首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The biguanide metformin is an oral antihyperglycemic drug for the treatment of type 2 diabetes mellitus. Further, a moderate improvement of dyslipidemia by metformin was reported, and therefore, the effect of metformin on the release of apolipoprotein B (ApoB) and ApoE in primary human hepatocytes was determined. Metformin at 0.5 and 1 mM reduced hepatic ApoB secretion but ApoE was not altered. Metformin is well known to stimulate the AMP kinase that subsequently reduces hepatic nuclear factor 4-alpha (HNF4-alpha) and HNF4-alpha regulated genes like ApoB. However, HNF4-alpha was only diminished by 1 mM metformin and ApoB mRNA was not suppressed indicating that this pathway may not explain reduced ApoB release. Lower abundance of lysophosphatidylcholine (lysoPC) may also diminish ApoB secretion. Therefore, electrospray ionization tandem mass spectrometry was applied to measure cellular lipids. PC, lysoPC (produced by hydrolysis of PC), phosphatidylserine and sphingomyelin (derived from PC) were lower in metformin-treated hepatocytes whereas phosphatidylethanolamine, an alternative precursor of PC, was not affected. In addition, ABCB4, the canalicular membrane flippase essential for biliary PC secretion, was diminished. Supplementation with lysoPC led to a selective elevation of endogenous lysoPC and rescued ApoB secretion in metformin-treated cells. Therefore, it is concluded that metformin reduces lysoPC in human hepatocytes and this may secondarily lead to a therapeutically beneficial lower release of ApoB.  相似文献   

2.
3.
4.
Apolipoprotein A-I (ApoA-I), a primary protein component of high-density lipoprotein (HDL), plays an important role in cholesterol metabolism mediating the formation of HDL and the efflux of cellular cholesterol from macrophage foam cells in arterial walls. Lipidation of ApoA-I is mediated by adenosine triphosphate (ATP) binding cassette A1 (ABCA1). Insufficient ABCA1 activity may lead to increased risk of atherosclerosis due to reduced HDL formation and cholesterol efflux. The standard radioactive assay for measuring cholesterol transport to ApoA-I has low throughput and poor dynamic range, and it fails to measure phospholipid transfer. We describe the development of two sensitive, nonradioactive high-throughput assays that report on the lipidation of ApoA-I: a homogeneous assay based on time-resolved fluorescence resonance energy transfer (TR-FRET) and a discontinuous assay that uses the label-free Epic platform. The TR-FRET assay employs HiLyte Fluor 647-labeled ApoA-I with N-terminal biotin bound to streptavidin-terbium. When fluorescent ApoA-I was incorporated into HDL, TR-FRET decreased proportionally to the increase in the ratio of lipids to ApoA-I, demonstrating that the assay was sensitive to the amount of lipid bound to ApoA-I. In the Epic assay, biotinylated ApoA-I was captured on a streptavidin-coated biosensor. Measured resonant wavelength shift was proportional to the amount of lipids associated with ApoA-I, indicating that the assay senses ApoA-I lipidation.  相似文献   

5.
Zhao Y  Chen X  Yang H  Zhou L  Okoro EU  Guo Z 《PloS one》2011,6(7):e21453
Despite the well known importance of apolipoprotein (Apo) E in cholesterol efflux, the effect of ApoE on the expression of ATP-binding cassette transporter A1 (ABCA1) has never been investigated. The objective of this study was to determine the effect of ApoE on ApoB-carrying lipoprotein-induced expression of ABCA1, a protein that mediates cholesterol efflux. Our data demonstrate that ApoB-carrying lipoproteins obtained from both wild-type and ApoE knockout mice induced ApoAI-mediated cholesterol efflux in mouse macrophages, which was associated with an enhanced ABCA1 promoter activity, and an increased ABCA1 mRNA and protein expression. In addition, these lipoproteins increased the level of phosphorylated specificity protein 1 (Sp1) and the amount of Sp1 bound to the ABCA1 promoter. However, all these inductions were significantly diminished in cells treated with ApoE-free lipoproteins, when compared to those treated with wild-type lipoproteins. Enrichment with human ApoE3 reversed the reduced inducibility of ApoE-free lipoproteins. Moreover, we observed that inhibition of Sp1 DNA-binding by mithramycin A diminished ABCA1 expression and ApoAI-mediated cholesterol efflux induced by ApoB-carrying lipoproteins, and that mutation of the Sp1-binding motif in the ABCA1 promoter region diminished ApoB-carrying lipoprotein-induced ABCA1 promoter activity. Collectively, these data suggest that ApoE associated with ApoB-carrying lipoproteins has an upregulatory role on ABCA1 expression, and that induction of Sp1 phosphorylation is a mechanism by which ApoE upregulates ABCA1 expression.  相似文献   

