首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-linked infantile spinal muscular atrophy (XL-SMA) is an X-linked disorder presenting with the clinical features hypotonia, areflexia, and multiple congenital contractures (arthrogryposis) associated with loss of anterior horn cells and infantile death. To identify the XL-SMA disease gene, we performed large-scale mutation analysis in genes located between markers DXS8080 and DXS7132 (Xp11.3–Xq11.1). This resulted in detection of three rare novel variants in exon 15 of UBE1 that segregate with disease: two missense mutations (c.1617 G→T, p.Met539Ile; c.1639 A→G, p.Ser547Gly) present each in one XL-SMA family, and one synonymous C→T substitution (c.1731 C→T, p.Asn577Asn) identified in another three unrelated families. Absence of the missense mutations was demonstrated for 3550 and absence of the synonymous mutation was shown in 7914 control X chromosomes; therefore, these results yielded statistical significant evidence for the association of the synonymous substitution and the two missense mutations with XL-SMA (p = 2.416 × 10−10, p = 0.001815). We also demonstrated that the synonymous C→T substitution leads to significant reduction of UBE1 expression and alters the methylation pattern of exon 15, implying a plausible role of this DNA element in developmental UBE1 expression in humans. Our observations indicate first that XL-SMA is part of a growing list of neurodegenerative disorders associated with defects in the ubiquitin-proteasome pathway and second that synonymous C→T transitions might have the potential to affect gene expression.  相似文献   

2.
Summary This study provides epidemiological data on acute infantile (ASMA) and chronic childhood spinal (CSMA) muscular atrophy in Warsaw for the period 1976–1985. All calculations are based on the assumption that ASMA and CSMA result from mutations at two different gene loci. The incidence of ASMA and CSMA was 1 in 19474 live births with a corresponding gene and carrier frequency of 714 × 10–5 and 1 in 70, respectively. The prevalance of CSMA for the year 1985 was 1.26 × 10–5. These figures are higher than in similar studies in other countries. This fact might be connected with the careful ascertainment in this study.  相似文献   

3.
4.
Prevention of skipping of exon 7 during pre-mRNA splicing of Survival Motor Neuron 2 (SMN2) holds the promise for cure of spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. Here, we report T-cell-restricted intracellular antigen 1 (TIA1) and TIA1-related (TIAR) proteins as intron-associated positive regulators of SMN2 exon 7 splicing. We show that TIA1/TIAR stimulate exon recognition in an entirely novel context in which intronic U-rich motifs are separated from the 5' splice site by overlapping inhibitory elements. TIA1 and TIAR are modular proteins with three N-terminal RNA recognition motifs (RRMs) and a C-terminal glutamine-rich (Q-rich) domain. Our results reveal that any one RRM in combination with a Q domain is necessary and sufficient for TIA1-associated regulation of SMN2 exon 7 splicing in vivo. We also show that increased expression of TIA1 counteracts the inhibitory effect of polypyrimidine tract binding protein, a ubiquitously expressed factor recently implicated in regulation of SMN exon 7 splicing. Our findings expand the scope of TIA1/TIAR in genome-wide regulation of alternative splicing under normal and pathological conditions.  相似文献   

5.
6.
Congenital anomalies associated with congenital hypothyroidism   总被引:2,自引:0,他引:2  
The French national neonatal screening program for congenital hypothyroidism (CH) was initiated in 1978. The purpose of this study was to ascertain the incidence of congenital extrathyroid anomalies (ETAs) among the infants with congenital hypothyroidism (CH) and to compare it with the Northeastern France Birth Defect Monitoring System data from 1979 to 1996. Among 129 CH infants on whom adequate data were available, 20 infants (15.5%) had associated congenital anomalies. Eight out of 76 infants with persistent CH had ETAs (10.5%) whereas 12 out of 53 children with transient hypothyroidism had ETAs (22.6%, p < 0.05). Some additional anomalies were considerably more common than in the general population. Nine infants had congenital cardiac anomalies (6.9%). This rises the question if teratogenic effects active during organogenesis may affect simultaneously many organs, including the developing thyroid, causing a relatively high percentage of CH infants with congenital ETAs.  相似文献   

