首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relationships among feeding paradigm (single diet vs food selection) and arterio-venous differences (δAV) of glucose, insulin and tryptophan were studied by measuring the temporal patterns of food intake and plasma parameters during 8 hr feeding cycles in rats. Adult male Sprague-Dawley rats were offered a single diet of fixed composition (20% casein) or a choice between two isocaloric diets (0% and 60% casein) for 2 weeks under 8-hr daily feeding conditions, food being offered during the dark cycle. Groups of animals were then killed at the beginning and at 2-hourly intervals throughout the feeding period. With both feeding paradigms, rats showed temporal patterns of energy, carbohydrate and protein intakes with a peak at the beginning and a trough at the end of the feeding period. However, in rats offered a dietary choice the intake of carbohydrate was significantly lower, and the intakes of energy and protein significantly higher than those found in rats offered a single diet. Throughout the feeding period, these differences between single and choice diets became less accentuated in the case of carbohydrate intake, but more accentuated for energy and protein intakes. Paradoxically, rats fed a choice of diets had a significantly lower weight gain than rats fed a single diet. The temporal variation of insulin secretion and tryptophan absorption varied inversely with the two diet paradigms. Moreover, in rats offered a choice of diets, macronutrient intake was significantly correlated with insulin secretion and venous glucose concentration. The opposed physiologic and metabolic responses to the feeding paradigms suggest the need for future studies to examine the possibility that such can function as synchronizers of biological rhythms.  相似文献   

2.
Relationships among feeding paradigm (single diet vs food selection) and arterio-venous differences (δAV) of glucose, insulin and tryptophan were studied by measuring the temporal patterns of food intake and plasma parameters during 8 hr feeding cycles in rats. Adult male Sprague-Dawley rats were offered a single diet of fixed composition (20% casein) or a choice between two isocaloric diets (0% and 60% casein) for 2 weeks under 8-hr daily feeding conditions, food being offered during the dark cycle. Groups of animals were then killed at the beginning and at 2-hourly intervals throughout the feeding period. With both feeding paradigms, rats showed temporal patterns of energy, carbohydrate and protein intakes with a peak at the beginning and a trough at the end of the feeding period. However, in rats offered a dietary choice the intake of carbohydrate was significantly lower, and the intakes of energy and protein significantly higher than those found in rats offered a single diet. Throughout the feeding period, these differences between single and choice diets became less accentuated in the case of carbohydrate intake, but more accentuated for energy and protein intakes. Paradoxically, rats fed a choice of diets had a significantly lower weight gain than rats fed a single diet. The temporal variation of insulin secretion and tryptophan absorption varied inversely with the two diet paradigms. Moreover, in rats offered a choice of diets, macronutrient intake was significantly correlated with insulin secretion and venous glucose concentration. The opposed physiologic and metabolic responses to the feeding paradigms suggest the need for future studies to examine the possibility that such can function as synchronizers of biological rhythms.  相似文献   

3.
4.
Although many feeding protocols induce obesity, few use multiple foods to analyze diet selection within a single group of animals. To this end, we describe a protocol using time-limited access to a dessert that induces hyperphagia and body weight gain while allowing simple analysis of diet selection. Female retired breeder Sprague-Dawley rats were provided with ad libitum access to standard moist chow (1.67 kcal/g) and daily 8-h nocturnal access to either a sugar gel (SG; 0.31 kcal/g) or sugar fat whip (SFW; 7.35 kcal/g) for 15 days, and food intake and body weight were measured daily. Rats given SFW reduced moist chow intake but not enough to compensate for the large amount of calories consumed from SFW, and thus gained weight. We use this SFW overconsumption protocol to investigate the hypothesis that cannabinoid (CB)1 receptor antagonists reduce caloric intake by selectively decreasing consumption of palatable foods. In two experiments, female retired breeder Sprague-Dawley rats were injected with either Rimonabant (1 mg/kg ip) or vehicle (equal parts polyethylene glycol and saline, 1 ml/kg ip) for 7 days, or one of three doses of AM251 (0.3, 1.0, or 3.0 mg/kg ip), or vehicle for 15 days; food intake and body weight were measured daily. Both Rimonabant and AM251 decreased 24-h caloric intake, but the reduction was specific to a decrease in SFW consumption. This supports the hypothesis that these CB1 receptor antagonists impact feeding by modulating the perception of palatability.  相似文献   