6.
Reverse cholesterol transport (RCT) has been characterized as a crucial step for antiatherosclerosis, which is initiated by ATP-binding cassette A1 (ABCA1) to mediate the efflux of cellular phospholipids and cholesterol to lipid-free apolipoprotein A-I (apoA-I). However, the mechanisms underlying apoA-I/ABCA1 interaction to lead to the lipidation of apoA-I are poorly understood. There are several models proposed for the interaction of apoA-I with ABCA1 as well as the lipidation of apoA-I mediated by ABCA1. ApoA-I increases the levels of ABCA1 protein markedly. In turn, ABCA1 can stabilize apoA-I. The interaction of apoA-I with ABCA1 could activate signaling molecules that modulate posttranslational ABCA1 activity or lipid transport activity. The key signaling molecules in these processes include protein kinase A (PKA), protein kinase C (PKC), Janus kinase 2 (JAK2), Rho GTPases and Ca2+, and many factors also could influence the interaction of apoA-I with ABCA1. This review will summarize these mechanisms for the apoA-I interaction with ABCA1 as well as the signal transduction pathways involved in these processes.  相似文献   

7.
The accumulation of lipoprotein cholesterol in theartery wall is thought to be an important factor in thedevelopment of atherosclerosis. After retentionand modi-fication in arteries, atherogenic lipoproteins are taken upby macrophages, bringing about macrophage-derived foamcells. High-density lipoprotein (HDL) plays a role in trans-porting cholesterol from peripheral tissues to the liver.The elevated level of HDL is associated with a decreasein atherosclerosis and the apolipoproteins to remo…  相似文献   

8.
The purpose of this study was to test the use of human hepatocarcinoma HepG2 cells as a model for studying the formation and secretion of human hepatic lipoproteins. To this end, we determined the rate of accumulation and percent composition of neutral lipids and apolipoproteins in the culture medium of HepG2 cells and isolated and partially characterized the apolipoprotein B (ApoB) containing lipoprotein particles. The rates of accumulation in the medium of HepG2 cells, grown in minimum essential medium during a 24-h incubation, of triglycerides, cholesterol, and cholesterol esters expressed as microgram/(g of cell protein X h) were 373 +/- 55, 167 +/- 14, and 79 +/- 10, respectively; the secretion rates for apolipoproteins B, A-I, E, A-II, and C-III were 372 +/- 36, 149 +/- 14, 104 +/- 13, 48 +/- 4, and 13 +/- 1 microgram/(g of cell protein X h), respectively. The major portion of ApoB was present in very low density lipoproteins (VLDL) and low-density lipoproteins (LDL) (84%), with the remainder occurring in high-density lipoproteins (HDL) (16%). Approximately 10-13% of ApoA-I and ApoA-II were present in VLDL and LDL, while 60% of ApoE occurred in HDL and 40% in VLDL and LDL. To separate ApoB-containing lipoproteins, secreted lipoproteins were fractionated by either sequential immunoprecipitation or immunoaffinity chromatography with antibodies to ApoB and ApoE. Results showed that 60-70% of ApoB occurred in the culture medium as lipoprotein B (LP-B) and 30-40% as lipoprotein B:E (LP-B:E). Both ApoB-containing lipoproteins represent polydisperse systems of spherical particles ranging in size from 100 to 350 A for LP-B and from 200 to 500 A for LP-B:E. LP-B particles were identified in VLDL, LDL, and HDL, while LP-B:E particles were only present in VLDL and LDL. The major neutral lipid of both ApoB-containing lipoproteins was triglyceride (50-70% of the total neutral lipid content); cholesterol and cholesterol esters were present in equal amounts. The LP-B:E particles contained 70-90% ApoB and 10-30% ApoE. The ApoB was identified in both types of particles as B-100. A time study on the accumulation of ApoB-containing lipoproteins showed that LP-B particles were secreted independently of LP-B:E particles.  相似文献   

