首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, somatic cell nuclear transfer (SCNT) and intracytoplasmic sperm injection (ICSI) are used as models of agamogony and syngamy, respectively. In order to elucidate the reasons of low efficiency of somatic cell cloning, cytoskeletal and nuclear organization in cloned mouse embryos was monitored before and during the first cell cycle, and compared with the pattern of ICSI zygote. A metaphase-like spindle with alignment of condensed donor chromosomes was assembled within 3 hr after NT, followed by formation of pronuclear-like structures at 3-6 hr after activation, indicating that somatic nuclear remodeling depends on microtubular network organization. The percentage of two (pseudo-) pronuclei in cloned embryos derived from delayed activation was greater than that in immediate activation group (68.5% vs. 30.8%, P<0.01), but similar to that of ICSI group (68.5% vs. 65.5%, P>0.05). The 2-cell rate in NT embryos was significantly lower than that in zygotes produced by ICSI (64.8% vs. 82.5%, P<0.01). Further studies testified that the cloned embryos reached the metaphase of the first mitosis 10 hr after activation, whereas this occurred at 18 hr in the ICSI zygotes. Comparision of the pattern of microfilament assembly in early NT embryos with that in syngamic zygotes suggested that abnormal microfilamental pattern in cloned embryos may threaten subsequent embryonic development. In conclusion, agamogony, in contrast to syngamy, displays some unique features in respect of cytoskeletal organization, the most remarkable of which is that the first cell cycle is initiated ahead distinctly, which probably leads to incomplete organization of the first mitotic spindle, and contributes to low efficiency of cloning.  相似文献   

2.
We examined whether porcine nuclear transfer (NT) embryos carrying somatic cells have a developmental potential and NT embryos carrying transformed fibroblasts express transgenes in the preimplantation stages. In Experiment 1, different activation methods were applied to NT embryos and the development rates were examined. Relative to A23187 only or A23187/6-DMAP, electrical pulse made a significant increase in both cleavage rate (58.1+/-13.9 or 60.7+/-6.3 vs. 74.9+/-7.5%) and development rate of NT embryos to the blastocyst stage (2.2+/-2.8 or 2.2+/-1.5 vs. 11.0+/-4.1%). In Experiment 2, in vitro developmental competence of NT embryos was investigated. The developmental rate to the blastocyst stage of NT embryos (9.9+/- 2.4% for cumulus cells and 9.8+/-1.6% for fibroblast cells) was significantly lower than that (22.9+/-3.5%) of IVF-derived embryos (P<0.01). NT blastocysts derived from either cumulus (28.9+/-11.4, n = 26) or fibroblast cells (30.2+/-9.9, n = 27) showed smaller mean nuclei numbers than IVF-derived blastocysts (38.6+/-10.4, n = 62) (P<0.05). In Experiment 3, nuclear transfer of porcine fibroblasts expressing the GFP (green fluorescent protein) gene resulted in green blastocysts without losing developmental potential. These results suggest that porcine embryos reconstructed by somatic cell nuclear transfer are capable of developing to preimplantation stage. We conclude that somatic cells expressing exogenous genes can be used as nuclei donors in the production of NT-mediated transgenic pig.  相似文献   

3.
This study was designed to examine the developmental ability of porcine embryos after somatic cell nuclear transfer. Porcine fibroblasts were isolated from fetuses at Day 40 of gestation. In vitro-matured porcine oocytes were enucleated and electrically fused with somatic cells. The reconstructed eggs were activated using electrical stimulus and cultured in vitro for 6 days. Nuclear-transferred (NT) embryos activated at a field strength of 120 V/mm (11.6 +/- 1.6%) showed a higher developmental rate as compared to the 150-V/mm group (6.5 +/- 2.3%) (P: < 0.05), but the mean cell numbers of blastocysts were similar between the two groups. Rates of blastocyst development from NT embryos electrically pulsed at different times (2, 4, and 6 h) after electrofusion were 11.6 +/- 2.9, 6.6 +/- 2.3, and 8.1 +/- 3.3%, respectively. The mean cell numbers of blastocysts developed from NT embryos were gradually decreased (30.4 +/- 10.4 > 24.6 +/- 10.1 > 16.5 +/- 7.4 per blastocyst) as exposure time (2, 4, and 6 h) of nuclei to oocyte cytoplast before activation was prolonged. There was a significant difference in the cell number between the 2- and 6-h groups (P: < 0. 05). Nuclear-transferred embryos (9.4 +/- 0.9%) had a lower developmental rate than in vitro fertilization (IVF)-derived (21.4 +/- 1.9%) or parthenogenetic embryos (22.4 +/- 7.2%) (P: < 0.01). The mean cell number (28.9 +/- 11.4) of NT-derived blastocysts was smaller than that (38.6 +/- 10.4) of IVF-derived blastocysts (P: < 0. 05) and was similar to that (29.9 +/- 12.1) of parthenogenetic embryos. Our results suggest that porcine NT eggs using somatic cells after electrical activation have developmental potential to the blastocyst stage, although with smaller cell numbers compared to IVF embryos.  相似文献   

