from the gene-tagging study. For allelism tests, reciprocal crosses were made with PS-1 and three other partial-sterile mutants (PS-2, PS-3, and PS-4) recovered from the same gene-tagging study. The PS-1 mutant is inherited in a 3:1 ratio and is a single recessive gene. Linkage results indicated that the gene for partial sterility in PS-1 is not linked either to the w4 locus or to the CD-1 locus. Allelism tests showed that the gene in PS-1 is nonallelic to the gene in PS-2, PS-3, and PS-4. Investigations of developing and mature pollen indicated no differences in morphology, stainability, or fluorescence between normal and partial-sterile genotypes. The PS-1 mutant is completely male fertile. Confocal scanning laser microscopy was used to determine that early embryo abortion in PS-1 is due indirectly to abnormal migration of the fused polar nucleus, which prevented it from being fertilized. Subsequent absence of endosperm development leads directly to abortion of the proembryo. 相似文献
13.
The effect of aluminium (Al) on root elongation was studied in solution culture and sand culture. Compared to solution culture, in sand culture a ten times higher Al supply was necessary to inhibit root elongation to a comparable degree. This was due to a much lower Al uptake into the 5 mm root tips in sand culture. Fe concentrations in root tips were also lower in sand culture. Ca concentrations were higher and less depressed by Al, whereas Mg and K concentrations were not affected by the culture substrate. Regressions of Al concentrations in root tips versus inhibition of root elongation by Al revealed root damage at lower Al concentrations in sand culture. The effect of culture substrate on Al tolerance was independent of N source and could also be shown in flowing solution culture with and without sand. The results indicate that mechanical impedance in sand culture decreased Al uptake. This may be due to enhanced exudation of organic complexors thus reducing activites of monomeric Al species. 相似文献
14.
Summary From one plant of soybean (Glycine max (L.) Merr.) with only two one-seeded pods, found in an F4 population maintained by single-seed descent procedure, two fully fertile plants were obtained which, in turn, produced two progeny segregating for male sterility. Segregation ratios, observed on progeny from fertile plants in three successive generations, indicated that the male-sterility trait was under the control of a single recessive gene. Cytological observations made on malesterile, female-fertile plants showed the occurrence of a complete and properly timed cytokinesis with the formation of tetrad cells whose size was very variable, one of which sometimes had two nuclei. During pollen maturation binucleate microspores and grains with reduced size (micropollens) were frequently observed. Massive pollen degeneration occurred at a rather later stage. Structural evidence points to a normally functioning tapetum.On the basis of these cytological observations we conclude that the abnormalities observed in the mutant we studied have to be considered to be different from those caused by any other known ms allele. Tests of allelism with other sources of male sterility are in progress. 相似文献
15.
16.
Mir Hatam 《Plant and Soil》1980,56(1):27-32
Summary The seasonal and diurnal variations in nitrate reductase (NR) activity of field grown Altona soybean, with and without applied nitrogen, were determined. The NR activity in the fortnightly collected leaf samples was, on the average, 20 percent higher throughout the season in N-treated plants, the highest being early in the season and declining gradually in the samples of subsequent dates. Diurnal variations were marked by increase in the NR activity from 7 a.m. to 7 p.m. and then declining gradually to a minimum at 7 a.m. the next morning. 相似文献
17.
YINBO GAN INEKE STULEN HERMAN van KEULEN PIETER J C KUIPER 《The Annals of applied biology》2002,140(3):319-329
Phosphorus deficiency is a very common problem in the acid soil of central China. Previous research has shown that starter N and N topdressing at the flowering stage (Rl) increased soybean (Glycine max) yield and N2 fixation (Gan et al, 1997, 2000). However, there is little information available concerning soybean response to P‐fertiliser in soybean production in central China (Gan, 1999). A field experiment was conducted to investigate the response to P (0 kg P ha?1, 22 kg P ha?1, 44 kg P ha?1 before sowing) and N fertiliser application (N1: 0 kg N ha?1, N2: 25 kg N ha?1 before sowing, N3: N2 + 50 kg N ha?1 at the V2 stage and N4: N2 + 50 kg N ha?1 at the R1 stage) on growth, yield and N2 fixation of soybean. Both N and P fertiliser increased growth and seed yield of soybean (P < 0.01). Application of basal P fertiliser at 22 kg P ha?1 or 44 kg P ha?1 increased total N accumulation by 11% and 10% (P < 0.01) and seed yield by 12% and 13% (P < 0.01), respectively, compared to the zero P treatment. Although application of starter N at 25 kg N ha?1 had no positive effect on seed yield at any P level (P > 0.05), an application of a topdressing of 50 kg N ha?1 at the V2 or R1 stage increased total N accumulation by 11% and 14% (P < 0.01) and seed yield by 16% and 21% (P < 0.01), respectively, compared to the zero N treatment. Soybean plants were grown on sterilised Perlite in the greenhouse experiment to study the physiological response to different concentrations of phosphate (P1: 0 mM; P2: 0.05 mM; P3: 0.5 mM; P4:1.0 mN) and nitrate (N1: 0 mM with inoculation, N2: 20 mM with inoculation). The result confirmed that N and P nutrients both had positive effects on growth, nodulation and yield (P < 0.01). The relative importance of growth parameters that contributed to the larger biomass with N and P fertilisation was in decreasing order: (i) total leaf area, (ii) individual leaf area, (iii) shoot/root ratio, (iv) leaf area ratio and (v) specific leaf area. The yield increase at N and P supply was mainly associated with more seeds and a larger pod number per plant, which confirmed the result from the field experiment. 相似文献
18.
