首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strontium ranelate (SrR) was an effective anti-osteoporotic drug to increase bone formation and decrease bone resorption. However, reports about the effect of SR on osteoblastic and adipocytic differentiation from bone marrow mesenchymal stem cells (BMMSCs) are limited. The purpose of this study is to evaluate whether SrR affects the ability of BMMSCs to differentiate into osteoblasts or adipocytes. Rat BMMSCs were identified by flow cytometry and exposed to SR (0.1 and 1.0mMSr(2+)) under osteogenic or adipogenic medium for 1 and 2weeks. The proliferation and differentiation of BMMSCs were analyzed by MTT, alkaline phosphatase (ALP), Oil red O staining, quantitative real-time RT-PCR and Western blot assays. SrR significantly inhibited the proliferation, increased osteoblastic but decreased adipocytic differentiation of rat BMMSCs dose-dependently. In osteogenic medium, SrR increased the expression of ALP, the mRNA levels of Cbfa1/Runx2, bone sialoprotein, and osteocalcin by RT-PCR, and the protein levels of Cbfa1/Runx2 by Western blot. In adipogenic medium, SrR decreased the mRNA levels of PPARγ2, adipocyte lipid-binding protein 2 (aP2/ALBP), and lipoprotein lipase (LPL) by RT-PCR, and the protein expression of PPARγ in Western blot analysis. These results indicated that the effects of SrR to promote osteoblastic but inhibit adipocytic differentiation of BMMSCs might contribute to its effect on osteoporosis treatment.  相似文献   

2.
3.
Oxysterols form a large family of oxygenated derivatives of cholesterol that are present in circulation, and in human and animal tissues. The discovery of osteoinductive molecules that can induce the lineage-specific differentiation of cells into osteoblastic cells and therefore enhance bone formation is crucial for better management of bone fractures and osteoporosis. We previously reported that specific oxysterols have potent osteoinductive properties and induce the osteoblastic differentiation of pluripotent mesenchymal cells. In the present report we demonstrate that the induction of osteoblastic differentiation by oxysterols is mediated through a protein kinase C (PKC)- and protein kinase A (PKA)-dependent mechanism(s). Furthermore, oxysterol-induced-osteoblastic differentiation is marked by the prolonged DNA-binding activity of Runx2 in M2-10B4 bone marrow stromal cells (MSCs) and C3H10T1/2 embryonic fibroblastic cells. This increased activity of Runx2 is almost completely inhibited by PKC inhibitors Bisindolylmaleimide and Rottlerin, and only minimally inhibited by PKA inihibitor H-89. PKC- and PKA-dependent mechanisms appear to also regulate other markers of osteoblastic differentiation including alkaline phosphatase (ALP) activity and osteocalcin mRNA expression in response to oxysterols. Finally, osteogenic oxysterols induce osteoblastic differentiation with BMP7 and BMP14 in a synergistic manner as demonstrated by the enhanced Runx2 DNA-binding activity, ALP activity, and osteocalcin mRNA expression. Since Runx2 is an indispensable factor that regulates the differentiation of osteoblastic cells and bone formation in vitro and in vivo, its increased activity in oxysterol-treated cells further validates the potential role of oxysterols in lineage-specific differentiation of pluripotent mesenchymal cells and their potential therapeutic use as bone anabolic factors.  相似文献   

4.
The cholesterol-lowering drug, simvastatin, is a pro-drug of a potent 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor and inhibits cholesterol synthesis in humans and animals. In addition, the bone effects of statins including simvastatin are being studied. We assessed the effects of simvastatin on osteoblastic differentiation in nontransformed osteoblastic cells (MC3T3-E1) and rat bone marrow cells. Simvastatin enhanced alkaline phosphatase (ALP) activity and mineralization in a dose- and time-dependent fashion. This stimulatory effect of the statin was observed at relatively low doses (significant at 10(-8) M and maximal at 10(-7) M). Northern blot analysis showed that the statin (10(-7) M) increased in bone morphogenetic protein-2 as well as ALP mRNA concentrations in MC3T3-E1 cells. Simvastatin (10(-7) M) slightly increased in type I collagen mRNA abundance throughout the culture period, whereas it markedly inhibited the gene expression of collagenase-1 between days 14 and 22 of culture. These results indicate that simvastatin has anabolic effects on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of common metabolic bone diseases such as osteoporosis.  相似文献   

