首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using histochemical analysis (NADPH-diaphorase) we have investigated the influence of intraperitoneal administration of kainic acid (KA), hypoxia and combination of both these factors on neurons of the hippocampus and on the primary auditory cortex (PAC) in male rats of the Wistar strain. Kainic acid was administered to 18-day-old animals, which were exposed to long-lasting repeated hypoxia from the 2nd till the 17th day of age in a hypobaric chamber (for 8 hours a day). At the age of 1 year, the animals were transcardially perfused with 4 % paraformaldehyde under deep thiopental anesthesia. Cryostate sections were stained to identify NADPH-diaphorase positive neurons that were then quantified in CA1 and CA3 areas of the hippocampus, in the dentate gyrus and in the PAC. Both, hypoxia and KA lowered the number of NADPH-diaphorase positive neurons in the hilus, dorsal and ventral blades of the dentate gyrus, CA1 and CA3 areas of the hippocampus. On the contrary, KA given to the hypoxic animals increased the number of NADPH-diaphorase positive neurons in the dorsal blade of the dentate gyrus and PAC.  相似文献   

2.
Using histochemical analysis (NADPH-diaphorase, Fluoro-Jade B dye and bis-benzimide 33,342 Hoechst) we studied the influence of intraperitoneal administration of nicotine (NIC), kainic acid (KA) and combination of both these substances on hippocampal neurons and their changes. In experiments, 35-day-old male rats of the Wistar strain were used. Animals were pretreated with 1 mg/kg of nicotine 30 min prior to the kainic acid application (10 mg/kg). After two days, the animals were transcardially perfused with 4 % paraformaldehyde under deep thiopental anesthesia. Cryostat sections were stained to identify NADPH-diaphorase positive neurons that were then quantified in the CA1 and CA3 areas of the hippocampus, in the dorsal and ventral blades of the dentate gyrus and in the hilus of the dentate gyrus. Fluoro-Jade B positive cells were examined in the same areas in order to elucidate a possible neurodegeneration. In animals exposed only to nicotine the number of NADPH-diaphorase positive neurons in the CA3 area of the hippocampus and in the hilus of the dentate gyrus was higher than in controls. In contrast, KA administration lowered the number of NADPH-diaphorase positive cells in all studied hippocampal areas and in both blades of the dentate gyrus. Massive cell degeneration was observed in CA1 and CA3 areas of the hippocampus and in the hilus of the dentate gyrus after kainic acid administration. Animals exposed to kainic acid and pretreated with nicotine exhibited degeneration to a lesser extent and the number of NADPH-diaphorase positive cells was higher compared to rats, which were exposed to kainic acid only.  相似文献   

3.
Neurogenesis occurs in dentate gyrus of adult hippocampus under the influence of various mitogenic factors. Growth factors besides instigating the proliferation of neuronal progenitor cells (NPCs) in dentate gyrus, also supports their differentiation to cholinergic neurons. In the present study, an attempt has been made to investigate the neurotrophic effect of bFGF in Kainic acid (KA) induced cognitive dysfunction in rats. Stereotaxic lesioning using (KA) was performed in hippocampal CA3 region of rat's brain. Four-weeks post lesioning rats were assessed for impairment in learning and memory using Y maze followed by bFGF infusion in dentate gyrus region. The recovery was evaluated after bFGF infusion using neurochemical, neurobehavioural and immunohistochemical approaches and compared with lesioned group. Significant impairment in learning and memory (P < 0.01) observed in lesioned animals, four weeks post lesioning exhibited significant restoration (P < 0.001) following bFGF infusion twice at one and four week post lesion. The bFGF infused animals exhibited recovery in hippocampus cholinergic (76%)/ dopaminergic (46%) receptor binding and enhanced Choline acetyltransferase (ChAT) immunoreactivity in CA3 region. The results suggest restorative potential of bFGF in cognitive dysfunctions, possibly due to mitogenic effect on dentate gyrus neurogenic area leading to generation and migration of newer cholinergic neurons.  相似文献   

4.
The intrahippocampal injection of two agonists of excitatory aminoacid (EAA) receptors elicited neuronal damages localized in CA1 and dentate gyrus for N-methyl-D-aspartate (NMDA) (20 nmol) and extended to the various hippocampal areas, except dentate gyrus for kainic acid (KA) (2.5 nmol). The pretreatment of the animals with N-[1-(2-thienyl)cyclohexyl]piperidine (TCP) (20 mg/kg), a noncompetitive NMDA-receptor antagonist, prevented the neuronal injury induced by NMDA and KA in CA1. The distribution of neuronal damages and of TCP-protected areas closely correlated to that of EEA-receptors and of TCP binding sites in the hippocampus.  相似文献   