Photosynthesis, reserve mobilization and enzymes of sucrose metabolism in soybean (Glycine max) cotyledons 总被引:1,自引:0,他引:1
Soybean (Glycine max L. [Merr] cv. Ransom II) seedlings were grown under a light/ dark regime or in continuous darkness. Cotyledons were harvested daily for measurements of reserve mobilization, net carbon exchange rate, chlorophyll content and activities of certain enzymes involved in sucrose metabolism. Seedlings lost dry weight for the first 3 to 4 days after planting, then maintained a constant dry weight in the etiolated seedlings, and gained dry weight (via net fixation of CO2) in the light-grown seedlings. In general, the patterns of reserve mobilization were as expected based on the collective work of other investigators. Soluble sugars were mobilized first, followed by protein and lipid. Galactinol, previously uncharacterized in soybean cotyledons, was present at low concentrations and was rapidly depleted within 2 days after planting. Mobilization of reserves was most important during the first 8 days after planting, whereas net cotyledonary photosynthesis began at 6 days after planting and was the primary source of assimilates after 8 days. Maximum rates of cotyledon photosynthesis were higher [up to 18 mg CO2 (g dry weight)?1 h?1] than previously reported and accounted for about 75% of the assimilates transported from the cotyledons to the growing seedling during the functional life of the cotyledon. Enzyme activities in light-grown cotyledons peaked 7 to 10 days after planting and then declined. Sucrose phosphate synthase (EC 2.4.1.14) and sucrose synthase (EC 2.4.1.13) activities were similar in etiolated and light-grown seedlings, whereas uridine-5′-di-phosphatase (EC 3.6.1.6) activity was substantially higher in light-grown seedlings. During the period of reserve mobilization, the maximum sucrose phosphate synthase activity in cotyledonary extracts was in excess of the calculated rate of sucrose formation. However, when the cotyledons had highest net photosynthetic rates (14 days after planting), sucrose phosphate synthase activity was similar to the rate of carbon assimilation. It appears that soybean cotyledons are adapted for high rates of sucrose formation (from reserve mobilization and/or photosynthesis) for export to the rapidly growing tissues of the seedling. 相似文献
19.
Effects of exogenous application and stem infusion of ascorbate on soybean (Glycine max) root nodules 总被引:1,自引:0,他引:1
Numerous biochemical and physiological studies have demonstrated the importance of ascorbate (ASC) as a reducing agent and antioxidant in higher plant metabolism. Of special note is the capacity of ASC to eliminate damaging activated oxygen species (AOS) including O2 −· and H2 O2 . N2 -fixing legume nodules are especially vulnerable to oxidative damage because they contain large amounts of leghaemoglobin which produces AOS through spontaneous autoxidation; thus, ASC and other components of the ascorbate–reduced glutathione (ASC–GSH) pathway are critical antioxidants in nodules. In order to establish a meaningful correlation between concentrations of ASC and capacity for N2 fixation in legume root nodules, soybean ( Glycine max ) plants were treated with excess ASC via exogenous irrigation or continuous intravascular infusion through needles inserted directly into plant stems. Treatment with ASC led to striking increases in nitrogenase activity (acetylene reduction), nodule leghaemoglobin content, and activity of ASC peroxidase, a key antioxidant enzyme. The concentration of lipid peroxides, which are indicators of oxidative damage and onset of senescence, was decreased in ASC-treated nodules. These results support the conclusion that ASC is critical for N2 fixation and that elevated ASC allows nodules to maintain a greater capacity to fix N2 over longer periods. 相似文献
20.
Genes controlling nitrogen-fixing symbioses of legumes with specialized bacteria known as rhizobia are presumably the products of many millions of years of evolution. Different adaptative solutions evolved in response to the challenge of survival in highly divergent complexes of symbionts. Whereas efficiency of nitrogen fixation appears to be controlled by quantitative inheritance, genes controlling nodulation are qualitatively inherited. Genes controlling nodulation include those for non-nodulation, those that restrict certain microsymbionts, and those conditioning hypernodulation, or supernodulation. Some genes are naturally occurring polymorphisms, while others were induced or were the result of spontaneous mutations. The geographic patterns of particular alleles indicate the role of coevolution in determining symbiont specificites and compatibilities. For example, the Rj4 allele occurs with higher frequency (over 50%) among the soybean (G. max) from Southeast Asia. DNA homology studies of strains of Bradyrhizobium that nodulate soybean indicated two groups so distinct as to warrant classification as two species. Strains producing rhizobitoxine-induced chlorosis occur only in Group II, now classified as B. elkanii. Unlike B. japonicum, B. elkanii strains are characterized by (1) the ability to nodulate the rj1 genotype, (2) the formation of nodule-like structures on peanut, (3) a relatively high degree of ex planta nitrogenase activity, (4) distinct extracellular polysaccharide composition, (5) distinct fatty acid composition, (6) distinct antibiotic resistance profiles, and (7) low DNA homology with B. japonicum. Analysis with soybean lines near isogenic for the Rj4 versus rj4 alleles indicated that the Rj4 allele excludes a high proportion of B. elkanii strains and certain strains of B. japonicum such as strain USDA62 and three serogroup 123 strains. These groups, relatively inefficient in nitrogen fixation with soybean, tend to predominate in soybean nodules from many US soils. The Rj4 allele, the most common allelic form in the wild species, has a positive value for the host plants in protecting them from nodulation by rhizobia poorly adapted for symbiosis. 相似文献