4.
The recent demonstration of a successful zona-free manipulation technique for bovine somatic nuclear transfer (NT) that is both simpler and less labor intensive is of considerable benefit to advance the applications of this technology. Here, we describe that this method is also applicable to porcine somatic NT. Porcine cumulus oocyte complexes were matured in TCM-199 medium before sequential removal of the cumulus and zonae. Zona-free oocytes were bisected using a microknife, and the halves containing the metaphase plate (as determined by Hoechst 33342 staining) were discarded. Each half cytoplast was agglutinated to a single granulosa cell (primary cultures grown in 0.5% serum for 2-5 days prior to use) in phytohaemagglutinin-P. Subsequently, each half cytoplast-granulosa cell couplet was simultaneously electrofused together and to another half cytoplast. Reconstructed embryos were activated in calcium ionophore A23187 followed by DMAP and were then individually cultured in microwells in NCSU-23 medium. On day 7 after activation, blastocyst yield and total cell numbers were counted. Of 279 attempted reconstructed NT embryos, 85.0 +/- 2.8% (mean +/- SEM; n = 5 replicates) successfully fused and survived activation. The blastocyst rate (per successfully fused and surviving embryo) was 4.8 +/- 2.3% (11/236; range, 0-12.8%). Total blastocyst cell count was 36.0 +/- 4.5 (range, 18-58 cells). The blastocyst rate and total cell numbers of parthenogenetically activated and zona-free control oocytes propagated under the same conditions was 11.6 +/- 3.9% (35/335 embryos; n = 3 replicates) and 36.8 +/- 5.2, respectively. Developmentally halted embryos that could still be evaluated on day 7 possessed 54.4 +/- 2.3% (53/96 embryos; n = 3 replicates) anucleate blastomeres, the latter representing 53.5 +/- 6.6% of the blastomeres in such embryos. In conclusion, blastocyst yield was independent of activation efficiency and was likely reduced by insufficient nuclear remodeling, reprogramming, imprinting, or other effects. The data also suggest that fragmentation was a considerable problem that could conceivably contribute to halted development in a high proportion of embryos. The results indicate that the zona-free manipulation technique can be successfully applied to pig somatic NT. Although such zona-free early cleavage stage embryos cannot be transferred to recipients at present, this technique permits simplification of the NT technique for application in basic research, until pig nonsurgical blastocyst transfer becomes a realistic option.  相似文献   

5.
6.
This study investigated the effects on fertilized embryo development of somatic cytoplasm after its injection into intact mouse oocytes. Mature oocytes collected from female B6D2F1 mice were injected with cumulus cell cytoplasm of different volumes and from different mouse strains (B6D2F1, ICR, and C57BL/6), or with embryonic cytoplasm. After culture for 1 h, B6D2F1 sperm were injected into those oocytes by intracytoplasmic sperm injection (ICSI). The oocytes were examined for pre- and postimplantation developmental competence. Increases in the volume of the somatic cytoplasm from onefold to fourfold resulted in an impairment of blastocyst development and full-term development (28% and 7%, respectively, vs. 96% and 63%, respectively, in the control group; P < 0.01). An increase in the volume of somatic cytoplasm reduced the expression of POU5F1 (more commonly known as OCT4) in expanded blastocysts. The frequency of embryos that developed to the blastocyst stage did not differ when B6D2F1 or ICR somatic cytoplasm was injected, but injection of C57BL/6 somatic cytoplasm induced a two-cell block in embryo development. Injection of the cytoplasm from fertilized embryos did not reduce the frequency of embryos attaining full-term development. Interestingly, somatic cytoplasm significantly increased the placental weight of ICSI embryos, even the injection of onefold cytoplasm (0.20 +/- 0.02 [n = 32] vs. 0.12 +/- 0.02 in the control group [n = 87]; P < 0.01). These findings indicate that the injection of somatic cytoplasm into oocytes before ICSI causes a decrease in preimplantation development, clearly impairs full-term development, and causes placental overgrowth in fertilized embryos. To our knowledge, placental overgrowth phenotypes are only caused by interspecies hybridization and cloning, and in genetically modified mice. Here, we report for the first time that somatic cytoplasm causes abnormal placentas in fertilized embryos. This study suggests that somatic cell cytoplasmic material is one cause of the low rate of full-term development in cloned mammals.  相似文献   