5.
6.
The effect of ethanol on the structural development of the central nervous system was studied in offspring of Wistar rats, drinking 20 % ethanol during pregnancy and till the 28th day of their postnatal life. The structural changes in the hippocampus and dentate gyrus were analyzed at the age of 18, 35 and 90 days. A lower width of pyramidal and granular cell layers, cell extinction and fragmentation of numerous nuclei were found in all experimental animals compared to control animals. The extent of neural cell loss was similar in all monitored areas and in all age groups. At the age of 18 and 35 days, the degenerating cells were observed in the CA1 and CA3 area of the hippocampus and in the ventral and dorsal blade of the dentate gyrus. Numerous glial cells replaced the neuronal population of this region. Some degenerating cells with fragmented nuclei were observed at the age of 90 days. Our experiments confirmed the vulnerability of the developing central nervous system by ethanol intake during the perinatal period and revealed a long-lasting degeneration process in the hippocampus and dentate gyrus.  相似文献   

7.
目的研究生长休止蛋白7(Gas7)在大鼠海马和齿状回不同发育阶段的表达。方法采用免疫组织化学方法观察Gas7在SD大鼠胚胎第18d(E18)、新生(P0)、生后第7d(P7)、P14、P21和成年海马和齿状回中的表达和分布。结果在大鼠脑海马和齿状回部位的冠状切片上,Gas7免疫反应阳性产物主要表达在海马的锥体细胞、齿状回的颗粒细胞和门区的多形层细胞。随着发育的进程,在海马,Gas7较早表达在CA3区,其次是CA2和CA1区;在齿状回,Gas7在外臂的表达早于内臂,在颗粒细胞层的表达是按先外层后内层的顺序。在围生期,Gas7在海马和齿状回各区的表达逐渐增强,至P14达到高峰,后逐渐降低,至P21其表达强度和分布趋于恒定至成年水平。结论 Gas7在大鼠海马和齿状回发育过程中的动态表达具有时间和空间上的特异性,提示Gas7可能参与了海马和齿状回形态形成和功能成熟的调控。  相似文献   

8.
Hypoxia is a major cause of ischaemia-induced neuronal damage. In the present study, we examined the effects of in vivo hypoxia on N-methyl-D-aspartate receptors (NMDAR) in the rat hippocampus. This model of in vivo hypoxia involved placing rats in a hypoxic chamber containing 5% O2 and 95% N2 for 30 min. In the hippocampus, neuronal cells in the CA3, the hilus of the dentate gyrus and the dentate gyrus (DG) were damaged. In the CA1, which is known to be vulnerable to ischaemic damage, neuronal cells did not show hypoxia-induced damage. In vivo hypoxia-induced damage caused morphological changes in neuronal cells, such as shrunken, spindle or triangular shapes accompanied by pyknotic nuclei, but did not induce the loss of neuronal cells. On the other hand, the number of binding sites for [3H]-1-[1-(2-thienyl)cyclohexyl]-3,4-piperidine hydrochloride (TCP) gradually decreased on and after 7 days, and then maximally decreased by 25% at 21 days after hypoxia. The number of NMDAR1-immunopositive cells was decreased by 22% in the DG, but was unchanged in the CA3. Furthermore, we examined the effect of a non-competitive NMDA antagonist, (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,b]cyclohepten-5,10-imine hydrogen maleate (MK–801), on against in vivo hypoxia. The administration of MK–801 (3 mg/kg, i.p.), 30 min before hypoxia treatment, partly protected against neuronal damage in the DG, but not in the CA3. These results suggest that hypoxia-induced neuronal damage in the DG involves, in part, the activation of NMDAR.  相似文献   