5.
6.
The osteogenesis of bone marrow stromal cells (BMSCs) is of paramount importance for the repair of large‐size bone defects, which may be compromised by the dietary‐accumulated all‐trans retinoic acid (ATRA). We have shown that heterodimeric bone morphogenetic protein 2/7 (BMP2/7) could induce bone regeneration in a significantly higher dose‐efficiency in comparison with homodimeric BMPs. In this study, we evaluated the effects of ATRA and BMP2/7 on the proliferation, differentiation, mineralization and osteogenic genes. ATRA and BMP2/7 exhibited both antagonistic and synergistic effects on the osteogenesis of BMSCs. ATRA significantly inhibited proliferation and expression of osteocalcin but enhanced the activity of alkaline phosphatase of BMSCs. On day 21, 50 ng/mL BMP2/7 could antagonize the inhibitive effects of ATRA and significantly enhance osteogenesis of BMSCs. These findings suggested a promising application potential of heterodimeric BMP2/7 in clinic to promote bone regeneration for the cases with dietary accumulated ATRA.  相似文献   

7.
Protein related to DAN and cerberus (PRDC) is a secreted protein characterized by a cysteine knot structure, which binds bone morphogenetic proteins (BMPs) and thereby inhibits their binding to BMP receptors. As an extracellular BMP antagonist, PRDC may play critical roles in osteogenesis; however, its expression and function in osteoblastic differentiation have not been determined. Here, we investigated whether PRDC is expressed in osteoblasts and whether it regulates osteogenesis in vitro. PRDC mRNA was found to be expressed in the pre-osteoblasts of embryonic day 18.5 (E18.5) mouse calvariae. PRDC mRNA expression was elevated by treatment with BMP-2 in osteoblastic cells isolated from E18.5 calvariae (pOB cells). Forced expression of PRDC using adenovirus did not affect cell numbers, whereas it suppressed exogenous BMP activity and endogenous levels of phosphorylated Smad1/5/8 protein. Furthermore, PRDC inhibited the expression of bone marker genes and bone-like mineralized matrix deposition in pOB cells. In contrast, the reduction of PRDC expression by siRNA elevated alkaline phosphatase activity, increased endogenous levels of phosphorylated Smad1/5/8 protein, and promoted bone-like mineralized matrix deposition in pOB cells. These results suggest that PRDC expression in osteoblasts suppresses differentiation and that reduction of PRDC expression promotes osteogenesis in vitro. PRDC is accordingly identified as a potential novel therapeutic target for the regulation of bone formation.  相似文献   

8.
Bone marrow-derived mesenchymal stem cells (MSC) are able to differentiate into osteoblasts under appropriate induction. Although MSC-derived osteoblasts are part of the hematopoietic niche, the nature of the stromal component in fetal liver remains elusive. Here, we determined the in vitro osteoblastic differentiation potential of murine clonal fetal liver-derived cells (AFT024, BFC012, 2012) in comparison with bone marrow-derived cell lines (BMC9, BMC10). Bone morphogenetic protein-2 (BMP2) increased alkaline phosphatase (ALP) activity, an early osteoblastic marker, in AFT024 and 2012 cells, whereas dexamethasone had little or no effect. BMP2, but not dexamethasone, increased ALP activity in BMC9 cells, and both inducers increased ALP activity in BMC10 cells. BMP2 increased ALP mRNA in AFT024, 2012 and BMC9 cells. By contrast, ALP was not detected in BMC10 and BFC012 cells. BMP2 and dexamethasone increased osteopontin and osteocalcin mRNA expression in 2012 cells. Furthermore, bone marrow-derived cells showed extensive matrix mineralization, whereas fetal liver-derived cell lines showed no or very limited matrix mineralization capacity. These results indicate that the osteoblast differentiation potential differs in bone marrow and fetal liver-derived cell lines, which may be due to a distinct developmental program or different microenvironment in the two hematopoietic sites.  相似文献   

