首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
1-aminocyclopropane-1-carboxylate synthase (ACS) is a key enzyme in the biosynthesis of the plant hormone ethylene. Recently, a new biological role for ACS has been found in Cucumis melo where a single point mutation (A57V) of one isoform of the enzyme, causing reduced activity, results in andromonoecious plants. We present here a straightforward structural basis for the reduced activity of the A57V mutant, based on our work on Malus domestica ACS, including a new structure of the unliganded apple enzyme at 1.35 Å resolution.  相似文献   

2.
3.
4.
5.
6.
S-methyl-l-methionine (SMM) is ubiquitous in the tissues of flowering plants, but its precise function remains unknown. It is both a substrate and an inhibitor of the pyridoxal 5-phosphate-dependent enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase, due to its structural similarity to the natural substrate of this enzyme, S-adenosyl-l-methionine. In the reaction with ACC synthase, SMM can either be transaminated to yield 4-dimethylsulfonium-2-oxobutyrate; converted to α-ketobutyrate, ammonia, and dimethylsulfide; or inactivate the enzyme covalently after elimination of dimethylsulfide. These results suggest a previously unrecognized role for SMM in the regulation of ACC synthase activity in plants.  相似文献   

7.
8.
The IAA-oxidase system of olive tree (Olea europea) in the presence of its substrate, IAA, and cofactors, DCP and Mn2, forms ethylene from 1-aminocyclopropane-l-carboxylic acid (ACC) bound as a Schiffs base to pyridoxal phosphate. Similarly, olive leaf discs upon incubation with ACC liberate considerable amounts of ethylene. The results suggest that this IAA-oxidase system may be the one active in the last step in the biosynthesis of ethylene from methionine.  相似文献   

9.
10.
11.
12.
Hans Kende  Thomas Boller 《Planta》1981,151(5):476-481
Ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) levels and ACC-synthase activity were compared in intact and wounded tomato fruits (Lycopersicon esculentum Mill.) at different ripening stages. Freshly cut and wounded pericarp discs produced relatively little ethylene and had low levels of ACC and of ACC-synthase activity. The rate of ethylene synthesis, the level of ACC and the activity of ACC synthase all increased manyfold within 2 h after wounding. The rate of wound-ethylene formation and the activity of wound-induced ACC synthase were positively correlated with the rate of ethylene production in the intact fruit. When pericarp discs were incubated overnight, wound ethylene synthesis subsided, but the activity of ACC synthase remained high, and ACC accumulated, especially in discs from ripe fruits. In freshly harvested tomato fruits, the level of ACC and the activity of ACC synthase were higher in the inside parts of the fruit than in the pericarp. When wounded pericarp tissue of green tomato fruits was treated with cycloheximide, the activity of ACC synthase declined with an apparent half life of 30–40 in. The activity of ACC synthase in cycloheximide-treated, wounded pericarp of ripening tomatoes declined more slowly.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

13.
The localization of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase was examined in suspension-cultured cells of tomato (Lycopersicon esculentum Mill.), using cell-fractionation techniques, followed by immunoblot analysis with monospecific antibodies raised against a tomato ACC oxidase expressed in Escherichia coli. When assayed in vivo, ACC oxidase had a low activity in untreated tomato cells but was strongly induced when the cells were supplied with its substrate, ACC. Immunoblots showed that this induction was accompanied by the accumulation of a single protein corresponding to ACC oxidase, with an apparent molecular mass (Mr) of 36 kDa. The level of this protein in induced cells, estimated by immunoblotting, was compared with that in protoplasts and vacuoles, and with that in various particulate and soluble fractions obtained by differential centrifugation of cell homogenates. It was found that the ACC oxidase antigen was absent from the vacuole, and that most of it was localized in the cytoplasm of the protoplasts without being associated with membranes. Measurements of ACC oxidase activity in preparations of protoplasts and vacuoles supported these results.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid We thank Martin Regenass (Friedrich Miescher-Institut, Basel, Switzerland) for maintaining the cell cultures and Georg Felix (Friedrich Miescher-Institut, Basel, Switzerland) for helpful discussions. This work was supported, in part, by the Swiss National Science Foundation, Grant 31-26492.89.  相似文献   