7.
Cloned calves produced by nuclear transfer from cultured cumulus cells   总被引:3,自引:0,他引:3  
Short-term cultured cumulus cell lines (1-5BCC) derived from 5 individual cows were used in nuclear transfer (NT) and 1188 enucleated bovine oocytes matured in vitro were used as nuclear recipients. A total of 931 (78.4%) cloned embryos were reconstructed, of which 763 (82%) cleaved, 627 (67.3%) developed to 8-cell stage, and 275 (29.5%) reached blastocyst stage. The average cell number of blastocysts was 124±24.5 (n=20). In this study, the effects of donor cell sources, serum starvation of donor cells, time interval from fusion to activation (IFA) were also tested on cloning efficiency. These results showed that blastocyst rates of embryos reconstructed from 5 different individuals cells were significantly different among them (14.1%, 45.2%, 27.3%, 34.3%, vs 1.5%, P<0.05); that serum starvation of donor cells had no effect on blastocyst development rate of NT embryos (47.1% vs 44.4%, P>0.05); and that blastocyst rate (20.3%) of the group with fusion/activation interval of 2-3 h, was significantly lower  相似文献   

8.
Nuclear transfer (NT) techniques have advanced in the last few years, and cloned animals have been produced from somatic cells in several species including pig. In this study we examined the feasibility of using granulosa-derived cells (GCs) as donor cells combined with a microinjection procedure to transfer those nuclei. In vitro matured oocytes were enucleated by aspirating the first polar body and adjacent cytoplasm. Mural GCs infected with an enhanced green fluorescence protein (EGFP) gene were serum-starved (0.5% serum, 7 days), injected directly into cytoplasm of enucleated oocytes and the oocytes were electrically activated. The reconstructed embryos were cultured for 7 days and stained with Hoechst 33342 to determine the number of nuclei. Non-manipulated oocytes were electrically activated and cultured as controls. At 9 h post-activation, the pronuclear formation rates were 78.7+/-3.7% in NT and 97.4+/-4.4% in controls at 9 h post-activation. After 7 days culture, the cleavage rates were 24.5+/-7.2% in NT and 79.3+/-5.6% in controls. The blastocysts formation rates were 4.9+/-2.4% in NT and 26.8+/-3.8% in controls. To examine the effect of activation time on development of NT embryos, oocytes were activated at 0-0.5, 1-2, or 3-4 h post-injection. At 18 h post-activation the pronuclear formation rates were higher (62.5+/-7.3%) in the 3-4 h group as compared to the 0-0.5 h (22.0+/-12.5%) or 1-2h (44.5+/-6.3%) groups (P<0.05). However, the cleavage rates (9.6+/-4.6 to 10.7+/-4.2%) and the blastocysts formation rates (1.2+/-2.4 to 4.9+/-3.7%) were not different among treatments (P>0.05). The mean cell number of blastocysts was 15.7+/-5.7 in NT and 25.3+/-24.7 in controls. Green fluorescence was observed in roughly half of the embryos from the one-cell to the blastocyst stage. These results indicate that granulosa-derived cell nuclei can be remodeled in the cytoplasm of porcine oocytes, and that the reconstructed embryos can develop to the blastocyst stage. In addition, EGFP can be used as a marker for gene expression of donor nuclei.  相似文献   