9.
Levels of the c-Fos protein expression in neurons were used as an index of neural activation in the hippocampus of C57BL/6 mice after their exploration of novel environments. C-Fos expression was measured at 8 levels along the rostrocaudal axis of the hippocampus. In Experiment 1, C57BL/6 mice were trained in a modified 8-arm radial maze to find the entry to a home cage through a target arm (1 day, 6 trials). Animals of control group were trained to enter the home cage through an isolated arm. In mice trained in 8-arm maze, functional rostrocaudal inhomogeneity of hippocampus was found. C-Fos expression was increased, mainly, in the caudal parts of CA1, CA3 and dentate gyrus as compared to the control group. In Experiment 2, C57BL/6 mice were tested (1 day, 6 trials) in a novel open-field arena. In this case, c-Fos activity was increased in CA1 (to a greater extent in the caudal than in rostral parts) and CA3 and dentate gyrus (equally in rostrocaudal direction). Significant positive correlations between the exploration activity and density of c-Fos positive cells were found in both experiments. The findings suggest that exploration in novel environment differentially affects the hippocampal subfields along the hippocampal rostrocaudal axis.  相似文献   

10.
11.
Activation of NMDA receptors has been shown to induce either neuronal cell death or neuroprotection against excitotoxicity in cultured cerebellar granule neurons in vitro. We have investigated the effects of pretreatment with NMDA on kainate-induced neuronal cell death in mouse hippocampus in vivo. The systemic administration of kainate (30 mg/kg), but not NMDA (100 mg/kg), induced severe damage in pyramidal neurons of the hippocampal CA1 and CA3 subfields 3-7 days later, without affecting granule neurons in the dentate gyrus. An immunohistochemical study using an anti-single-stranded DNA antibody and TdT-mediated dUTP nick end labeling analysis both revealed that kainate, but not NMDA, induced DNA fragmentation in the CA1 and CA3 pyramidal neurons 1-3 days after administration. Kainate-induced neuronal loss was completely prevented by the systemic administration of NMDA (100 mg/kg) 1 h to 1 day previously. No pyramidal neuron was seen with fragmented DNA in the hippocampus of animals injected with kainate 1 day after NMDA treatment. The neuroprotection mediated by NMDA was prevented by the non-competitive NMDA receptor antagonist MK-801. Taken together these results indicate that in vivo activation of NMDA receptors is capable of protecting against kainate-induced neuronal damage through blockade of DNA fragmentation in murine hippocampus.  相似文献   

12.
Liu JX  Pinnock SB  Herbert J 《PloS one》2011,6(3):e17562
The dentate gyrus is a site of continued neurogenesis in the adult brain. The CA3 region of the hippocampus is the major projection area from the dentate gyrus. CA3 sends reciprocal projections back to the dentate gyrus. Does this imply that CA3 exerts some control over neurogenesis? We studied the effects of lesions of CA3 on neurogenesis in the dentate gyrus, and on the ability of fluoxetine to stimulate mitotic activity in the progenitor cells. Unilateral ibotenic-acid generated lesions were made in CA3. Four days later there was no change on the number of either BrdU or Ki67-positive progenitor cells in the dentate gyrus. However, after 15 or 28 days, there was a marked reduction in surviving BrdU-labelled cells on the lesioned side (but no change in Ki-67+ cells). pCREB or Wnt3a did not co-localise with Ki-67 but with NeuN, a marker of mature neurons. Lesions had no effect on the basal expression of either pCREB or Wnt3a. Subcutaneous fluoxetine (10 mg/kg/day) for 14 days increased the number of Ki67+ cells as expected on the control (non-lesioned) side but not on that with a CA3 lesion. Nevertheless, the expected increase in BDNF, pCREB and Wnt3a still occurred on the lesioned side following fluoxetine treatment. Fluoxetine has been reported to decrease the number of “mature” calbindin-positive cells in the dentate gyrus; we found this still occurred on the side of a CA3 lesion. We then showed that the expression GAP-43 was reduced in the dentate gyrus on the lesioned side, confirming the existence of a synaptic connection between CA3 and the dentate gyrus. These results show that CA3 has a hitherto unsuspected role in regulating neurogenesis in the dentate gyrus of the adult rat.  相似文献   

13.
目的探讨组蛋白去乙酰化酶2(HDAC2)在成年C57BL/6小鼠海马内的分布及其与突触后致密区(PSD)蛋白成员的共定位,为揭示HDAC2与PSD蛋白复合物之间的内在联系及在海马相关的学习记忆过程中可能起到的调控作用提供形态学依据。方法应用免疫组化方法观察HDAC2在C57BL/6小鼠海马各区的表达分布。应用免疫荧光双标技术研究HDAC2与PSD蛋白成员N-甲基-D-天冬氨酸(NMDA)受体亚单位1(NR1)、PSD-95之间是否存在共定位。结果 HDAC2在小鼠海马CA1~CA3区锥体细胞和齿状回颗粒细胞均具有明显表达,而在各区的始层、辐射层、腔隙-分子层以及齿状回多形细胞层表达均较少。免疫荧光双标染色图片的重叠表明,HDAC2与NR1、PSD-95在小鼠海马CA1~CA3区锥体细胞层和齿状回颗粒细胞层内均可见显著共表达现象,其他区域偶见散在分布的双染神经元。结论 HDAC2在小鼠海马锥体细胞层和颗粒细胞层表达丰富,并与PSD蛋白成员间存在共定位现象。本实验结果为探讨HDAC2对谷氨酸能突触后神经元依赖的突触可塑性的调节机制提供了形态学依据。  相似文献   