9.
Apolipoprotein A-I (ApoA-I) is an extracellular lipid acceptor, whose role in cholesterol efflux and high-density lipoprotein formation is mediated by ATP-binding cassette transporter A1 (ABCA1). Nevertheless, some ApoA-I variants are associated to systemic forms of amyloidosis, characterized by extracellular fibril deposition in peripheral organs. Heart amyloid fibrils were found to be mainly constituted by the 93-residue N-terminal fragment of ApoA-I, named [1-93]ApoA-I. In this paper, rat cardiomyoblasts were used as target cells to analyse binding, internalization and intracellular fate of the fibrillogenic polypeptide in comparison to full-length ApoA-I. We provide evidence that the polypeptide: (i) binds to specific sites on cell membrane (K(d) = 5.90 ± 0.70 × 10(-7) M), where it partially co-localizes with ABCA1, as also described for ApoA-I; (ii) is internalized mostly by chlatrin-mediated endocytosis and lipid rafts, whereas ApoA-I is internalized preferentially by chlatrin-coated pits and macropinocytosis and (iii) is rapidly degraded by proteasome and lysosomes, whereas ApoA-I partially co-localizes with recycling endosomes. Vice versa, amyloid fibrils, obtained by in vitro aggregation of [1-93]ApoA-I, were found to be unable to enter the cells. We propose that internalization and intracellular degradation of [1-93]ApoA-I may divert the polypeptide from amyloid fibril formation and contribute to the slow progression and late onset that characterize this pathology.  相似文献   

10.
The liver is the major site of both apolipoprotein A-I (apoA-I) synthesis and ATP-binding cassette transporter A1 (ABCA1) expression. Here, we compare the lipidation with cholesterol and phospholipid of newly synthesized human apoA-I (hapoA-I) using adenoviral vector-mediated endogenous expression or exogenously added hapoA-I in wild type and ABCA1-null hepatocytes. Hepatocytes were labeled with [3H]cholesterol (delivered with LDL or methyl-beta-cyclodextrin), [3H]mevalonate, or [3H]choline. ABCA1 deficiency decreased apoA-I phospholipidation by 80%, but acquisition of de novo synthesized and exogenous cholesterol only decreased by 40-60%. The transfer of de novo synthesized cholesterol to apoA-I was decreased at all time points, but that of exogenously delivered cholesterol was independent of ABCA1 activity at the early time points. Progesterone does not affect apoA-I synthesis or its lipidation but inhibited the early phase of apoA-I cholesterol lipidation in both wild type and ABCA1-null hepatocytes. Fast protein liquid chromatography analysis of medium lipoproteins confirmed that with ABCA1 deficiency, the proportion of secreted high density lipoprotein-associated apoA-I and cholesterol decreased by about 50%. The very low density lipoprotein (VLDL)/LDL size fraction also contained a significant level of cholesterol in ABCA1 deficiency, consistent with the result of immunoprecipitations showing the presence of lipoproteins with both apoA-I and murine apoB. ApoA-I lipidation with newly synthesized cholesterol in ABCA1-null hepatocytes was significantly decreased by brefeldin A and monensin. In conclusion, we demonstrate that: (i) whereas most hepatic phospholipidation of apoA-I is mediated by ABCA1, acquisition of cholesterol depends on active transfer from intracellular compartments by ABCA1-dependent and -independent pathways, both sensitive to progesterone and (ii) there is separate regulation of phospholipid and cholesterol lipidation of apoA-I in hepatocytes.  相似文献   

