首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The binding of cholest-5-ene-3beta,20alpha-diol (20alpha-hydroxycholesterol), 11-deoxycorticosterone, and aminoglutethimide to cytochrome P-450 in bovine adrenal mitochondria was measured by changes in optical spectra at room temperature and by EPR spectra at 14 K. The two methods provided nearly identical quantitation of these interactions with cytochrome P-450. Two distinct high spin forms of cytochrome P-450 were revealed by EPR spectra. The predominant high spin species (g = 8.2) was decreased by addition of 20alpha-hydroxycholesterol and elevated pH but was increased by addition of cholesterol. The minor high spin species (g = 8.1) was incrreased by addition of deoxycorticosterone but decreased by low concentrations of metyrapone. The two forms were evidently not in equilibrium and have been assigned to distinct forms of cytochrome P-450 involved in, respectively, cholesterol side chain cleavage (P-450scc) and steroid 11beta hydroxylation (P-450(11)beta). The high spin states are derived from complexes of these P-450 cytochromes with endogenous substrates, which are, respectively, cholesterol and deoxycorticoids. A high to low spin transition was observed when these complexes were turned over by initiating hydroxylation with malate. The contributions of cytochromes P-450(11)beta and P-450scc to the low spin spectrum were also resolved by similar means. At least 20% of P-450scc is in the low spin state while about 90% of P-450(11)beta is low spin in isolated beef adrenal mitochondria. Low spin complexes of cytochrome P-450scc with 20alpha-hydroxycholesterol and 3beta-hydroxypregn-5-ene-20-one (pregnenolone) gave distinct EPR spectra. Aminoglutethimide interacted with the total cytochrome P-450 content of the bovine adrenal mitochondria forming low spin complexes. Both optical and EPR data indicated binding to two forms of cytochrome P-450. These results suggest a detailed correlation between the spin state and absorbance changes seen at room temperature, illustrate that EPR allows the distinction of two principal forms of P-450, and suggest that there is no appreciable change in the spin state of either cytochrome between 14 K and 300 K.  相似文献   

2.
The interactions of 5 carcinogenic and 1 non-carcinogenic nitrosamines with hepatic microsomal cytochrome (cyt.) P-450 were investigated, using both optical difference and electron paramagnetic resonance (EPR) spectroscopic methods. Liver microsomes from phenobarbital (PB)-pretreated mice and 3-methylcholanthrene (3-MC)-pretreated rats were used, in order to have an increased specific content of cyt. P-450 and cyt. P-448 respectively. The optical and EPR spectral data obtained in the oxidised state suggest that nitrosamines are able to bind both as substrates and as ligands to the hemoprotein cyt. P-450, depending on the concentration of nitrosamine, its chemical identity and the cytochrome species present. After reduction with dithionite or NADPH in the optical difference spectrum a Soret band developed between 444 and 453 nm to an extent, which is dependent on the particular nitrosamine present. This initial nitrosamine-induced spectrum might represent a ferrous nitric oxide (NO)-cyt. P-450 complex. It appears unstable and is converted kinetically into a spectrum lacking a Soret band, but with a predominant absorbance minimum at about 425 nm. A visible band is located at 585 nm. In the EPR spectrum a sharp 3-line signal around g = 2.01 appears concomitantly. Both spectral parameters are typical of a NO-cyt. P-420 complex. These results, in conjunction with metabolic studies, indicate that nitrosamines are denitrosated by a reductive process in which cyt. P-450 appears to be involved. The resulting NO-cyt. P-450 complex denatures to a NO-cyt. P-420 complex when the dioxygen level is not sufficiently high to complete successfully.  相似文献   

3.
Microsomal cytochrome P-450 from tulip bulbs (Tulipa gesneriana L., Balalaika) was purified to an almost electrophoretically homogeneous preparation. The specific content of cytochrome P-450 in the final preparation was 6.68 nmol/mg protein, which was 30-fold enriched from that of the solubilized fractions of microsomes. The molecular weight of purified cytochrome P-450 by SDS-gel electrophoresis is 52,500. The Oxidized form of the purified cytochrome P-450 had absorption peaks at 392, 552, and 645 nm and the absolute reduced CO spectrum peaked at 448 nm. Judged spectrally, the purified cytochrome P-450 is in high spin in the oxidized state. Antiserum against this cytochrome P-450 previously has shown to be highly specific for its antigen but showed a single precipitin line with solubilized microsomal proteins from tulip bulbs of several other cultivars. The physiological role of this cytochrome P-450, however, is unknown in these dormant tulip bulbs.  相似文献   