9.
10.
Mesenchymal cells can differentiate into osteoblasts, adipocytes, myoblasts, or chondroblasts. Whether mesenchymal cells that have initiated differentiation along one lineage can transdifferentiate into another is largely unknown. Using 3T3-F442A preadipocytes, we explored whether extracellular signals could redirect their differentiation from adipocyte into osteoblast. 3T3-F442A cells expressed receptors and Smads required for bone morphogenetic protein (BMP) signaling. BMP-2 increased proliferation and induced the early osteoblast differentiation marker alkaline phosphatase, yet only mildly affected adipogenic differentiation. Retinoic acid inhibited adipose conversion and cooperated with BMP-2 to enhance proliferation, inhibit adipogenesis, and promote early osteoblastic differentiation. Expression of BMP-RII together with BMP-RIA or BMP-RIB suppressed adipogenesis of 3T3-F442A cells and promoted full osteoblastic differentiation in response to retinoic acid. Osteoblastic differentiation was characterized by induction of cbfa1, osteocalcin, and collagen I expression, and extracellular matrix calcification. These results indicate that 3T3-F442A preadipocytes can be converted into fully differentiated osteoblasts in response to extracellular signaling cues. Furthermore, BMP and retinoic acid signaling cooperate to stimulate cell proliferation, repress adipogenesis, and promote osteoblast differentiation. Finally, BMP-RIA and BMP-RIB induced osteoblast differentiation and repressed adipocytic differentiation to a similar extent.  相似文献   

11.
During bone loss, osteoblast population can be replaced by adipose tissue. This apparent reciprocal relationship between decreased bone density and increased fat formation can be explained by an imbalance in the production of bone-forming and fat-forming cells in the marrow cavity. Thus, osteoblast and adipocyte pathways seem more closely and inversely related. In the present study, we investigated the effects of dexamethasone (dex) and calcitriol [1,25(OH)(2)D(3)] on proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures. Stromal cells were grown in primoculture in presence of dex and subcultivated in presence of dex and/or 1,25(OH)(2)D(3). Total cell proliferation, osteoblast and adipocyte-cells number, and -mRNA specific markers were used to study the effects of hormonal treatment on stromal cells. Total cell proliferation was stimulated by dex and inhibited by 1,25(OH)(2)D(3). Dex increased osteoblast and adipocyte cell population whereas calcitriol decreased bone-forming cell number and increased fat cell population. The presence of both hormones led to a strong decrease in osteoblastic cells and to a strong increase in adipocytic cell number. Dex induced mRNA osteoblastic markers expression like bone sialoprotein (BSP) and osteocalcin (OC) and an adipocyte marker expression, the fatty acid binding protein aP2. Calcitriol decreased the dex-induced BSP expression but stimulated slightly OC and aP2 mRNA. The effects of both hormones was to increase strongly OC and aP2 mRNA. These results support that, in rat bone marrow, adipocyte proliferation and differentiation are stimulated by glucocorticoids and calcitriol which act synergically, whereas osteoblastic cell proliferation and differentiation are increased by dex and inhibited by 1,25(OH)(2)D(3).  相似文献   

12.
Simvastatin has been shown to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Our study aimed to illuminate the underlying mechanism, with a specific focus on the role of Hedgehog signaling in this process. BMSCs cultured with or without 10−7 mol/L simvastatin were subjected to evaluation of osteogenic differentiation capacity. Osteogenic markers such as type 1 collagen (COL1) and osteocalcin (OCN), as well as key molecules of Hedgehog signaling molecules, were examined by Western blot and real-time polymerase chain reaction (PCR). Co-immunoprecipitation and mass spectrometry assays were applied to screen for Gli1-interacting proteins. Cyclopamine (Cpn) was used as a Hedgehog signaling inhibitor. Our results indicated that simvastatin increased alkaline phosphatase (ALP) activity; mineralization of extracellular matrix; mRNA expression of ALP, COL1, and OCN; and expression and nuclear translocation of Gli1. Contrasting effects were observed in Cpn-exposed groups, but were partially rescued by the simvastatin treatment. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that Gli1-interacting proteins were primarily associated with mitogen-activated protein kinase (MAPK) (P = 7.04E−04), hippo, insulin, and glucagon signaling. Further, hub genes identified by protein-protein interaction network analysis included Gli1-interacting proteins such as Ppp2r1a, Rac1, Etf1, and XPO1/CRM1. In summary, the current study showed that the mechanism by which simvastatin stimulates osteogenic differentiation of BMSCs involves activation of Hedgehog signaling, as indicated by interactions with Gli1 and, most notably, the MAPK signaling pathway.  相似文献   