9.
The in vitro developmental potential of porcine nuclear transfer (NT) embryos was evaluated. Oocytes were matured for 42-44 h, and metaphase II-oocytes were enucleated. Fetal fibroblasts infected with the enhanced green fluorescent protein (EGFP) gene were serum-starved for 3-5 days. A single cell was injected into the perivitelline space of the enucleated oocytes. The reconstructed oocytes were allocated to different fusion and activation conditions. In experiment 1, two different fusion/activation conditions were compared: two pulses of 1.2 kV/cm for 30 microsec (group A), or one pulse of 1.6 kV/cm for 30 microsec followed in 30 min by one pulse of 1.2 kV/cm for 30 microsec (group B). Parthenogenetic controls were created by using the group A parameter. The fusion rate in group A (mean +/- SEM, 68.4% +/- 3.9%) was higher (P < 0.05) than in group B (59.4% +/- 2.3%). The rates of cleavage (50.1% +/- 4.6% to 62.8% +/- 5.5%) were not different among control and treatment groups. However, the rate of parthenogenetic control embryos developing to the blastocyst stage (18.1% +/- 3.1%) was higher (P < 0.05) than the rate of NT embryos (5.9% +/- 1.7% and 4.9% +/- 2.5%). In experiment 2, we compared two pulses of 1.2 kV/cm (group C) versus two pulses of 1.3 kV/cm (group D). For two control groups, the same pulses as those given to group C or D, respectively, were supplied. The fusion rate in group D (70.6% +/- 4.2%) was higher (P < 0.05) than in group C (58.9% +/- 2.7%). The cleavage rates were not different among control and treatment groups (58.1% +/- 8.1% to 73.6% +/- 6.0%). However, the rate of embryos developing to the blastocyst stage in group D (3.5% +/- 1.7%) was lower (P < 0.05) than in controls and group C (11.4% +/- 2.0% to 16.4% +/- 1.1%). In experiment 3, we examined whether the presence of cytochalasin B (CB) during donor cell injection affects the development of NT embryos. The fusion rate of oocytes in the group with CB (78.4% +/- 1.4%) was higher (P < 0.05) than in the group without CB (70.9% +/- 0.2%). The cleavage rate of the control group (85.5% +/- 4.9%) was higher (P < 0.05) than those of the treatment groups (61.6% +/- 2.7% and 63.9% +/- 4.3%). However, the rates of embryos developing to the blastocyst stage (8.1% +/- 2.5% to 19.1% +/- 6.0%) and the mean cell number of blastocysts (29.4 +/- 5.2 to 45.7 +/- 6.4) were not different among control and treatment groups. Green fluorescence was observed at all stages in NT embryos. These results indicate that two pulses of 1.2 kV/cm are enough for fusion/activation of NT embryos to develop to the blastocyst stage, and that the presence of CB during donor cell injection is not necessary for early development of NT embryos.  相似文献   

10.
11.
Cellular coherence and communication, thus cell-to-cell contact is an indispensable premise to sustain the formation of complex, multi-cellular organisms. We have analyzed intercellular contact lengths in NT-cloned bovine embryos compared to the in vivo or in vitro produced counterparts. Therefore, ultrastructural analysis was carried out by transmission electron microscopy (TEM) at the 8-cell and blastocyst stage of development. To obtain embryos generated in vivo, oviducts of superovulated cows were flushed 3 days after insemination, subsequent to slaughter. Standard in vitro maturation (IVM) and -fertilization (IVF) were utilized to obtain in vitro embryos. Cloned embryos by somatic nuclear transfer were produced by the handmade cloning (HMC) procedure. The points of apposition/focal contact points (CPs) between the blastomeres were of the shortest order in cloned embryos (236 +/- 135 nm) and of highest order in the in vivo produced embryos (2,085 +/- 1,540 nm), although no significant differences regarding the blastomere sizes in the various groups of 8-cell embryos could be established. In summary, the CP lengths in case of in vitro and in vivo 8-cell embryos were, on an average, five or nine times longer, respectively, than in the case of the cloned embryos. These differences of CP lengths vanished in embryos reaching the blastocyst stage of embryonic development in all the three groups of embryos. The observed differences of intercellular contact length at distinct stages of embryonic development could be responsible for differences in intercellular communication between the blastomeres at the beginning of cellular differentiation. These may be one reason for the lower developmental competence of cloned (NT) embryos.  相似文献   