14.
15.
Hippocampal interneurons are local circuit neurons which are responsible for inhibitory activity in the hippocampus. Parvalbumin (PV) is one of useful markers for GABAergic interneurons, not for principle cells, in the hippocampus. In the present study, we investigated age-related changes in PV immunoreactive neurons and protein levels in the gerbil hippocampus during normal aging. PV immunoreactive neurons were detected in all hippocampal subregions of all groups. PV immunoreactive neurons, which innervated principal neurons, were non-pyramidal neurons in the hippocampal CA1-3 regions, and were polymorphic neurons in the dentate gyrus. In the hippocampal CA1 region, the number of PV immunoreactive neurons was significantly reduced in the postnatal month 3 (PM 3) group, which was sustained by PM 18, and, at PM 24, the number of PV immunoreactive neurons was significantly decreased. In the CA2/3 region and dentate gyrus, the number of PV immunoreactive neurons was significantly decreased at PM 6: Thereafter, the number of PV immunoreactive neurons was sustained until PM 24. In addition, changes in PV protein levels in the gerbil hippocampus were similar to immunohistochemical changes during normal aging: PV protein levels were significantly decreased with age by PM 6: Thereafter, PV protein levels were sustained by PM 24. These results suggest that PV immunoreactive interneurons were decreased in the hippocampus with age in gerbils.  相似文献   

16.
Summary 1. This study was conducted to determine whether chronic psychosocial conflict alters the expression of glucocorticoid receptor (GR) mRNA in the hippocampus of male tree shrews (Tupaia belangeri).2. To generate probes for thein situ hybridization, the tree shrew GR gene was partly cloned. There was a 90% homology between the deduced amino acid sequence of the cloned tree shrew GR and that of the corresponding human GR sequence.35S-Labeled riboprobes which had been transcribed from the tree shrew GR clone hybridized to pyramidal neurons in all subregions of the tree shrew hippocampal formation and to granule neurons in the dentate gyrus.3. Afterin situ hybridization, the expression of GR mRNA was semiquantitatively determined by counting silver grains over single neurons of the hippocampal formation of psychosocially stressed tree shrews and control animals. After 12 days of social conflict, the number of silver grains in the CA1 and CA3 pyramidal neurons of stressed animals was significantly lower than in controls. No statistically significant differences in mRNA expression were observed in the pyramidal neurons of the subiculum and in the granule neurons of the dentate gyrus.4. The present results suggest that psychosocial stress leads to a site-specific down-regulation of hippocampal GR via modification of mRNA expression.  相似文献   

17.
锌对急性缺氧小鼠海马NOS和nNOS水平的影响   总被引:1,自引:0,他引:1  
目的:观察锌对急性缺氧小鼠海马一氧化氮合酶(nitric oxide synthase,NOS)和神经元型一氧化氮合酶(neuronal NOS,nNOS)阳性神经元的影响,以探讨锌抗脑缺氧的作用机制。方法:复制小鼠急性缺氧模型,采用NADPH-d组织化学和nNOS免疫组织化学方法,研究给锌组和不给锌组急性缺氧小鼠海马各分区NOS和nNOS阳性神经元数量的变化。结果:给锌组比不给锌组小鼠缺氧耐受时间显著延长,差异有显著性(P〈0.05);海马及其CA1区NOS和nNOS阳性神经元的数量明显减少,差异有显著性(P〈0.05)。结论:急性缺氧时锌通过减少海马NoS和nNOS水平而发挥其抗脑缺氧作用。  相似文献   

