首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteogenesis of mesenchymal stem cells (MSC) can be regulated by the mechanical environment. MSCs grown in 3D spheroids (mesenspheres) have preserved multi-lineage potential, improved differentiation efficiency, and exhibit enhanced osteogenic gene expression and matrix composition in comparison to MSCs grown in 2D culture. Within 3D mesenspheres, mechanical cues are primarily in the form of cell-cell contraction, mediated by adhesion junctions, and as such adhesion junctions are likely to play an important role in the osteogenic differentiation of mesenspheres. However the precise role of N- and OB-cadherin on the biomechanical behaviour of mesenspheres remains unknown. Here we have mechanically tested mesenspheres cultured in suspension using parallel plate compression to assess the influence of N-cadherin and OB-cadherin adhesion junctions on the viscoelastic properties of the mesenspheres during osteogenesis. Our results demonstrate that N-cadherin and OB-cadherin have different effects on mesensphere viscoelastic behaviour and osteogenesis. When OB-cadherin was silenced, the viscosity, initial and long term Young's moduli and actin stress fibre formation of the mesenspheres increased in comparison to N-cadherin silenced mesenspheres and mesenspheres treated with a scrambled siRNA (Scram) at day 2. Additionally, the increased viscoelastic material properties correlate with evidence of calcification at an earlier time point (day 7) of OB-cadherin silenced mesenspheres but not Scram. Interestingly, both N-cadherin and OB-cadherin silenced mesenspheres had higher BSP2 expression than Scram at day 14. Taken together, these results indicate that N-cadherin and OB-cadherin both influence mesensphere biomechanics and osteogenesis, but play different roles.  相似文献   

2.
3-dimensional (3D) culture models have the potential to bridge the gap between monolayer cell culture and in vivo studies. To benefit anti-cancer drug discovery from 3D models, new techniques are needed that enable their use in high-throughput (HT) screening amenable formats. We have established miniaturized 3D culture methods robust enough for automated HT screens. We have applied these methods to evaluate the sensitivity of normal and tumorigenic breast epithelial cell lines against a panel of oncology drugs when cultured as monolayers (2D) and spheroids (3D). We have identified two classes of compounds that exhibit preferential cytotoxicity against cancer cells over normal cells when cultured as 3D spheroids: microtubule-targeting agents and epidermal growth factor receptor (EGFR) inhibitors. Further improving upon our 3D model, superior differentiation of EC50 values in the proof-of-concept screens was obtained by co-culturing the breast cancer cells with normal human fibroblasts and endothelial cells. Further, the selective sensitivity of the cancer cells towards chemotherapeutics was observed in 3D co-culture conditions, rather than as 2D co-culture monolayers, highlighting the importance of 3D cultures. Finally, we examined the putative mechanisms that drive the differing potency displayed by EGFR inhibitors. In summary, our studies establish robust 3D culture models of human cells for HT assessment of tumor cell-selective agents. This methodology is anticipated to provide a useful tool for the study of biological differences within 2D and 3D culture conditions in HT format, and an important platform for novel anti-cancer drug discovery.  相似文献   