5.
Cholecystokinin (CCK) is a peripheral and central mediator of short-term satiety. When given i.p., CCK decreases food intake in previously fasted rats for a period of 30 min. The effect has been previously shown to be abolished by vagotomy and more specifically by severing of vagal sensory rootlets. These studies were designed to determine the effects on rat feeding behavior, and in particular CCK-satiety, of the sensory neurotoxin capsaicin. In neonates, capsaicin selectively and permanently destroys unmyelinated sensory fibers including those in the vagus nerve. Rat neonates were treated with capsaicin, 50 mg/kg or vehicle, and surviving females studied at 8-10 weeks of age. The weights, 24-h food intake, and feeding responses to insulin were the same in adult capsaicin treated (Cap Rx) and vehicle treated (Veh Rx) rats. CCK (8 micrograms/kg i.p.) reduced 30 min food intake 61 +/- 18% in Veh Rx animals (mean +/- S.D., P less than 0.01). In capsaicin denervated animals, CCK also significantly reduced 30 min food intake from 5.09 +/- 1.10 to 3.92 +/- 0.84 g (P less than 0.01), but the mean reduction, 23 +/- 6%, was significantly less than in Veh Rx rats (P less than 10(-4]. A separate group of females, similarly treated as neonates with capsaicin or vehicle, were subjected to bilateral lesioning of the ventromedial hypothalamus. Both Cap Rx and Veh Rx animals gained significantly and equally more than non-lesioned controls. 24 h vagal transport of substance P was reduced 70% in age matched capsaicin treated animals compared to controls. These studies demonstrate that peripheral CCK-satiety is partly mediated by capsaicin sensitive fibers, presumably in the vagus nerve. Substance P is one possible transmitter mediating this reflex. Further conclusions are that active inhibition of an intact peripheral CCK-stimulated reflex arc is not necessary for full expression of central inducers of feeding, e.g., insulin or lesioning of the ventromedial hypothalamus, and that destruction of these fibers does not alter long-term weight regulation in rats receiving a normal diet.  相似文献   

6.
These studies investigated feeding responses to indirect activation of parabrachial cannabinoid CB1 receptors. Arachidonoyl serotonin (AA5HT), an inhibitor of the endocannabinoid degradative enzyme, fatty acid amide hydrolase (FAAH), was infused into the parabrachial nucleus of male Sprague-Dawley rats, and intakes of high-fat/sucrose pellets and standard rodent chow were subsequently evaluated under various feeding schedules. FAAH blockade stimulated the intake of high-fat/sucrose pellets that were presented daily for 4 h during the light period, with compensatory decreases in the consumption of standard chow during the ensuing 20 h. These diet-selective changes were repeated on the next day, indicating a shift in feeding toward the more palatable diet that lasted for 48 h after a single infusion. The cannabinoid CB1 receptor antagonist, AM251, blocked the orexigenic actions of AA5HT, implicating CB1 receptors in mediating the feeding responses to FAAH inactivation. When the feeding schedule was reversed, AA5HT produced nominal increases in the consumption of standard chow for the 4-h access period, but substantial increases in the intake of high-fat/sucrose during the following 20-h interval. When presented with only high-fat/sucrose diet for 24 h, AA5HT increased 24-h food intake. In contrast, when given 24-h access only to standard chow, AA5HT failed to affect intake. Therefore, indirectly activating parabrachial CB1 receptors by blocking the degradation of native ligands selectively stimulates the intake of palatable food, with differential actions on total energy intake depending upon the feeding schedule. Our results support a role for parabrachial cannabinoid mechanisms in providing physiological regulation to neural substrates modulating feeding, energy balance, and behavioral responses for natural reward.  相似文献   