4.
Cytochrome P-450cam, the bacterial hemeprotein which catalyzes the 5-exo-hydroxylation of d-camphor, requires two electrons to activate molecular oxygen for this monooxygenase reaction. These two electrons are transferred to cytochrome P-450cam in two one-electron steps by the physiological reductant, putidaredoxin. The present study of the kinetics of reduction of cytochrome P-450cam by reduced putidaredoxin has shown that the reaction obeys first order kinetics with a rate constant of 33 s-1 at 25 degrees C with respect to: 1) the appearance of the carbon monoxide complex of Fe(II) cytochrome P-450cam; 2) the disappearance of the 645 nm absorbance band of high-spin Fe(III) cytochrome P-450cam; and 3) the disappearance of the g = 1.94 EPR signal of reduced putidaredoxin. This data was interpreted as indicative of the rapid formation of a bimolecular complex between reduced putidaredoxin Fe(III) cytochrome P-450cam. The existence of the complex was first shown indirectly by kinetic analysis and secondly directly by electron paramagnetic resonance spectroscopic analysis of samples which were freeze-quenched approximately 16 ms after mixing. The direct evidence for complex formation was the loss of the EPR signal of Fe(III) cytochrome P-450cam upon formation of the complex while the EPR signal of reduced putidaredoxin decays with the same kinetics as the appearance of Fe(II) cytochrome P-450. The mechanism of the loss of the EPR signal of cytochrome P-450 upon formation of the complex is not apparent at this time but may involve a conformational change of cytochrome P-450cam following complex formation.  相似文献   

5.
The mechanism by which 2-bromo-4'-nitroacetophenone (BrNAP) inactivates cytochrome P-450c, which involves alkylation primarily at Cys-292, is shown in the present study to involve an uncoupling of NADPH utilization and oxygen consumption from product formation. Alkylation of cytochrome P-450c with BrNAP markedly stimulated (approximately 30-fold) its rate of anaerobic reduction by NADPH-cytochrome P-450 reductase, as determined by stopped flow spectroscopy. This marked stimulation in reduction rate is highly unusual in that Cys-292 is apparently not part of the heme- or substrate-binding site, and its alkylation by BrNAP does not cause a low spin to high spin state transition in cytochrome P-450c. Under aerobic conditions the rapid oxidation of NADPH catalyzed by alkylated cytochrome P-450c was associated with rapid reduction of molecular oxygen to hydrogen peroxide via superoxide anion. The intermediacy of superoxide anion, formed by the one-electron reduction of molecular oxygen, established that alkylation of cytochrome P-450c with BrNAP uncouples the catalytic cycle prior to introduction of the second electron. The generation of superoxide anion by decomposition of the Fe2+ X O2 complex was consistent with the observations that, in contrast to native cytochrome P-450c, alkylated cytochrome P-450c failed to form a 430 nm absorbing chromophore during the metabolism of 7-ethoxycoumarin. Alkylation of cytochrome P-450c with BrNAP did not completely uncouple the catalytic cycle such that 5-20% of the catalytic activity remained for the alkylated cytochrome compared to the native protein depending on the substrate assayed. The uncoupling effect was, however, highly specific for cytochrome P-450c. Alkylation of nine other rat liver microsomal cytochrome P-450 isozymes with BrNAP caused little or no increase in hydrogen peroxide formation in the presence of NADPH-cytochrome P-450 reductase and NADPH.  相似文献   