13.
Stromal derived factor-1 (SDF-1) is a chemokine signaling molecule that binds to its transmembrane receptor CXC chemokine receptor-4 (CXCR4). While we previously detected that SDF-1 was co-required with bone morphogenetic protein 2 (BMP2) for differentiating mesenchymal C2C12 cells into osteoblastic cells, it is unknown whether SDF-1 is similarly involved in the osteogenic differentiation of mesenchymal stem cells (MSCs). Therefore, here we examined the role of SDF-1 signaling during BMP2-induced osteogenic differentiation of primary MSCs that were derived from human and mouse bone marrow. Our data showed that blocking of the SDF-1/CXCR4 signal axis or adding SDF-1 protein to MSCs significantly affected BMP2-induced alkaline phosphatase (ALP) activity and osteocalcin (OCN) synthesis, markers of preosteoblasts and mature osteoblasts, respectively. Moreover, disrupting the SDF-1 signaling impaired bone nodule mineralization during terminal differentiation of MSCs. Furthermore, we detected that blocking of the SDF-1 signaling inhibited the BMP2-induced early expression of Runt-related factor-2 (Runx2) and osterix (Osx), two “master” regulators of osteogenesis, and the SDF-1 effect was mediated via intracellular Smad and Erk activation. In conclusion, our results demonstrated a regulatory role of SDF-1 in BMP2-induced osteogenic differentiation of MSCs, as perturbing the SDF-1 signaling affected the differentiation of MSCs towards osteoblastic cells in response to BMP2 stimulation. These data provide novel insights into molecular mechanisms underlying MSC osteogenesis, and will contribute to the development of MSC therapies for enhancing bone formation and regeneration in broad orthopaedic situations.  相似文献   

14.
FK506 enhanced osteoblastic differentiation in mesenchymal cells.   总被引:3,自引:0,他引:3  
Bone morphogenetic protein (BMP) is a bone-derived growth factor capable of promoting the differentiation of mesenchymal cells into osteogenic lineage pathways. Recently, immunosuppressants were reported to cause a moderate increase in osteoblastic differentiation in a rat osteoblast-like osteosarcoma cell line. If immunosuppressants can induce osteoblastic differentiation, it will be useful for bone tissue transplantation. We assessed the effect of immunosuppressants with or without BMP-4 on inducing osteoblastic differentiation in osteoblast-like and other mesenchymal cells. FK506, an immunosuppressant often used clinically, induced a dose- and time-dependent increase in alkaline phosphatase (ALP) activity, one of the markers of osteoblast differentiation, in cells derived from mesenchyma. In the presence of BMP-4, ALP activity, mRNA levels of ALP and osteocalcin increased. FK506 was found to not only stimulate osteoblastic differentiation, but also to enhance BMP-4 induced osteoblastic differentiation. These results suggest that FK506 promotes differentiation of osteoblastic cells.  相似文献   