7.
Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by progressive muscle weakness. It is caused by a mutation in the survival motor neuron gene 1 (SMN1) gene. SMA with respiratory distress 1 (SMARD1), an uncommon variant of infantile SMA also inherited in an autosomal recessive manner, is caused by mutations in the immunoglobulin mu-binding protein 2 (IGHMBP2) gene. We carried out genetic carrier screening among the residents of an isolated Israeli Arab village with a high frequency of SMA in order to identify carriers of SMA type I and SMARD1. During 2006, 168 women were tested for SMA, of whom 13.1% were found to be carriers. Of 111 women tested for SMARD1, 9.9% were found to be carriers. Prenatal diagnosis was performed in one couple where both spouses were carriers of SMARD1; the fetus was found to be affected, and the pregnancy was terminated. To the best of our knowledge, this is the first example of the establishment of a large-scale carrier-screening program for SMA and SMARD1 in an isolated population. SMA has a carrier frequency of 1:33-1:60 in most populations and should be considered for inclusion in a population-based genetic-screening program.  相似文献   

8.
Recently, a gene determining spinal muscular atrophy (SMA), termed survival motor neuron (SMN) gene, has been isolated from the 5g13 region. This gene has been found to be deleted in most patients with childhood-onset SMA. We have studied the SMN gene in a clinically heterogeneous family, including one patient affected by infantile chronic SMA and three subjects with mild adult-onset muscle weakness. Deletions in the SMN gene were detected in all of these patients, indicating that the childhood and adult SMAs are genetically homogeneous in this family. Genotyping of the family members established that the three mildly affected individuals were homozygous for the same haplotype from the SMA region, whereas the more severely affected patient was heterozygous with one different haplotype.  相似文献   

9.
10.
11.
12.
A 3-month-old boy with a 46,XY,--21,+t(21;21)(pter leads to q22.3::q22.3 leads to q11::p11 leads to pter) karyotype, implicating trisomy for the 21q11 leads to 21q22.2 segment and monosomy for the 21q22.3 sub-band, is described. Most of the clinical features corresponded to Down syndrome ; other signs such as large ears, prominent nasal bridge and retromicrognathia were interpreted as the expression of 21q22.3 monosomy. The abnormal monocentric chromosome had satellites and stalks on both ends as a result of a 21q;21q translocation followed by deletion of one centromere region. Despite similar stalk size and NOR-Ag positiveness a significantly higher association frequency of the centrometric end as compared to the acentric end was found. This observation suggests that the satellite association phenomenon is not exclusively NOR-dependent, but that the centromeric and/or p11 regions of acrocentrics also play an important role.  相似文献   

13.
Spinal muscular atrophy (SMA) is an autosomal recessive disorder with a newborn prevalence of 1 in 10,000, and a carrier frequency of 1 in 40-60 individuals. The SMA locus has been mapped to chromosome 5q11.2-13. The disease is caused by a deletion of the SMN gene, often encompassing other genes and microsatellite markers. The SMN gene is present in two highly homologous copies, SMN1 and SMN2, differing at five nucleotide positions. Only homozygous SMN1 mutations cause the disease. The sequence similarity between the SMN1 and SMN2 genes can make molecular diagnosis and carrier identification difficult. We developed a sensitive and reliable molecular test for SMN1 carrier identification, by setting up a nonradioactive single strand conformation polymorphism (SSCP)-based method, which allows for the quantification of the amount of the SMN1 gene product with respect to a control gene. The assay was validated in 56 obligate (ascertained) carriers and 20 (ascertained) noncarriers. The sensitivity of the test is 96.4%, and its specificity, 98%. In addition, 6 of 7 SMA patients without homozygous deletions presented with a heterozygous deletion, suggesting a concomitant undetected point mutation on the nondeleted SMN1 allele. Therefore, the present test is effective for detecting compound hemizygote patients, for testing carriers in SMA families, and for screening for SMA heterozygotes in the general population.  相似文献   