6.
Procedures are described for the isolation of two forms of rabbit liver microsomal liver microsomal cytochrome P-450 (P-450LM) in homogeneous state. They are designated by their relative electrophoretic mobilities on polyacrylamide gel in the presence of sodium dodecyl sulfate as P-450LM2 and P-450LM4. P-450LM2, which was isolated from phenobarbital-induced animals, has a subunit molecular weight of 48,700. The best preparations contain 20 nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. P-450LM4, which is induced by beta-naphthoflavone but is also present in phenobarbital-induced and untreated animals, was isolated from all three sources and found to have a subunit molecular weight of 55,300. The best preparations contain 17nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. Some of the purified preparations of the cytochromes, although electrophoretically homogeneous, contain apoenzyme due to heme loss during purification. The purified proteins contain no detectable NADPH-cytochrome P-450 reductase, cytochrome b5, or NADH-cytochrome b5 reductase, and only low levels of phospholipid (about 1 molecule per subunit). Amino acid analysis indicated that P-450LM2 and P-450LM4 are similar in composition, but the latter protein has about 60 additional residues. The COOH-terminal amino acid of P-450LM2 is arginine, as shown by carboxypeptidase treatment, whereas that of P-450LM4 is lysine. NH2-terminal amino acid residues could not be detected. Carbohydrate analysis indicated that both cytochromes contain 1 residue of glucosamine and 2 of mannose per polypeptide subunit. The optical spectra of the oxidized and reduced cytochromes and carbon monoxide complexes were determined. Oxidized P-450LM2 has maxima at 568, 535, and 418 nm characteristic of a low spin hemeprotein, and P450LM4 from beta-naphthoflavone-induced, phenobarbital-induced, or control microsomes has maxima at 645 and 394 nm, characteristic of the high spin state. The spectrum of -450lm4 becomes similar to that of P-450LM2 at high protein concentrations or upon the addition of detergent (Renex), whereas the spectrum of P-450LM2 is unaffected by the protein concentration or the presence of detergent. Electron paramagnetic resonance spectrometry of the purified cytochromes indicated that oxidized -450lm2 is in the low spin state, whereas P-450LM4 is largely, but not entirely, in the high spin state.  相似文献   

7.
In vivo administration of the alcohol dehydrogenase inhibitor pyrazole induces a cytochrome P-450 isozyme. The pyrazole-inducible cytochrome P-450 has been purified from rat livers to electrophoretic homogeneity and its biochemical, spectral, and immunological properties characterized. The final preparation had a specific content of 11 nmol of cytochrome P-450/mg of protein. A single band with an apparent molecular weight of 52,000 was observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The absolute spectrum of the isolated pyrazole cytochrome P-450 displayed peaks at 648 and 396 nm, suggestive of a high spin cytochrome. The ethylisocyanide difference spectrum exhibited two maxima, one at 457 nm, the other at 428 nm. Pyrazole and dimethyl sulfoxide produced binding spectra with the purified P-450, with peaks at 425 or 419 nm and troughs at 390 or 386 nm, respectively. K8 values for dimethyl sulfoxide and pyrazole were 21 and 0.04 mM, respectively. The catalytic activity of the pyrazole cytochrome P-450 was elevated with aniline and dimethylnitrosamine (low Km) but not with aminopyrine, benzphetamine, ethoxycoumarin, or ethoxyresorufin as substrates. An antibody against pyrazole cytochrome P-450 recognized a 52,000 molecular weight protein upon reaction with saline microsomes. The intensity of the immunoblot was increased when microsomes isolated from pyrazole, 4-methylpyrazole-, acetone-, or chronic ethanol-treated rats were utilized, but not after phenobarbital or 3-methylcholanthrene treatment. Homology at the amino terminus of 19 amino acids was observed between pyrazole P-450 and the isoniazid-inducible P-450j. Based upon the above catalytic, spectral, and immunological properties, it appears that pyrazole induces a form of cytochrome P-450 which is identical to that induced by ethanol and isoniazid.  相似文献   

8.
The diploid strain D5 of Saccharomyces cerevisiae, relative to other strains of yeast, has a large amount of cytochrome P-450 present during the logarithmic phase of growth and a low amount of cytochrome P-420. As the stationary phase of growth is approached, an increasing intensity of absorbance is observed at 420 nm. If the cells are suspended in buffer during mid-logarithmic growth, the absorbance at 450 nm disappears and absorbance at 420 nm is increased after the cells have been held in buffer for 24 h. At late logarithmic growth, the absorbance at 450 nm is still retained after the cells have been held in buffer for 24 h. Within 44 h of the time of harvest, the absorbance at 450 nm disappears completely and the absorbance at 420 nm is intense. Cytoplasmic petite variants of strain D5 have less of both cytochromes P-450 and P-420 than does the grande D5 strain; the absorbance at 450 and 420 nm are retained up to 96 h when the cells are held in buffer. Haploid spores of strain D5 exhibit absorbances at 450 and 420 nm during the logarithmic phase of growth, and these absorbances are retained after the cells are held in buffer for 24 h.