11.
ATP-binding cassette A1 (ABCA1) is a key mediator of cholesterol and phospholipid efflux to apolipoprotein particles. We show that ABCA1 is a constitutively phosphorylated protein in both RAW macrophages and in a human embryonic kidney cell line expressing ABCA1. Furthermore, we demonstrate that phosphorylation of ABCA1 is mediated by protein kinase A (PKA) or a PKA-like kinase in vivo. Through site-directed mutagenesis studies of consensus PKA phosphorylation sites and in vitro PKA kinase assays, we show that Ser-1042 and Ser-2054, located in the nucleotide binding domains of ABCA1, are major phosphorylation sites for PKA. ApoA-I-dependent phospholipid efflux was decreased significantly by mutation of Ser-2054 alone and Ser-1042/Ser-2054 but was not significantly impaired with Ser-1042 alone. The mechanism by which ABCA1 phosphorylation affected ApoA-I-dependent phospholipid efflux did not involve either alterations in ApoA-I binding or changes in ABCA1 protein stability. These studies demonstrate a novel serine (Ser-2054) on the ABCA1 protein crucial for PKA phosphorylation and for regulation of ABCA1 transporter activity.  相似文献   

12.
High density lipoproteins (HDL) consist of a mixture of chemically and functionally distinct families of particles defined by their characteristic apolipoprotein (Apo) composition. The two major lipoprotein families are lipoprotein A-I (LP-A-I) and lipoprotein A-I:A-II (LP-A-I:A-II). This study describes the isolation of a third minor HDL family of particles referred to as lipoprotein A-II (LP-A-II) because it lacks ApoA-I and contains ApoA-II as its main or sole apolipoprotein constituent. Because ApoA-II is an integral protein constituent of three distinct lipoprotein families (LP-A-I:A-II, LP-A-II: B:C:D:E and LP-A-II), LP-A-II particles were isolated from whole plasma by sequential immunoaffinity chromatography on immunosorbers with antisera to ApoA-II, ApoB and ApoA-I, respectively. In normolipidemic subjects, the concentration of LP-A-II particles, based on ApoA-II content, is 4-18 mg/dl accounting for 5-20% of the total ApoA-II not associated with ApoB-containing lipoproteins. The lipid composition of LP-A-II particles is characterized by low percentage of triglycerides and cholesterol esters and a high percentage of phospholipids in comparison with lipid composition of LP-A-I and LP-A-II: A-II. The major part of LP-A-II particles contain ApoA-II as the sole apolipoprotein constituent; however, small subsets of LP-A-II particles may also contain ApoD and other minor apolipoproteins. The lipid/protein ratio of LP-A-II is higher than those of LP-A-I and LP-A-I:A-II. In homozygous ApoA-I and ApoA-I/ApoC-III deficiencies, LP-A-II particles are the only ApoA-containing high density lipoprotein with levels found to be within the same range (7-13 mg/dl) as those of normolipidemic subjects. However, in contrast to normal LP-A-II, their lipid composition is characterized by higher percentages of triglycerides and cholesterol esters and a lower percentage of phospholipids and their apolipoprotein composition by the presence of ApoC-peptides and ApoE in addition to ApoA-II and ApoD. These results show that LP-A-II particles are a minor HDL family and suggest that, in the absence of ApoA-I-containing lipoproteins, they become an efficient acceptor/donor of ApoC-peptides and ApoE required for a normal metabolism of triglyceride-rich lipoproteins. Their other possible functional roles in lipid transport remain to be established in future experiments.  相似文献   

13.
14.
A key cardioprotective effect of high-density lipoprotein involves the interaction of its major protein, apolipoprotein A-I (apoA-I) with ATP-binding cassette transporter A1 (ABCA1), a macrophage cholesterol exporter. ApoA-I is thought to remove cholesterol from macrophages by a cascade of events. First it binds directly to ABCA1, activating signaling pathways, and then it binds to and solubilizes lipid domains generated by ABCA1. HDL isolated from human atherosclerotic lesions and blood of subjects with established coronary artery disease contains elevated levels of 3-chlorotyrosine and 3-nitrotyrosine, two characteristic products of myeloperoxidase (MPO), a heme protein secreted by macrophages. Here we show that chlorination (but not nitration) of apoA-I by the MPO pathway impairs its ability to interact directly with ABCA1, to activate the Janus kinase 2 signaling pathway, and to promote efflux of cellular cholesterol. In contrast, oxidation of apoA-I has little effect on its ability to stabilize ABCA1 protein or to solubilize phospholipids. Our results indicate that chlorination of apoA-I by the MPO pathway selectively inhibits two critical early events in cholesterol efflux: (1) the binding of apoA-I to ABCA1 and (2) the activation of a key signaling pathway. Therefore, oxidation of apoA-I in the artery wall by MPO-generated chlorinating intermediates may contribute to atherogenesis by impairing cholesterol efflux from macrophages.  相似文献   