3.
Summary Mesenchymal cell lines derived from fetal rat urogenital sinus organ cultures have been characterized to establish an in vitro system for addressing growth and differentiation regulatory factors involved in mesenchymal-epithelial interactions during prostate morphogenesis. A continuous cell line was developed and designated U4F. Immunocytochemical analysis showed vimentin intermediate filament content confirming a mesenchymal origin. Previous studies with urogenital sinus organ cultures have reported the expression of a negative growth activity, which is stimulatory to protein synthesis and secretion and alters phenotypic morphology of NBT-II bladder epithelial cells. Subconfluent and confluent U4F monolayers did not produce this growth inhibitory activity. Foci of stacked cells were observed 3 wk postconfluency, which evolved into multicellular spheroids. The negative growth activity was expressed in the conditioned medium coordinate with spheroid formation. Transplanted spheroids continued to express the growth inhibitory activity. Morphologic analysis of spheroids showed a cellular capsule and a core of extracellular matrix. A continuous cell strain (U4F1) with altered phenotypic properties, arose spontaneously from long-term U4F cultures. The U4F1 cell strain did not form spheroids, yet expressed the negative growth activity constitutively in monolayer culture. Analyses of physicochemical, immunological, and biological properties showed the activity is identical in conditioned media from urogenital sinus organ cultures, U4F spheroids, and U4F1 monolayers. Based on the combined properties, this activity cannot be ascribed to previously characterized negative growth factors. The establishment of this mesenchymal cell culture system will aid in the further identification of paracrine-acting growth and differentiation regulatory factors secreted by fetal mesenchyme.  相似文献   

4.
This article presents the stem and progenitor cells from subcutaneous adipose tissue,briefly comparing them with their bone marrow counterparts,and discussing their potential for use in regenerative medicine.Subcutaneous adipose tissue differs from other mesenchymal stromal/stem cells(MSCs) sources in that it contains a pre-adipocyte population that dwells in the adventitia of robust blood vessels.Pre-adipocytes are present both in the stromal-vascular fraction(SVF;freshly isolated cells) and in the adherent fraction of adipose stromal/stem cells(ASCs;in vitro expanded cells),and have an active role on the chronic inflammation environment established in obesity,likely due their monocyticmacrophage lineage identity.The SVF and ASCs have been explored in cell therapy protocols with relative success,given their paracrine and immunomodulatory effects.Importantly,the widely explored multipotentiality of ASCs has direct application in bone,cartilage and adipose tissue engineering.The aim of this editorial is to reinforce the peculiarities of the stem and progenitor cells from subcutaneous adipose tissue,revealing the spheroids as a recently described biotechnological tool for cell therapy and tissue engineering.Innovative cell culture techniques,in particular 3 D scaffold-free cultures such as spheroids,are now available to increase the potential for regeneration and differentiation of mesenchymal lineages.Spheroids are being explored not only as a model for cell differentiation,but also as powerful 3 D cell culture tools to maintain the stemness and expand the regenerative and differentiation capacities of mesenchymal cell lineages.  相似文献   

5.
Primary hepatocytes cultured as monolayers or as spheroids were studied to compare the effects of four different culture media (Williams' E, Chee's, Sigma Hepatocyte, and HepatoZYME medium). Rat hepatocytes were cultured as conventional monolayers for 3 d or as spheroids for 2 wk. For spheroid formation a method was emplOyed that combined the use of a nonadherent substratum with rotation of cultures. Hepatocyte integrity and morphology were assessed by light and electron microscopy and by reduced glutathione content. Hepatocyte function was measured by albumin secretion and 7-ethoxycoumarin metabolism. Chee's medium was found to be optimal for maintenance of hepatocyte viability and function in monolayers, but it failed to support spheroid formation. For spheroid formation and for the maintenance of spheroid morphology and function, Sigma HM was found to be optimal. These results demonstrate that the medium requirements of hepatocytes differ markedly depending on the culture model employed. Spheroid culture allowed better preservation of morphology and function of hepatocytes compared with conventional monolayer culture. Hepatocytes in spheroids formed bile canaliculi. and expressed an actin distribution resembling that found in hepatocytes in vivo. Albumin secretion was maintained at the same level as that found during the first d in primary culture, and 7-ethoxycoumarin metabolism was maintained over 2 wk in culture at approximately 30% of the levels found in freshly isolated hepatocytes. The improved morphology and function of hepatocyte cultures as spheroids may provide a more appropriate in vitro model for certain applications where the maintenance of liver-specific functions in long-term culture is crucial.  相似文献   