14.
Pan G  Lou C 《Journal of plant physiology》2008,165(11):1204-1213
Mulberry (Morus alba) is an important crop tree involved in sericulture and pharmaceuticals. To further understand the development and the environmental adaptability mechanism of mulberry, a cDNA of the gene MaACO1 encoding 1-aminocyclopropane-1-carboxylate oxidase was isolated from mulberry. This was used to investigate stress-responsive expression in mulberry. Developmental expression of ACC oxidase in mulberry leaves and spatial expression in mulberry flowers were also investigated. Damage and low-temperature treatment promoted the expression of MaACO1 in mulberry. In leaves, expression of the MaACO1 gene increased in cotyledons and the lowest leaves with leaf development, but showed reduced levels in emerging leaves. In flowers, the pollinated stigma showed the highest expression level, followed by the unpollinated stigma, ovary, and immature flowers. These results suggest that high MaACO1 expression may be predominantly associated with tissue aging or senescence in mulberry.  相似文献   

15.
16.
17.
Deamination of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is a key plant-beneficial trait found in plant growth-promoting rhizobacteria (PGPR) and phytosymbiotic bacteria, but the diversity of the corresponding gene (acdS) is poorly documented. Here, acdS sequences were obtained by screening putative ACC deaminase sequences listed in databases, based on phylogenetic properties and key residues. In addition, acdS was sought in 71 proteobacterial strains by PCR amplification and/or hybridization using colony dot blots. The presence of acdS was confirmed in established AcdS+ bacteria and evidenced noticeably in Azospirillum (previously reported as AcdS-), in 10 species of Burkholderia and six Burkholderia cepacia genomovars (which included PGPR, phytopathogens and opportunistic human pathogens), and in five Agrobacterium genomovars. The occurrence of acdS in true and opportunistic pathogens raises new questions concerning their ecology in plant-associated habitats. Many (but not all) acdS+ bacteria displayed ACC deaminase activity in vitro, including two Burkholderia clinical isolates. Phylogenetic analysis of partial acdS and deduced AcdS sequences evidenced three main phylogenetic clusters, each gathering pathogens and plant-beneficial strains of contrasting geographic and habitat origins. The acdS phylogenetic tree was only partly congruent with the rrs tree. Two clusters gathered both Betaprotobacteria and Gammaproteobacteria, suggesting extensive horizontal transfers of acdS, noticeably between plant-associated Proteobacteria.  相似文献   

18.
Pyridoxine-5'-phosphate oxidase catalyzes the oxidation of either the C4' alcohol group or amino group of the two substrates pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate to an aldehyde, forming pyridoxal 5'-phosphate. A hydrogen atom is removed from C4' during the oxidation and a pair of electrons is transferred to tightly bound FMN. A new crystal form of the enzyme in complex with pyridoxal 5'-phosphate shows that the N-terminal segment of the protein folds over the active site to sequester the ligand from solvent during the catalytic cycle. Using (4'R)-[(3)H]PMP as substrate, nearly 100 % of the radiolabel appears in water after oxidation to pyridoxal 5'-phosphate. Thus, the enzyme is specific for removal of the proR hydrogen atom from the prochiral C4' carbon atom of pyridoxamine 5'-phosphate. Site mutants were made of all residues at the active site that interact with the oxygen atom or amine group on C4' of the substrates. Other residues that make interactions with the phosphate moiety of the substrate were mutated. The mutants showed a decrease in affinity, but exhibited considerable catalytic activity, showing that these residues are important for binding, but play a lesser role in catalysis. The exception is Arg197, which is important for both binding and catalysis. The R197 M mutant enzyme catalyzed removal of the proS hydrogen atom from (4'R)-[(3)H]PMP, showing that the guanidinium side-chain plays an important role in determining stereospecificity. The crystal structure and the stereospecificity studies suggests that the pair of electrons on C4' of the substrate are transferred to FMN as a hydride ion.  相似文献   

19.
The role of ethylene in shoot regeneration was investigated using transgenic Cucumis melo plants expressing an antisense 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene. ACC oxidase catalyses the last step of ethylene biosynthesis. Leaf and cotyledon explants from the transgenic plants exhibited low ACC oxidase activity and ethylene production, whereas the regeneration capacity of the tissues was greatly enhanced (3.5- and 2.8-fold, respectively) compared to untransformed control tissues. Addition of ethylene released by 50 or 100 μm 2-chloroethylphosphonic acid dramatically reduced the shoot regeneration rate of the transgenic tissues. The results clearly demonstrate that ethylene plays an important role in C. melo morphogenesis in vitro. Received: 23 April 1997 / Revision received: 9 June 1997 / Accepted: 2 July 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号