15.
In patients chronically infected with hepatitis C virus and in the HCV cell culture system (HCVcc), it is known that highly infectious virus particles have low to very low buoyant densities. These low densities have been attributed to the association of HCV with lipoprotein components, which occur during the viral morphogenesis. The resulting hybrid particles are known as lipoviral particles (LVP); however, very little is known about how these particles are created. In our study, we used Huh7.5 cells to investigate the intracellular association between envelope proteins and apolipoproteins B and E (ApoB and ApoE, respectively). In particular, we were interested in the role of this association in initiating LVP morphogenesis. Co-immunoprecipitation assays revealed that ApoB, ApoE, and HCV glycoproteins formed a protein complex early in the HCV lifecycle. Confocal analyses of naïve, E1E2-transduced and HCVcc-infected cells showed that HCV glycoproteins, ApoB and ApoE were found strongly colocalized only in the endoplasmic reticulum. We also found that HCV glycoproteins, ApoB and ApoE were already associated with intracellular infectious viral particles and, furthermore, that the protein complex was conserved in the infectious viral particles present in the supernatant of infected Huh7.5 cells. The association of HCV glycoproteins with ApoE was also evidenced in the HCVpp system, using the non-hepatic HEK293T cell line. We suggest that the complex formed by HCV E1E2, ApoB, and ApoE may initiate lipoviral particle morphogenesis.  相似文献   

16.
ATP结合盒式运载蛋白A1(ATP-binding cassette transporter A1,ABCA1)是近年来发现的极其重要的脂质转运大分子膜蛋白,它可将过量胆固醇从细胞内向细胞外输送到载脂蛋白并包装成高密度脂蛋白(HDL)的膜蛋白,促进胆固醇的逆转运.初步研究转录因子ATF6对ABCA1的表达调控,结果发现,ATF6在人胚胎肾细胞HEK293内剂量依赖性地调节ABCA1基因转录及蛋白质表达. ATF6调节ABCA1与内质网应激信号通路无关. 启动子序列缺失与突变分析表明ATF6作用区位于ABCA1启动子上游-156~-928bp之间, 可能需要E-box的参与,但不需要DR4元件.进而,动物试验结果显示用腺病毒在C57小鼠肝脏过表达ATF6,在mRNA水平上调ABCA1. 本文的研究发现了ATF6新的功能以及调控ABCA1的新机制.  相似文献   

17.
Differential regulation has been suggested for cellular cholesterol and phospholipid release mediated by apolipoprotein A-I (apoA-I)/ABCA1. We investigated various factors involved in cholesterol mobilization related to this pathway. ApoA-I induced a rapid decrease of the cellular cholesterol compartment that is in equilibrium with the ACAT-accessible pool in cells that generate cholesterol-rich HDL. Pharmacological and genetic inactivation of ACAT enhanced the apoA-I-mediated cholesterol release through upregulation of ABCA1 and through cholesterol enrichment in the HDL generated. Pharmacological activation of protein kinase C (PKC) also decreased the ACAT-accessible cholesterol pool, not only in the cells that produce cholesterol-rich HDL by apoA-I (i.e., human fibroblast WI-38 cells) but also in the cells that generate cholesterol-poor HDL (mouse fibroblast L929 cells). In L929 cells, the PKC activation caused an increase in apoA-I-mediated cholesterol release without detectable change in phospholipid release and in ABCA1 expression. These results indicate that apoA-I mobilizes intracellular cholesterol for the ABCA1-mediated release from the compartment that is under the control of ACAT. The cholesterol mobilization process is presumably related to PKC activation by apoA-I.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号