12.
Effective activation of a recipient oocyte and its compatibility with the nuclear donor are critical to the successful nuclear reprogramming during nuclear transfer. We designed a series of experiments using various activation methods to determine the optimum activation efficiency of bovine oocytes. We then performed nuclear transfer (NT) of embryonic and somatic cells into cytoplasts presumably at G1/S phase (with prior activation) or at metaphase II (MII, without prior activation). Oocytes at 24 hr of maturation in vitro were activated with various combinations of calcium ionophore A23187 (A187) (5 microM, 5 min), electric pulse (EP), ethanol (7%, 7 min), cycloheximide (CHX) (10 micro g/ml, 6 hr), and then cultured in cytochalasin D (CD) for a total of 18 hr. Through a series of experiments (Exp. 1-4), an improved activation protocol (A187/EP/CHX/CD) was identified and used for comparison of NT efficiency of embryonic versus somatic donor cells (Exp. 5). When embryonic cells from morula and blastocysts (BL) were used as nuclear donors, a significantly higher rate of blastocyst development from cloned embryos was obtained with G1/S phase cytoplasts than with MII-phase cytoplasts (36 vs. 11%, P < 0.05). In contrast, when skin fibroblasts were used as donor cells, the use of an MII cytoplast (vs. G1/S phase) was imperative for blastocyst development (30 vs. 6%, P < 0.05). Differential staining showed that parthenogenetic, embryonic, and somatic cloned BL contained 26, 29, and 33% presumptive inner cell mass (ICM) cells, respectively, which is similar to that of frozen-thawed in vivo embryos at a comparable developmental stage (23%). These data indicate that embryonic and somatic nuclei require different recipient cytoplast environment for remodeling/ reprogramming, and this is likely due to the different cell cycle stage and profiles of molecular differentiation of the transferred donor nuclei.  相似文献   

13.
14.
In this report we demonstrate the successful in vitro culture of fertilised embryos from 1-cell to blastocyst stage, albeit in a strain-dependent fashion. We report procedures for the enucleation of rat oocytes; nuclear transfer by injection of nuclei (NT) from adult rat cumulus cells, rat primary embryonic fibroblasts and genetically modified rat fibroblasts; and activation resulting in advanced preimplantation development. Blastocyst stage rat embryos were obtained after in vitro culture of nuclear transfer zygotes at similar frequencies with each of these nuclear donor cell types. Transfer of NT embryos to surrogate mothers leads to implantation of 24% of the zygotes. These results suggest that the nuclei of cultured rat cells, even following genetic modification, can be reprogrammed to support early embryonic development, which is a prerequisite to cloning the rat.  相似文献   

15.
The objectives of this study were 1) to compare the efficiency of intracytoplasmic sperm injection (ICSI) with and without additional artificial stimulation using frozen-thawed sperm and in vitro-matured porcine oocytes and 2) to determine the nuclear anomalies of ICSI oocytes that failed to fertilize or develop. In experiments 1 and 2, we evaluated the effects of additional activation treatments, e.g., electrical stimulus, Ca ionophore (A23187), and/or cycloheximide, on fertilization and development of ICSI porcine oocytes. Significantly higher fertilization, cleavage, and blastocyst rates were obtained for oocytes treated with a combination of ICSI and electrical activation (EA) (P < 0.05) than for those treated with ICSI alone. However, different combinations of electrical and chemical activation treatments did not further improve the rates of fertilization, cleavage, and blastocyst development for ICSI embryos. To elucidate the association between sperm head decondensation and oocyte activation and to investigate the cause of embryonic development failure, in experiment 3 we evaluated the nuclear morphology of oocytes 16-20 h after ICSI. Nearly 100% of oocytes showed female pronucleus formation after ICSI regardless of activation treatment. However, failure of male pronucleus formation with intact or swelling sperm heads was observed in some ICSI embryos, suggesting that these embryos underwent cell division with the female pronucleus only. Artificial activation (EA and A23187) had a beneficial effect on embryonic development, sperm decondensation was independent of the resumption of meiosis, and the failure of formation of a male pronucleus was the major cause for fertilization failure in porcine ICSI embryos.  相似文献   