6.
Mesenchymal stem cells established from bone marrow (FetMSC) and limb bud (M-FetMSC) of early human embryo, as well as spheroids derived these cells, were induced to undergo osteogenic and adipogenic differentiation. Differentiated cells exhibited the activity of metalloproteinase (MMP)-9, -2, and -1. Its activity was different in osteogenic and adipogenic cells, as well as in monolayer cultures (2D) and cell spheroids (3D). The direct correlation between the level of adipogenic differentiation and gelatinases MMP-9 and MMP-2 activities in both cell lines in 2D and 3D culture was shown. M-FetMSC cells in 2D culture 12 days in culture during showed low potential for adipogenesis and reduced activity of MMP-2 and MMP-9. The low level of adipogenic differentiation in 2D M-FetMSC culture was accompanied with increased MMP-1 activity and enhanced differentiation (3D culture) resulted in a significant increase of both MMP activities. MMP-1 activity varied oppositely. MMP-1 activity declined in 3D cultures with a higher level of adipogenic differentiation. The level of osteogenic differentiation was similar in both cell lines during 2D and 3D cultivation. MMP-1 and -9 activities in both cell lines were not associated with osteogenic differentiation. MMP-2 and MMP-2 activity in these cells remained unchanged. The results suggest MMP implication in FetMSC and М-FetMSC differentiation. The difference in MMP activities during the cell differentiation may be caused by variations in the microenvironment or ECM properties in 2D and 3D cultures.  相似文献   

7.
《Cytotherapy》2023,25(3):286-297
Background aimsCell therapies have the potential to improve reconstructive procedures for congenital craniofacial cartilage anomalies such as microtia. Adipose-derived stem cells (ADSCs) and auricular cartilage stem/progenitor cells (CSPCs) are promising candidates for cartilage reconstruction, but their successful use in the clinic will require the development of xeno-free expansion and differentiation protocols that can maximize their capacity for chondrogenesis.MethodsWe assessed the behavior of human ADSCs and CSPCs grown either in qualified fetal bovine serum (FBS) or human platelet lysate (hPL), a xeno-free alternative, in conventional monolayer and 3-dimensional spheroid cultures.ResultsWe show that CSPCs and ADSCs display greater proliferation rate in hPL than FBS and express typical mesenchymal stromal cell surface antigens in both media. When expanded in hPL, both cell types, particularly CSPCs, maintain a spindle-like morphology and lower surface area over more passages than in FBS. Both media supplements support chondrogenic differentiation of CSPCs and ADSCs grown either as monolayers or spheroids. However, chondrogenesis appears less ordered in hPL than FBS, with reduced co-localization of aggrecan and collagen type II in spheroids.ConclusionshPL may be beneficial for the expansion of cells with chondrogenic potential and maintaining stemness, but not for their chondrogenic differentiation for tissue engineering or disease modeling.  相似文献   

8.
There have been many clinical trials recently using ex vivo‐expanded human mesenchymal stem cells (MSCs) to treat several disease states such as graft‐versus‐host disease, acute myocardial infarction, Crohn's disease, and multiple sclerosis. The use of MSCs for therapy is expected to become more prevalent as clinical progress is demonstrated. However, the conventional 2‐dimensional (2D) culture of MSCs is laborious and limited in scale potential. The large dosage requirement for many of the MSC‐based indications further exacerbates this manufacturing challenge. In contrast, expanding MSCs as spheroids does not require a cell attachment surface and is amenable to large‐scale suspension cell culture techniques, such as stirred‐tank bioreactors. In the present study, we developed and optimized serum‐free media for culturing MSC spheroids. We used Design of Experiment (DoE)‐based strategies to systematically evaluate media mixtures and a panel of different components for effects on cell proliferation. The optimization yielded two prototype serum‐free media that enabled MSCs to form aggregates and proliferate in both static and dynamic cultures. MSCs from spheroid cultures exhibited the expected immunophenotype (CD73, CD90, and CD105) and demonstrated similar or enhanced differentiation potential toward all three lineages (osteogenic, chondrogenic, adipogenic) as compared with serum‐containing adherent MSC cultures. Our results suggest that serum‐free media for MSC spheroids may pave the way for scale‐up production of MSCs in clinically relevant manufacturing platforms such as stirred tank bioreactors. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:974–983, 2014  相似文献   