7.
Enterostatin, the activation peptide of procolipase, has been reported to reduce high-fat food consumption in rats. This reduction has been reliably demonstrated using procedures in which the test diet was also the maintenance diet of the animals. Other reports, though, have shown that peripherally administered enterostatin had no effect on the consumption of oil provided as an option to the diet, and that centrally administered enterostatin had no effect on the consumption of an optional high-fat mixed food. However, the effects of peripherally administered enterostatin on the consumption of an optional high-fat mixed food have not been examined. This experiment, then, examined the effects of peripherally administered enterostatin on the consumption of optional, mixed foods (no-fat and high-fat cookies) provided in addition to a standard diet under choice and nonchoice conditions. Four experiments were conducted. In experiment I, the effect of enterostatin in a two-choice feeding paradigm was assessed. In experiment II, the effect of enterostatin in a nonchoice feeding paradigm was assessed. In experiment III, the effect of enterostatin administered at five different pretreatment times in a non-choice feeding paradigm was assessed. Enterostatin had no effect on cookie intake in any of these experiments. Finally, experiment IV was undertaken to verify the activity of the peptide. Enterostatin significantly reduced the consumption of a standard diet in overnight food-deprived rats, thus confirming the activity of the peptide used in experiments I to III. Enterostatin may not play a major role in the regulation of food intake that is stimulated by optional foods that are periodically provided in addition to a standard well-balanced diet.  相似文献   

8.
Chronic intake of high-fat (HF) diet is known to alter brain neurotransmitter systems that participate in the central regulation of food intake. Dopamine (DA) system changes in response to HF diet have been observed in the hypothalamus, important in the homeostatic control of food intake, as well as within the central reward circuitry [ventral tegmental area (VTA), nucleus accumbens (NAc), and pre-frontal cortex (PFC)], critical for coding the rewarding properties of palatable food and important in hedonically driven feeding behavior. Using a mouse model of diet-induced obesity (DIO), significant alterations in the expression of DA-related genes were documented in adult animals, and the general pattern of gene expression changes was opposite within the hypothalamus versus the reward circuitry (increased vs. decreased, respectively). Differential DNA methylation was identified within the promoter regions of tyrosine hydroxylase (TH) and dopamine transporter (DAT), and the pattern of this response was consistent with the pattern of gene expression. Behaviors consistent with increased hypothalamic DA and decreased reward circuitry DA were observed. These data identify differential DNA methylation as an epigenetic mechanism linking the chronic intake of HF diet with altered DA-related gene expression, and this response varies by brain region and DNA sequence.  相似文献   

9.
SINGER, LORI K, DAVID A YORK, GEORGE A BRAY. Feeding response to mercaptoacetate in Osborne-Mendel and S5B/PL Rats. The purpose of this experiment was to determine if Osborne-Mendel (OM) rats, which are susceptible to dietary-induced obesity, and S5B/PL (S5B) rats, which are resistant to dietary-induced obesity, differ in their feeding responses to mercaptoacetate (MA), which blocks fatty acid oxidation, or 2-deoxy-D-glucose (2DG), which blocks glucose utilization. 2DG (100 mg/kg or 200 mg/ kg) increased food intake in both strains of rats on a high-fat diet (56% energy from fat). Mercaptoacetate (600 umol/kg) increased food intake in OM but not S5B rats on a high-fat diet. When maintained on a low-fat diet (10% energy from fat), MA (400 umol/kg or 600 umol/kg) stimulated food intake in OM rats, whereas S5B rats increased food intake only after the highest dose of MA (600 umol/kg). MA stimulated carbohydrate and protein intake in OM rats maintained on a macro-nutrient selection diet, whereas S5B rats maintained on this diet did not significantly increase intake of any mac-ronutrient after MA. These results demonstrate that OM and S5B rats have a similar food intake response to 2DG but a dissimilar response to MA. The variable response to MA in these strains may be due to a difference in peripheral or central signaling systems related to fatty acid oxidation or a difference in metabolic environments between the strains, which in turn affects the feeding response to MA. These studies suggest that a difference in control of fatty acid oxidation may account for the difference in susceptibility to obesity when eating a high-fat diet.  相似文献   