16.
Successful nuclear transfer (NT) of somatic cell nuclei from various mammalian species to enucleated bovine oocytes provides a universal cytoplast for NT in endangered or extinct species. Buffalo fetal fibroblasts were isolated from a day 40 fetus and were synchronized in presumptive G(0) by serum deprivation. Buffalo and bovine oocytes from abattoir ovaries were matured in vitro and enucleated at 22 h. In the first experiment, we compared the ability of buffalo and bovine oocyte cytoplasm to support in vitro development of NT embryos produced by buffalo fetal fibroblasts as donor nuclei. There were no significant differences (p > 0.05) between the NT embryos derived from buffalo and bovine oocytes, in fusion (74% versus 71%) and cleavage (77% versus 75%) rates, respectively. No significant differences were also observed in blastocyst development (39% versus 33%) and the mean cell numbers of day 7 cloned blastocysts (88.5 +/- 25.7 versus 51.7 +/- 5.4). In the second experiment, we evaluated the effects of activation with calcium ionophore A23187 on development of NT embryos after electrical fusion. A significantly higher (p < 0.05) percentage of blastocyst development was observed in the NT embryos activated by calcium ionophore and 6-DMAP when compared with 6-DMAP alone (33% versus 17%). The results indicate that the somatic nuclei from buffalo can be reprogrammed after transfer to enucleated bovine oocytes, resulting in the production of cloned buffalo blastocysts similar to those transferred into buffalo oocytes. Calcium ionophore used in conjunction with 6-DMAP effectively induces NT embryo development.  相似文献   

17.
Development of a zona-free method of nuclear transfer in the mouse   总被引:6,自引:0,他引:6  
In the present study, a zona-free nuclear transfer (NT) technique, which had been originally developed in cattle, was modified for the mouse. Steps involved in this approach include removing the zona pellucida and enucleating without a holding pipette; sticking donor cells to the cytoplast before electric pulses are applied to fuse them and culturing reconstructed embryos individually in single droplets, to prevent aggregation. Control zona-free and zona-intact embryos from mated donors showed no significant difference in development to blastocyst, but did show reduced development to term. Removal of the zona pellucida affected the response to activation by strontium in the absence of calcium as a significant proportion of zona-free control oocytes and embryos reconstructed by NT lysed during this treatment. A comparison between cumulus and ES cells as donor cells revealed significant differences in fusion efficiency (58.1 +/- 4.0%, n = 573 vs. 42.9 +/- 2.2%, n = 2064, respectively, p < 0.001), cleavage (77.2 +/- 3.4%, n = 334 vs. 40.8 +/- 2.7%, n = 903, respectively, p < 0.001) but not for development to morula/blastocyst (8.7 +/- 2.1%, n = 334 vs. 13.9 +/- 1.8%, n = 903, respectively, p < 0.1). The stage at which embryo development arrested was also affected by donor cell type. A majority of embryos reconstructed from cumulus cells arrested at two-cell stage, usually with two nuclei, whereas those reconstructed from ES cells arrested at one-cell stage, usually with two pseudo-pronuclei. After transfer of ES cell-derived NT embryos, a viable cloned mouse was produced (3.0% of transferred embryos developed to term). These observations establish that a zona-free cloning approach is possible in the mouse, although further research is required to increase the efficiency.  相似文献   

18.
Artificial activation of oocytes is a pre-requisite for successful cloning by nuclear transfer (NT). This study investigated effect of different combination of activation chemicals such as electric pulse (E), thimerosal (Thi) + dithiothreitol (DTT), 6-dimethylaminopurine (6-DMAP), or cycloheximide (CH) on the developmental ability and the frequency of apoptosis of porcine NT embryos during the culture in vitro. NT embryos activated with chemicals showed significantly higher developmental rate to blastocyst stage compared to embryos activated with E alone (21.5%-26.6% vs. 15.7%, respectively). Of chemicals, Thi + DTT supported higher development to blastocyst stage as compared to 6-DMAP or CH (26.6% vs. 21.5%-23.4%, respectively). Apoptosis of NT embryos were analyzed by using a terminal deoxynucleatidyl transferase-mediated deoxyuridine 5-triphosphate nick-end labeling (TUNEL) assay. The onset of apoptosis of embryos activated E alone was on Day 4, whereas embryos activated with chemicals showed apoptosis on Day 3 post-activation NT embryos exposed to chemicals for activation had higher frequency of apoptosis compared to that of embryos exposed to E alone from Day 3 to Day 7 during the culture. In conclusion, this study shows that chemical activation after fusion could increase not only the developmental ability of porcine NT embryos but also the mean cell number with an increased ratio of inner cell mass (ICM) to trophectoderm (TE) cells. However, the chemical activation also could increase the frequency of apoptosis and induced apoptosis earlier in porcine NT embryos.  相似文献   