9.
The neurosphere assay and the adherent monolayer culture system are valuable tools to determine the potential (proliferation or differentiation) of adult neural stem cells in vitro. These assays can be used to compare the precursor potential of cells isolated from genetically different or differentially treated animals to determine the effects of exogenous factors on neural precursor cell proliferation and differentiation and to generate neural precursor cell lines that can be assayed over continuous passages. The neurosphere assay is traditionally used for the post-hoc identification of stem cells, primarily due to the lack of definitive markers with which they can be isolated from primary tissue and has the major advantage of giving a quick estimate of precursor cell numbers in brain tissue derived from individual animals. Adherent monolayer cultures, in contrast, are not traditionally used to compare proliferation between individual animals, as each culture is generally initiated from the combined tissue of between 5-8 animals. However, they have the major advantage that, unlike neurospheres, they consist of a mostly homogeneous population of precursor cells and are useful for following the differentiation process in single cells. Here, we describe, in detail, the generation of neurosphere cultures and, for the first time, adherent cultures from individual animals. This has many important implications including paired analysis of proliferation and/or differentiation potential in both the subventricular zone (SVZ) and dentate gyrus (DG) of treated or genetically different mouse lines, as well as a significant reduction in animal usage.  相似文献   

10.
Cancer cell spheroids have been shown to be more physiologically relevant to native tumor tissue than monolayer 2D culture cells. Due to enhanced intercellular communications among cells in spheroids, spheroid secreted exosomes which account for transcellular transportation should exceed those from 2D cell culture and may display a different expression pattern of miRNA or protein. To test this, we employed a widely used pancreatic cancer cell line, PANC-1, to create 3D spheroids and compared exosomes generated by both 2D cell culture and 3D PANC-1 spheroids. We further measured and compared exosomal miRNA and GPC-1 protein expression with qRT-PCR and enzyme-linked immunosorbent assay, respectively. It showed that PANC-1 cells cultured in 3D spheroids can produce significantly more exosomes than PANC-1 2D cells and exosomal miRNA and GPC-1 expression derived from spheroids show more features relevant to the progression of pancreatic cancer. These findings point to the potential importance of using spheroids as in vitro model to study cancer development and progression.  相似文献   

11.
The cytotoxic activity of short-chain (C(2)) ceramide was evaluated in human intestinal carcinoma cells grown as multicellular tumor spheroids versus the same cells cultured as monolayers under closely comparable conditions. A decrease in cell number was seen in monolayer cultures of HT-29, Caco-2, and HRT-18 cells, with an EC(50) (concentration for half-maximal toxicity) of between 13 and 23 microM. However, when the same cells were grown in the multicellular spheroid format, C(2) was markedly less potent in reducing cell number, with an EC(50) of between 44 and 63 microM, representing a 1.9- to 4.9-fold decrease in its potency. The chemotherapeutic agents 5-fluorouracil and cisplatin were equally potent against spheroids and monolayer cultures, indicating that although drug access is a problem in conventionally grown tumor spheroids it is not a problem for spheroids grown under the conditions used in this study. Our results suggest that although ceramide is capable of inducing cell death in intestinal carcinoma cells grown in spheroid culture, its cellular toxicity is constrained by influences that are independent of drug access and may be the consequence of the altered cellular relationships. Carcinoma cell populations show an intrinsically decreased responsiveness to the effects of ceramide when they are grown in a three-dimensional culture format.  相似文献   