10.
We previously showed (Science 198:1178, 1977) that fenfluramine or fluoxetine, drugs thought to enhance serotoninergic transmission, selectively decrease the rat's consumption of carbohydrates, without affecting protein intake, when animals are given simultaneous access to diets differing in protein (5% vs 45%) and carbohydrate contents; in contrast, d-amphetamine lacks this selective effect. Present studies affirm this relationship using another serotoninergic drug, MK-212, and show that the suppression of carbohydrate intake occurs whether the test diets contain variable amounts of protein, or carbohydrates, or of both nutrients. Evidence is presented that rats given diet mixtures containing various proportions of carbohydrates have the ability to regulate their carbohydrate intakes (i.e., to choose to eat amounts of each diet that, taken together, will give them a desired proportion of carbohydrate), and that this ability is independent of whether or not the carbohydrate consumed has a sweet taste. It is proposed that serotoninergic neurons comprise part of a behavioral feedback loop, whereby the consumption of carbohydrate (which, by altering plasma amino acid patterns, accelerates serotonin synthesis in brain neurons) diminishes the rat's subsequent tendency to consume additional carbohydrates. Drugs that enhance central serotoninergic transmission can probably be substituted for dietry carbohydrate to activate this behavioral loop.  相似文献   

11.
Feeding is organised within the 24-h of the light - dark (LD) cycle. Food is ingested in a circadian manner in nature and in laboratory animals kept under constant conditions. The circadian rhythmicity in food ingestion is driven by a biological clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus. The circadian organisation of food ingestion not only allows animals to live in harmony with their environment but food intake could also act as a zeitgeber for other rhythmic functions. Lesions in the area of the SCN result in the loss of most rhythmic functions as well as to a disrupted circadian rhythmicity of food and water intake. These findings, together with observations from daytime feeding experiments conducted in nocturnal animals, suggest that food intake may serve as a temporal signal for some peripheral organs to oscillate in phase with the SCN. This paper overviews and discusses how food intake interacts with the circadian system.  相似文献   

12.
Proteolytic activity was measured by the digestion of 14C-labelled casein in digesta removed from the rumen of four sheep receiving a grass hay/concentrate diet and four sheep receiving a maize silage/concentrate diet. Samples were removed immediately before feeding and at 2-h intervals after feeding up to 12 h. Animals on both diets produced similar proteolytic activities (1.83 (S.D. 0.41) and 2.14 (S.D. 0.61) mg 14C-casein hydrolysed (ml ruminal fluid)-1 h-1 with the maize silage- and grass hay-based diets, respectively). Time after feeding had no effect on proteolytic activity, but between-animal variation was consistent and highly significant, with the highest-activity animals having activities 64 and 74% higher than the lowest-activity animals on the two diets, respectively.  相似文献   

13.
Nectarivorous birds encounter varying nectar concentrations while foraging on different food plants and must adjust their consumption to maintain constant energy intake. We determined how rapidly captive whitebellied sunbirds (Cinnyris talatala) adjust their volumetric intake and feeding patterns after changes in diet concentration. On four consecutive days, birds were fed sucrose diets alternating between a standard diet of 16% w/w and test diets of 2.5, 8.5, 16 or 30% w/w, respectively, for 1.5 h periods. Feeding events were recorded with an infrared photo-detection system and food intake and body mass were monitored continuously by electronic balances interfaced to a computer. Generally, birds demonstrated a measurable increase in feeding frequency and food intake within 10 min after a decrease in sucrose concentration. However, individuals responded differently to the most dilute diet (2.5%): while most increased their food intake, others stopped feeding for a short while, appearing to dislike this diet. Furthermore, the number and duration of feeding events increased in the first 5 min after the switch from 2.5% back to 16%, as the birds attempted to compensate for previous reduced sugar intake. Daily sugar intake was lower when birds alternated between 2.5 and 16% diets than on other test days, but birds were able to maintain body mass, presumably through behavioural adjustments.  相似文献   