14.
Cho K  Ryu K  Lee E  Won S  Kim J  Yoo OJ  Hahn S 《Molecules and cells》2001,11(1):21-27
The goal of this study was to define the correlation between genotype and phenotype in Korean patients with spinal muscular atrophy (SMA). The SMA can be classified into three groups based on the age of onset and the clinical course. The candidate genes, survival motor neuron (SMN) gene, neuronal apoptosis inhibitory protein (NAIP) gene, and p44 gene were mapped and duplicated with telomeric and centromeric. The loss of the telomeric SMN occurs by a different mechanism. That is the deletion or conversion of telomeric SMN to centromeric SMN, in which case the conversion could produce a mild phenotype and deletion could produce a severe one. It has been known that there may be a balance between the numbers of copies expressed by the centromeric and telomeric SMN genes. In our study, ten patients with type I SMA and two type II patients were identified by their clinical findings and DNA studies. The major deletion of SMA candidate genes, deletion of the SMN gene, NAIP gene, and p44 gene were identified in six patients with type I SMA, while the rest of type I and all the type II patients showed the deletion of the SMN gene only. Allele numbers of the C212 marker were compared in patients and normal controls in order to find the correlation between the copy numbers and the clinical severity. The result was that type I patients had 2-5 alleles and the normal controls had 4-6. This suggests that the deletion is a major determining factor in the clinical phenotype. However, two type I patients with telomeric NAIP gene deletion notably had 4-5 alleles, as in the normal controls. This result implies that the correlation between the copy numbers and the severity is uncertain as opposed to the previous hypothesis. One type I patient showed the conversion of the centromeric SMN gene to the telomeric, which supports the conclusion that gene conversion is an important molecular mechanism for SMA. In the study of one hundred normal newborns, two physically normal newborns showed deletion of the centromeric SMN gene, suggesting frequent rearrangement in the locus.  相似文献   

15.
16.
17.
Cytologic, immunologic, and cytogenetic studies were performed on the blast cells of a newborn with Down syndrome and transient myeloproliferative disease. This hematologic disorder is uncommon, and occurs primarily in infants with Down syndrome. This boy presented with a high white blood cell count and a high percentage of blast cells, without anemia or thrombocytopenia. Chromosome analysis showed a constitutional trisomy 21 without any other clonal abnormality. A three-color flow cytometric analysis was performed and revealed two different CD45 dim, CD34(+), CD117(+), CD56(+) immature subpopulations: the normal immature myeloid precursor and an immature blast cell population that expressed CD41, CD42, CD61, CD36, CD13, CD1a, and CD2. We postulate that this population could be the leukemic precursor involved in the acute megakaryoblastic leukemia frequently observed in children with Down syndrome.  相似文献   

18.
Bovine spinal muscular atrophy (SMA), an autosomal recessive neurodegenerative disease, has been mapped at moderate resolution to the distal part of Chromosome 24. In this article we confirm this location and fine-map the SMA locus to an interval of approximately 0.8 cM at the very distal end of BTA24. Despite remarkable similarity to human SMA, the causative gene SMN can be excluded in bovine SMA. However, the interval where the disease now has been mapped contains BCL2, like SMN an antiapoptotic factor, and shown to bind to SMN. Moreover, knockout mice lacking the BCL2 gene show rapid motor neuron degeneration with early postnatal onset, as observed in bovine SMA. A comparative cattle/human map of the distal end of BTA24, based on the emerging bovine genome sequencing data, shows conserved synteny to HSA18 with hints of a segmental duplication and pericentic inversion just after the last available bovine marker DIK4971. This synteny lets us conclude that SMA is in immediate vicinity of the telomere. Candidate gene analysis of BCL2, however, excludes most of this gene, except its promoter region, and draws attention to the neighboring gene VPS4B, part of the endosomal protein-sorting machinery ESCRT-III which is involved in several neurodegenerative diseases. Stefan Krebs and Ivica Medugorac contributed equally to this work and agreed to be considered as first authors.  相似文献   

19.
Androgen receptor and Kennedy disease/spinal bulbar muscular atrophy   总被引:1,自引:0,他引:1  
Kennedy Disease/Spinal Bulbar Muscular Atrophy (KD/SBMA) is a progressive neurodegenerative disease caused by genetic polyglutamine expansion of the androgen receptor. We have recently found that overexpression of wildtype androgen receptor in skeletal muscle of transgenic mice results in a KD/SBMA phenotype. This surprising result challenges the orthodox view that KD/SBMA requires expression of polyglutamine expanded androgen receptor within motoneurons. Theories relating to the etiology of this disease drawn from studies of human patients, cellular and mouse models are considered with a special emphasis on potential myogenic contributions to as well as the molecular etiology of KD/SBMA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号