12.
Bowes melanoma cells synthesize more tissue plasminogen activator (tPA) in monolayer cultures than in multicell spheroids. Cellular production of tPA in these cells was measured during a cultivation period of 800 h. Without changing the cell culture assay, we were able to obtain monolayers, multilayers, and multicell spheroids (cell aggregates) by stirring microcarrier beads in 500-mL spinner flasks operated at 50 rpm. Thus, the medium conditions in the liquid were similar for cells in monolayers and in multicell spheroids. Probes for measurements of intracellular and extracellular parameters were taken from the same culture at distinct times; therefore, their variations during cultivation can directly be compared. Because cells were cultured in an unregulated (with regard to pH, glucose, etc.) spinner flask, their concentration was kept below 10(6) cells/mL, thus avoiding too fast and too severe depletion of oxygen and other medium factors. Nevertheless, the tPA productivity decreased from 8 ng/h/10(6) cells (monolayer) to 4 ng/h/10(6) cells (multicell spheroids with microcarrier nucleus, 800 mum diameter), matching the decrease of total cellular protein. Due to medium depletion, the cell cycle distribution changed from 45% to 68% G(1) cells in a characteristic way during growth of multicell spheroids. This is accompanied by changes in amino acids, glucose, lactate, and pH, which may account for the reduction of tPA productivity. (c) 1996 John Wiley & Sons, Inc.  相似文献   

13.
Changes of cell shape resulting from cellular flattening on culture substratum have previously been demonstrated to correlate with mitotic activity of normal animal cells in monolayer cultures. Here, we compared the shapes and proliferation of chick embryo fibroblasts cultured either in multicellular, multilayered sheets extended between glass fibres, or in standard monolayers. Fibroblasts in sheets retained the mitotic activity characteristic of that observed in sparse monolayer cultures, i.e. considerably higher that in confluent monolayers. Morphometric analyses revealed, however, that the cells in sheets were considerably less flattened than in monolayer cultures. These observations indicate that the modulation of culture conditions resulting in multidirectional cell stretching leads to the dissociation of flattening and mitotic activity of normal animal cells, so long as an intracellular stress field, generated by contractile cytoskeleton and stabilised by intercellular contacts, is maintained.  相似文献   

14.
Tissue mechanically dissociated from blastocysts of the pig around the time of implantation were found to produce, in culture, free-floating multicellular spheroids (trophospheres) and adherent monolayer cells. Ultrastructurally the two cellular layers of the trophospheres were very similar to those of the blastocyst but the trophosphere outer layer characteristically contained very large mitochondria with a vastly expanded matrix and few cristae. Similar mitochondria were also found in the monolayer cells. Using a monoclonal antibody specific for pig trophectoderm, it was found that about 20% of the monolayer cells, and some of the spheroids expressed this trophectodermal antigen. In the latter case the antigen was present only on the surface facing the medium. The spheroids were fluid-filled and occasionally grew inside each other. The monolayer cells were predominantly uninuclear but did form a number of binucleate cells and in older cultures the occasional cell with many nuclei could be seen. The spheroids and the monolayer cells had similar glycoprotein profiles indicating that they were composed of similar cell populations. A glycoprotein of apparent molecular weight 68,000 observed in both spheres and monolayers may represent pig placental alkaline phosphatase. Both trophospheres and monolayer cells were observed to interconvert steroid precursors. It is apparent that the trophospheres share many features of the blastocyst and may thus represent a valuable model system similar to those described in other species for the investigation of their biochemical physiological and immunological properties.  相似文献   