14.
The diel feeding periodicity, daily ration and prey selection of juvenile chinook salmon, Oncorhynchus tshawytscha , were studied in relation to the available prey. Maximum dry weight of food intake occurred about dawn, when mayflies were the major prey, but the greatest number of freshly eaten prey occurred during the afternoon, when chironomids and terrestrial dipterans predominated. Feeding activity at night was low, with smaller mayflies comprising up to 50% of the prey. During the day the young salmon fed selectively on chironomids and the larger mayflies, while trichopterans and terrestrial taxa were under-represented in the diet. Food consumption over the 24-h period averaged 8.3% of the fish dry body weight. Prey abundance in the drift explained about 50% of the composition of the diet. Although the fish selected larger mayflies, size apparently was not a main criterion for selection because chironomids, although smaller than mayflies, were also frequently eaten. Previous dietary experience of the fish and the diel pattern of prey abundance appear to best explain the selective feeding of juvenile chinook salmon.  相似文献   

15.
Previous work from our laboratory indicates that when rats are given a choice between a high-fat and a high-sucrose diet, opioid blockade with naltrexone (NTX) in a reward-related site (central amygdala) inhibits intake of the preferred diet only, whereas NTX injected into a homeostasis-related site, such as the hypothalamic paraventricular nucleus (PVN), inhibits intake of both diets. However, other work suggests that opioids increase intake of fat specifically. The present study further investigates the role of PVN opioids in food choices made by calorically-replete animals. We used a binge model with chow-maintained rats given 3-h access to a choice of a high-fat or high-sucrose diet 3 days a week. We hypothesized that intra-PVN injection of the mu-opioid agonist, DAMGO (0, 0.025, 0.25, and 2.5 nmol) would enhance, and NTX (0, 10, 30, and 100 nmol) would inhibit intake of both diets to an equal extent. We found that when animals were divided into groups according to sucrose or fat preference, DAMGO increased fat intake in fat-consuming animals, while having no effect on intake of either diet in sucrose-consuming animals. NTX, however, inhibited fat intake in both groups. Intra-PVN NTX did not inhibit intake of sucrose when presented in the absence of a fat choice, but did so when injected peripherally. Furthermore, intra-PVN and systemic NTX inhibited intake of chow by 24-h-food-deprived animals. These results indicate a complex role for PVN opioids in food intake with preference, nutrient type, and energy state affecting the ability of these compounds to change behavior.  相似文献   

16.
Previously we showed that intermittent administration of nicotine (NIC) in the dark phase decreased food intake and body weight and this could be blocked when the NIC receptor antagonist mecamylamine was infused into the fourth ventricle. Catecholaminergic neurons adjacent to the fourth ventricle contain NIC receptors and directly innervate the perifornical hypothalamus (PFH) which has been shown to be involved in regulation of feeding. This study explored whether NIC regulates feeding behavior by modulating catecholaminergic input to the PFH. Epinephrine and norepinephrine neuronal input was ablated within the PFH by infusion of 6-hydroxydopamine hydrobromide (6-OHDA), while bupropion was infused to protect dopaminergic neurons. After recovery of body weights to pre-surgery levels, food intake, meal size, meal number and body weight were measured after intermittent NIC injections. The results showed the PFH lesioned animals did not exhibit the typical prolonged drop in food intake, meal size and body weight normally associated with NIC administration. High performance liquid chromatography analyses demonstrated that compared to control rats, 6-OHDA administration significantly reduced PFH norepinephrine and epinephrine levels, but not dopamine levels. These results are consistent with NIC reducing food intake in part by acting through catecholaminergic neurons within or extending through the PFH.  相似文献   

17.
The effect of dietary protein on eIF4E phosphorylation was examined in rats starved for 18 h and then fed on either a 20% casein diet (20C) or a protein-free diet (0C). Refeeding with the 20C diet, but not the 0C diet, resulted in partial dephosphorylation of eIF4E in both the skeletal muscle and liver. The results suggest that the dephosphorylation of eIF4E in response to food intake was regulated by the increase in plasma amino acid concentration that occurred after feeding with the 20C diet.  相似文献   