15.
A range of biological and molecular effects caused by nicotine are considered to effect bone metabolism. Vitamin C functions as a biological antioxidant. This study was to evaluate the in vitro effects of nicotine on human bone marrow stromal cells and whether Vitamin C supplementation show the antagonism action to high concentration nicotine. We used CCK‐8, alkaline phosphatase (ALP) activity assay, Von Kossa staining, real‐time polymerase chain reaction and Western Blot to evaluate the proliferation and osteogenic differentiation. The results indicated that the proliferation of BMSCs increased at the concentration of 50, 100 ng/ml, got inhibited at 1,000 ng/ml. When Vitamin C was added, the OD for proliferation increased. For ALP staining, we found that BMSCs treated with 50 and 100 ng/ml nicotine showed a higher activity compared with the control, and decreased at the 1,000 ng/ml. Bone morphogenetic protein‐2 (BMP‐2) expression and the calcium depositions decreased at 100 and 1,000 ng/ml nicotine, while the addition of Vitamin C reversed the down regulation. By real‐time PCR, we detected that the mRNA expression of collagen type I (COL‐I) and ALP were also increased in 50 and 100 ng/ml nicotine groups (P < 0.05), while reduced at 1,000 ng/ml (P < 0.05). When it came to osteocalcin (OCN), the changes were similar. Taken all together, it is found that nicotine has a two‐phase effect on human BMSCs, showing that low level of nicotine could promote the proliferation and osteogenic differentiation while the high level display the opposite effect. Vitamin C could antagonize the inhibitory effect of higher concentration of nicotine partly. J. Cell. Biochem. 114: 1720–1728, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
To clarify the mechanism of the stimulatory effect of statins on bone formation, we have assessed the effect of simvastatin and atorvastatin on osteoblast activity by analysing cell proliferation, as well as collagen, osteocalcin, and bone morphogenetic protein-2 (BMP2) gene expression in primary human osteoblast (hOB) and MG-63 cell line cultures. Explants of bone from patients without any metabolic disease under orthopedic hip procedures were used to obtain hOB. Cell cultures were established, synchronized, and different concentrations of simvastatin or atorvastatin were added (10(-9) M, 10(-8) M, 10(-7) M, 10(-6) M) during the experiment. Cell proliferation was analyzed after 24 h. Collagen polypeptide alpha1 type 1 (COL1A1) gene expression, osteocalcin, and BMP2 expression levels were quantified by real-time PCR after 24 h incubation with statins. There was a statistically significant decrease in cell proliferation related to simvastatin or atorvastatin addition at all concentrations in primary hOB compared with those not treated. A significant increase in COL1A1, osteocalcin, and BMP2 gene expression was detected when hOB cultures were treated with simvastatin or atorvastatin at different concentrations. Similar but less significant effects were found on MG-63 cells. After statin treatment we observed both an arrest of proliferation in hOB cells and an increase in collagen, osteocalcin, and BMP2 gene expression, consistent with a stimulatory effect towards mature osteoblast differentiation. These findings support the bone-forming effect of statins, probably through the BMP2 pathway.  相似文献   

17.
18.
19.
Human prostatic carcinoma frequently metastasizes to bone tissue and activates bone metabolism, especially bone formation, at the site of metastasis. It has been reported that an extract of prostatic carcinoma and conditioned medium (CM) of a human prostatic carcinoma cell line, PC-3, established from a bone metastastic lesion, stimulate osteoblastic cell proliferation. However, there is little information about the effect of PC-3 CM on the differentiation of osteoblastic cells. In this study, we investigated the effect of PC-3 CM on the differentiation of two types of osteoblastic cells, primary fetal rat calvaria (RC) cells containing many undifferentiated osteoprogenitor cells, and ROS 17/2.8, a well-differentiated rat osteosarcoma cell line. PC-3 CM inhibited bone nodule formation and the activity of alkaline phosphatase (ALPase), an osteoblastic marker enzyme, on days 7, 14, and 21 (RC cells) or 3, 6, and 9 (ROS 17/2.8 cells) in a dose-dependent manner (5–30% CM). However, the CM did not affect cell proliferation or cell viability. PC-3 CM was found to markedly block the gene expression of ALPase and osteocalcin (OCN) mRNAs but had no effect on the mRNA expression of osteopontin (OPN), the latter two being noncollagenous proteins related to bone matrix mineralization. These findings suggest that PC-3 CM contains a factor that inhibits osteoblastic cell differentiation and that this factor may be involved in the process of bone metastasis from prostatic carcinoma. J. Cell. Biochem. 67:248–256, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Bone morphogenetic protein (BMP)2/7 heterodimer shows greater efficacy in enhancing bone regeneration. However, the precise mechanism and the role of mitogen-activated protein kinase (MAPK) signaling network in BMP2/7-driven osteogenesis remain ambiguous. In this study, we evaluated the effects of BMP2/7 heterodimers on osteoblastic differentiation in rat bone marrow mesenchymal stem cells (BMSCs), with the aim to elaborate how MAPKs might be involved in this cellular process by treatment of rat BMSCs with BMP2/-7 with a special signal-pathway inhibitor. We found that BMP2/7 heterodimer induced a much stronger osteogenic response in rat BMSCs compared with either homodimer. Most interestingly, extracellular signal-regulated kinase (ERK) demonstrated a highly sustained phosphorylation and activation in the BMP2/7 heterodimer treatment groups, and inhibition of ERK cascades using U0126 special inhibitor that significantly reduced the activity of ALP and calcium mineralization to a substantial degree in rat BMSCs treated with BMP2/7 heterodimers. Collectively, we demonstrate that BMP2/7 heterodimer shows a potent ability to stimulate osteogenesis in rat BMSCs. The activated ERK signaling pathway involved in this process may contribute partially to an increased osteogenic potency of heterodimeric BMP2/7 growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号