15.
Two‐dimensional (2D) cell cultures have been extensively used to investigate stem cell biology, but new insights show that the 2D model may not properly represent the potential of the tissue of origin. Conversely, three‐dimensional cultures exhibit protein expression patterns and intercellular junctions that are more representative of their in vivo condition. Multiclonal cells that grow in suspension are defined as “spheroids,” and we have previously demonstrated that spheroids from adipose‐derived stem cells (S‐ASCs) displayed enhanced regenerative capability. With the current study, we further characterized S‐ASCs to further understand the molecular mechanisms underlying their stemness properties. Recent studies have shown that microRNAs (miRNAs) are involved in many cellular mechanisms, including stemness maintenance and proliferation, and adipose stem cell differentiation. Most studies have been conducted to identify a specific miRNA profile on adherent adipose stem cells, although little is still known about S‐ASCs. In this study, we investigate for the first time the miRNA expression pattern in S‐ASCs compared to that of ASCs, demonstrating that cell lines cultured in suspension show a typical miRNA expression profile that is closer to the one reported in induced pluripotent stem cells. Moreover, we have analyzed miRNAs that are specifically involved in two distinct moments of each differentiation, namely early and late stages of osteogenic, adipogenic, and chondrogenic lineages during long‐term in vitro culture. The data reported in the current study suggest that S‐ASCs have superior stemness features than the ASCs and they represent the true upstream stem cell fraction present in adipose tissue, relegating their adherent counterparts.  相似文献   

16.
A major obstacle to an effective myocardium stem cell therapy has always been the delivery and survival of implanted stem cells in the heart. Better engraftment can be achieved if cells are administered as cell aggregates, which maintain their extra-cellular matrix (ECM). We have generated spheroid aggregates in less than 24 h by seeding human cardiac progenitor cells (hCPCs) onto methylcellulose hydrogel-coated microwells. Cells within spheroids maintained the expression of stemness/mesenchymal and ECM markers, growth factors and their cognate receptors, cardiac commitment factors, and metalloproteases, as detected by immunofluorescence, q-RT-PCR and immunoarray, and expressed a higher, but regulated, telomerase activity. Compared to cells in monolayers, 3D spheroids secreted also bFGF and showed MMP2 activity. When spheroids were seeded on culture plates, the cells quickly migrated, displaying an increased wound healing ability with or without pharmacological modulation, and reached confluence at a higher rate than cells from conventional monolayers. When spheroids were injected in the heart wall of healthy mice, some cells migrated from the spheroids, engrafted, and remained detectable for at least 1 week after transplantation, while, when the same amount of cells was injected as suspension, no cells were detectable three days after injection. Cells from spheroids displayed the same engraftment capability when they were injected in cardiotoxin-injured myocardium. Our study shows that spherical in vivo ready-to-implant scaffold-less aggregates of hCPCs able to engraft also in the hostile environment of an injured myocardium can be produced with an economic, easy and fast protocol.  相似文献   

17.
The therapeutic potential of human amniotic mesenchymal stromal cells (hAMSCs) remains limited because of their differentiation towards mesenchymal stem cells (MSCs) following adherence. The aim of this study was to develop a three-dimensional (3-D) culture system that would permit hAMSCs to differentiate into cardiomyocyte-like cells. hAMSCs were isolated from human amnions of full-term births collected after Cesarean section. Immunocytochemistry, immunofluorescence and flow cytometry analyses were undertaken to examine hAMSC marker expression for differentiation status after adherence. Membrane currents were determined by patch clamp analysis of hAMSCs grown with or without cardiac lysates. Freshly isolated hAMSCs were positive for human embryonic stem-cell-related markers but their marker profile significantly shifted towards that of MSCs following adherence. hAMSCs cultured in the 3-D culture system in the presence of cardiac lysate expressed cardiomyocyte-specific markers, in contrast to those maintained in standard adherent cultures or those in 3-D cultures without cardiac lysate. hAMSCs cultured in 3-D with cardiac lysate displayed a cardiomyocyte-like phenotype as observed by membrane currents, including a calcium-activated potassium current, a delayed rectifier potassium current and a Ca2+-resistant transient outward K+ current. Thus, although adherence limits the potential of hAMSCs to differentiate into cardiomyocyte-like cells, the 3-D culture of hAMSCs represents a more effective method of their culture for use in regenerative medicine.  相似文献   