18.
Many peptides have been shown to modulate nutrient intake. In most cases, these peptides decrease food intake, but in a few cases they have been demonstrated to stimulate feeding. Infusion of insulin peripherally will decrease food intake unless hypoglycemia occurs where the reduced glucose is a stimulus to feeding. Other pancreatic hormones including glucagon, amylin, pancreatic polypeptide, and enterostatin reduce food intake. Of the gastrointestinal hormones, cholecystokinin has been the most widely studied and reduces food intake in a number of species, including human beings. Gastrin-releasing peptide and its relative bombesin have been shown to decrease food intake in experimental animals and man. Somatostatin reduces food intake in experimental animals, but no clinical studies are available. Four pituitary peptides also modify food intake. Vasopressin decreases feeding. In contrast, injections of desacetyl melanocyte stimulating hormone (dMSH), growth hormone, and prolactin are associated with increased food intake. Finally, there are a group of miscellaneous peptides which modulate feeding. β-casomorphin, a hepta peptide produced during the hydrolysis of casein, stimulates food intake in experimental animals. In contrast, the other pep tides in this group including calcitonin, apolipoprotein A-IV, the cyclized form of histidyl-proline, several cytokines, and thyrotropin-releasing hormone decrease food intake. Many of these peptides act on gastrointestinal or hepatic receptors which relay messages to the brain via the afferent vagus nerve. As a group they provide a number of leads for potential drug development.  相似文献   

19.
Excessive weight gain is directly related to a positive energy balance which is due to both a decreased physical activity and overeating. Obesity prevalence is increasing since thirty years and the treatment of obesities is particularly necessary to solve this public health and economical problem. The receptors of numerous hypothalamic neuropeptides are potential targets for such drug treatments. Hormones of the gastro-intestinal tract or produced by the adipose tissue directly interact with these central pathways to regulate feeding behavior. The use of leptin, an adipose tissue hormone that inhibits food intake, has not been conclusive because of the development of leptin resistance in obese subjects. Similar disappointing results have been obtained with antagonists of neuropeptide Y (NPY), one of the most potent orexigenic peptide. This was linked to the complexity and redundancy of the circuits involved in feeding regulation. Consequently, a multitherapy targeting several pathways simultaneously is probably the best option to cure obesity. Among these pathways, PYY 3-36 has been tested in man and some encouraging data have been obtained in animals with antagonists of some other orexigenic peptides such as orexins and melanin-concentrating hormone. A few gene therapy trials in the rat brain have restored interest for the leptin and NPY pathways. Their general use is however not planed in a next future. According to the type of obesity, these new treatments might be associated with either current (or almost current) drugs acting either on serotoninergic/catecholaminergic or cannabinoid pathways, or with surgery. Behavioral changes (food intake, exercise) and preventive actions during early life (in utero, young children) will remain for a while the best solutions to limit overweight development. The new treatments will help obese people to adhere to these behavioral changes by improving their efficiency to induce weight loss.  相似文献   

20.
Glucagon-like peptide 1-(7-36) amide (GLP-1) potently inhibits rat feeding behavior after central administration. Because third ventricular injection of GLP-1 appeared to be less effective than lateral ventricular injection, we have reexamined this issue. In addition, we attempted to identify brain regions other than the paraventricular nucleus of the hypothalamus that are sensitive toward GLP-1-induced feeding suppression. Finally, we examined the local role of endogenous GLP-1 by specific GLP-1 receptor blockade. After lateral ventricular injection, GLP-1 significantly inhibited food intake of 24-h-fasted rats in a dose-dependent fashion with a minimal effective dose of 1 microg. After third ventricular injection, GLP-1 (1 microg) was similarly effective in suppressing food intake, which extends previous findings. Intracerebral microinjections of GLP-1 significantly suppressed food intake in the lateral (LH), dorsomedial (DMH), and ventromedial hypothalamus (VMH), but not in the medial nucleus of the amygdala. The minimal effective dose of GLP-1 was 0.3 microg at LH sites and 1 microg at DMH or VMH sites. LH microinjections of exendin-(9-39) amide, a GLP-1 receptor antagonist, at 1 or 2.5 microg did not alter feeding behavior in 24-h-fasted rats. In satiated animals, however, a single LH injection of 1 microg exendin-(9-39) amide significantly augmented food intake, but only during the first 20 min (0.6 vs. 0.1 g). With three repeated injections of 2.5 microg exendin-(9-39) amide every 20 min, 1-h food intake was significantly increased by 300%. These data strongly support and extend the concept of GLP-1 as a physiological regulator of food intake in the hypothalamus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号