19.
Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona-free manipulation method: half-cytoplasts were made from zona-free oocytes by bisection, after which two half-oocytes and one granulosa cell (serum-starved primary culture) were fused together and activated. The NT embryos were cultured in modified synthetic oviductal fluid containing essential and nonessential amino acids, myoinositol, sodium citrate, and 5% cattle serum in microwells for 7 days, at which time nuclei from all blastocysts were extracted and chromosome aberrations were evaluated using dual-color fluorescent in situ hybridization with bovine chromosome 6- and 7-specific probes. Five embryo clone families, consisting of 112 blastocysts reconstructed from five different primary granulosa cell cultures, were examined. Overall, the mean chromosome complement within embryos was 86.9 +/- 3.7% (mean +/- SEM) diploid, 2.6 +/- 0.5% triploid, 10.0 +/- 3.1% tetraploid, and 0.5 +/- 0.2% pentaploid or greater; the vast majority (>75%) of the abnormal nuclei were tetraploid. Completely diploid and mixoploid embryos represented 22.1 +/- 4.5% and 73.7 +/- 5.5%, respectively, of all clones. Six totally polyploid blastocysts, containing or=5N chromosome complements, respectively) between two clone families were different (P < 0.01), as were blastocyst yields between other clone families (P < 0.01). Blastocyst yield was not correlated to % total ploidy error between clone families, but an inverse relationship (P < 0.01) between blastocyst total cell number and total % chromosome abnormality was observed within embryos. Categorization of the blastocysts into three quality grades (good, medium, and poor) and comparison of the distribution of ploidies when classified into 0%, 0.1-5.0%, 5.1-10.0%, 10.1-15.0%, and 15.1-100% errors within embryos indicated that medium- and poor-grade embryos were different (P < 0.05) from good-quality, in vitro-produced embryos. In a separate study, 11 different granulosa cell cultures (that did not correspond to those used for NT) were evaluated and found to possess only 0.23 +/- 0.12% ploidy errors. These results demonstrate that 1) the percentage of ploidy errors in bovine NT blastocysts is inversely related to total blastocyst cell number, 2) the mixoploid condition is representative of the majority of embryos, 3) 100% polyploid NT blastocysts can exist, and 4) the ploidy errors seem not to be derived from the donor cells.  相似文献   

20.
Adult granulosa donor cells used in the nuclear transfer (NT) procedure can result in cloned cattle. Subsequently, it may be possible to use the same cell type to produce cloned transgenic cattle. Therefore, this study examined the effect of genetic manipulation and serum levels in culture of donor granulosa cells on developmental rates and cell number of bovine NT embryos. A primary cell line was established from granulosa cells collected by aspirating ovarian follicles. Cells transfected with a plasmid containing the enhanced green fluorescence protein (EGFP) gene, and non-transfected cells were used for cloning between passage 10 and 15 as serum-starved and serum-fed donor cells. There were no significant differences (P > 0.1) in cleavage rates or development to the blastocyst stage for NT embryos from transfected (60.4 and 13.5%, respectively) or non-transfected (61.9 and 14.1%, respectively) and serum-starved (60.6 and 13.4%, respectively) or serum-fed (61.3 and 14%, respectively) cells. Development rates to blastocyst stage of embryos produced using cells at passage 15 (27.1%) were significantly higher than those produced with cells at passage 10,11, and 13 (7, 11.5, and 14%, respectively, P < 0.05). Green fluorescence was observed at different intensity levels in all blastocyst stage embryos resulting from transfected donor cells. The results of the present study indicated that genetically modified granulosa cells can be used to produce transgenic NT embryos and primary transgenic adult cells at late passage may be more effective donor cells than earlier passaged cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号