18.
The differences in the surface active properties of native lipids extracted from plasma membranes of cells cultured as a monolayer and in three-dimensional (3D) matrix were investigated. This experimental model was chosen because most of the current knowledge on cellular physiological processes is based on studies performed with conventional monolayer two-dimensional (2D) cell cultures, where cells are forced to adjust to unnaturally rigid surfaces that differ significantly from the natural matrix surrounding cells in living organisms. Differences between monolayer and 3D cells were observed in the lipid composition of plasma membranes and especially in the level of the two major microdomain-forming lipids—sphingomyelin (SM) and cholesterol, which were significantly elevated in 3D cells. The obtained results showed that culturing of cells in in vivo-like environment affected the surface active properties of plasma membrane lipids at interfaces which might influence certain membrane-associated interface processes. The detected differences in the lipid levels in 2D and 3D cell extracts affected significantly the behavior of the model lipid monolayers at the air–water interface (Langmuir monolayers) which resulted in different values of the monolayer equilibrium (γeq) and dynamic (γmax, γmin) surface tension and surface potential. Compensation of the SM content in extracts of 2D cell cultures up to a level close to the one measured in 3D cells approximated the monolayer properties to the values observed for 3D cells. These results implied that the interactions between the cells and the surrounding medium affected the level of plasma membrane SM and other lipids, which had a strong impact on the surface properties of lipid monolayers, such as γeq, γmax, and γmin, the compression/decompression curve shape, the hysteresis area during cycling of the monolayers, etc. We suggest that the elevated content of SM observed in plasma membranes of 3D fibroblasts could be responsible for an increased rigidity and possibly reduced permeability of cells cultured in 3D environment. The current results provide useful information that should be taken into account in the interpretation of the membrane physico-chemical properties of cells cultured under different conditions.  相似文献   

19.
The clinical potential of mesenchymal stem cells (MSC) in tissue engineering and regenerative medicine is due to their self-renewal, proliferation and multi-lineage differentiation potential. Clinical use requires large cell numbers; which can, theoretically, be generated by ex vivo expansion of plastic adherent, MSC subpopulation, of bone marrow cells (BMC). Effects of serial culture on MSC phenotype were investigated using non-gel based quantitative proteomic methodology for static monolayer cultures of rat BMC. In total, 382 proteins were relatively quantified (≥ 2 peptides). Nine proteins were up-regulated and seven down-regulated at passage 4 relative to passage 2 (p ≤ 0.05). We propose that serial culture impacts on MSC expansion (observed decline in colony forming potential and colony size) is through a combination of osteogenic differentiation and ageing/senescence and propose six novel protein biomarkers as candidates for quality control purposes in bioprocessing.  相似文献   

20.
李夏  滑慧娟  郝捷  王柳  刘忠华 《遗传》2018,40(12):1120-1128
随着干细胞研究的不断深入,干细胞功能分化研究和临床应用转化的需求日益提升。人脐带间充质干细胞(human umbilical cord mesenchymal stem cells, hUCMSCs)来源广泛,不仅自我更新能力强、能够分化成多种类型的成体细胞,而且其自身具有免疫调节能力,不易引发免疫排斥反应,在干细胞功能分化研究和临床应用中具有巨大应用前景和应用潜力。目前,传统的细胞培养方式培养效率低、细胞活性较差,不能满足日益增长的研究和应用需求。本研究利用微载体结合旋转瓶的悬浮培养方法,通过优化细胞接种量及转速等影响因素,快速获得大量高质量的人脐带间充质干细胞。经悬浮培养总细胞量可高达到7×10 8个细胞/L,而且细胞活性较高,MSC 特异性标记物表达良好,在恢复平面培养后仍能维持MSC的正常细胞形态和增殖能力。高效脐带间充质干细胞悬浮培养体系的初步建立,为未来的干细胞功能分化研究和临床应用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号