18.
We investigated the postnatal alterations of neurons, astrocyte, oligodendrocyte, and microglia in the mouse hippocampal CA1 sector and dentate gyrus under the same conditions using immunohistochemistry. Neuronal nuclei (NeuN), Glial fibrillary acidic protein (GFAP), 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), and ionized calcium binding adaptor molecule 1 (Iba 1) immunoreactivity were measured in 1-, 2-, 4-, and 8-week-old mice. Total number of NeuN-positive neurons was unchanged in the mouse hippocampal CA1 sector and dentate gyrus from 1 to 8 weeks of birth. In contrast, a significant increase in the number of GFAP-positive astrocytes was observed only in the hippocampal CA1 sector of 1-week-old mice when compared with 8-week-old animals. Thereafter, total number of GFAP-positive astrocytes was unchanged in the hippocampal CA1 sector and dentate gyrus from 2 to 8 weeks of birth. For microglia, a significant increase in the number of Iba 1-positive microglia was observed in the hippocampal CA1 sector and dentate gyrus of 1-, 2-, and 4-week-old mice as compared with 8-week-old animals. On the other hand, a significant decrease in the area of expression of CNPase-positive fibers was observed in the hippocampal CA1 sector of 1- and 2-week-old mice as compared with 8-week-old animals. In dentate gyrus, a significant decrease in the area of expression of CNPase-positive fibers was found in 1-, 2-, and 4-week-old mice. Furthermore, our double-labeled immunostaining showed that brain-derived neurotrophic factor (BDNF) immunoreactivity was observed in GFAP-positive astrocytes and Iba 1-positive microglia in the hippocampal CA1 sector and dentate gyrus of 1- and 2-week-old mice. These results show that glial cells may play some role in the maintenance and neuronal functions of hippocampal CA1 pyramidal neurons and granule cells of dentate gyrus during postnatal development. Furthermore, our results demonstrate that glial BDNF may play an important role in the maturation of oligodendrocyte in the hippocampal CA1 sector and dentate gyrus during postnatal development. Thus, our findings provide valuable information on the developmental processes.  相似文献   

19.
The effects of 7 day exposure to 2G fields on serotonergic modulation at two synapses on a hippocampal pathway were examined by recording dentate gyrus and CA1 pyramidal cell layer electrical activity. Serotonin decreased the amplitude of the population spike (synchronous action potentials in hundreds of neurons) in both the dentate gyrus and CA1 regions of rats exposed to 2G fields for 7 days. The inhibition, averaging 26 +/- 4% (mean +/- SEM) in the dentate gyrus and 80 +/- 5% in the CA1 region, was not significantly different from inhibitory responses observed in 1G controls. The 5-HT1A agonist 8-OH-DPAT mimicked this inhibition in the dentate and CA1 regions of 1G rats. 8-OH-DPAT responses were not affected by exposure to 2G fields. We conclude that the hippocampus contains surplus 5-HT receptors so that decreases in receptor density reported in receptor binding studies do not result in a decrease in modulatory capability. A model to account for the physiological pathway that relates gravitational field strength to 5-HT receptor density without changing the effectiveness of 5-HT neuromodulation is discussed.  相似文献   

20.
Differential properties of dentate gyrus and CA1 neural precursors   总被引:4,自引:0,他引:4  
In the present article we investigated the properties of CA1 and dentate gyrus cell precursors in adult rodents both in vivo and in vitro. Cell proliferation in situ was investigated by rating the number of cells incorporating BrdU after kainate-induced seizures. CA1 precursors displayed a greater proliferation capacity than dentate gyrus precursors. The majority of BrdU-labeled cells in CA1 expressed Nestin and Mash-1, two markers of neural precursors. BrdU-positive cells in the dentate gyrus expressed Nestin, but only a few expressed Mash-1. In animals pretreated with the antimitotic azacytidine, the capacity of kainate to enhance the proliferation was higher in CA1 than in the dentate gyrus. Differences in intrinsic progenitor cell activity could underlie these different expansion capacities. Thus, we compared the renewal- expansion and multipotency of dentate gyrus and CA1 precursors isolated in vitro. We found that the dissected CA1 region, including the periventricular zone, is enriched in neurosphere-forming cells (presumed stem cells), which respond to either EGF or FGF-2. Dentate gyrus contains fewer neurosphere-forming cells and none that respond to FGF-2 alone. Neurospheres generated from CA1 were multipotent and produced neurons, astrocytes, and oligodendrocytes, while dentate gyrus neurospheres mostly produced glial cells. The analysis of the effects of EGF on organotypic cultures of hippocampal slices depicted similar features: BrdU and Nestin immunoreactivities increased after EGF treatment in CA1 but not in the dentate gyrus. These results suggest that CA1 precursors are more stem-cell-like than granule cell precursors, which may represent a more restricted precursor cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号