An hypothesis is proposed which states that cytochrome P-450 is the membrane-bound form and cytochrome P-420 is free in the cytosol; the cytochromes interconvert and are active in either state until the associated enzymes disassociate.  相似文献   


9.
A molecular species of cytochrome P-450 that catalyzes the 25-hydroxylation of cholecalciferol (P-450cc25) was purified from rat liver microsomes on the basis of its catalytic activity. The purification procedure consisted of polyethylene glycol fractionation, and column chromatographies on octylamino Sepharose 4B, hydroxylapatite, DEAE-Sepharose CL-6B, and CM-Sepharose CL-6B. The specific cytochrome P-450 content of the final preparation was 17.0 nmol/mg of protein. The enzymatic activity was reconstituted with the purified cytochrome P-450, NADPH-cytochrome P-450 reductase, an NADPH-generating system, and dilauroylglyceryl-3-phosphorylcholine, the specific activity obtained being 3.7 nmol/min/mg of protein, which was 4,000 times as high as that in microsomes. The apparent molecular weight of the P-450cc25 was 50,000, based on the results of sodium dodecyl sulfate polyacrylamide gel electrophoresis. The absorption spectra of the oxidized form of the enzyme showed a Soret band at 416 nm, which is typical of the low spin state of cytochrome P-450, and alpha and beta bands at 570 and 536 nm, respectively. The Soret peak of the reduced cytochrome P-450-CO complex was at 450 nm. The purified enzyme not only catalyzed the 25-hydroxylation of cholecalciferol but also showed hydroxylation activity toward a variety of substrates, i.e. 1 alpha-hydroxycholecalciferol (at 25), testosterone (at 2 alpha and 16 alpha) and dehydroepiandrosterone (at 16 alpha). Amino terminal sequence of the purified cytochrome P-450 was determined by the manual sequence method to be H2N-Met-Asp-Pro-Val-leu-Val-Leu-Val-. The antibody elicited against the purified enzyme in a rabbit inhibited the cholecalciferol 25-hydroxylation activity by more than 90% with a concentration of 2 mg of immunoglobulin per nmol of cytochrome P-450.  相似文献   

10.
The membrane microsomal monooxygenase system can be reconstituted in solution from NADPH-specific flavoprotein and cytochrome P-450 which exist in the monomeric state in the presence of Emulgen 913 at molar ratio of the proteins and detergent of 1:1:300. Oxidized and dithionite-reduced monomers of cytochrome P-450 were much less thermostable than its initial aggregates, while thermal stability of NADPH-specific flavoprotein did not depend on its aggregation state. Binding spectra of cytochrome P-450 monomers with benzphetamine were atypical and had an absorbance minimum at 422 nm only. The addition of benzphetamine and/or flavoprotein to cytochrome P-450 monomers did not cause the spin equilibrium shift and the low-spin form content was higher than 85% in all cases. Investigation of the dependence of the initial rates of NADPH-dependent cytochrome P-450 reduction and benzphetamine oxidation on the stoichiometry of the flavoprotein and cytochrome P-450 at their constant total concentration showed that the molar ratio of 1:1 was required for maximal activity. Thus this system works in full accordance with the mass action law.  相似文献   

11.
Triton X-100, added to yeast Saccharomyces cerevisiae for the purpose of stabilization or solubilization affects the carbon monoxide difference spectrum of reduced cytochrome P-450 and consequently the measurement of cytochrome P-450. Eight minutes is needed for 450-nm peak to reach its maximum height. Triton X-100 is shown to behave as a Type II substrate (absorption maximum at 418 nm and minimum at 390 nm) and to modulate the spin state of cytochrome P-450 from high to low form. Low-spin yeast cytochrome P-450 is reduced more slowly than the high-spin form.  相似文献   

12.
In vitro studies on the nature of interaction of the neurotoxin MPTP with hepatic microsomal cytochrome P-450 were carried out. Spectral perturbation studies showed nitrogenous ligand type binding between MPTP and cytochrome P-450 with a peak at 423 nm and a broad trough at 400 nm. Scatchard analysis of MPTP-cytochrome P-450 binding suggested that MPTP binds to at least 2 species of cytochrome P-450--a high affinity binding species with an apparent spectral dissociation constant (Ks) of 372 microM and a low affinity species with Ks of 37.6 mM. EPR studies confirmed that MPTP is a type II substrate for the forms of cytochrome P-450 with which it interacts and causes a shift from the high spin state of cytochrome P-450 to the low spin state. MPTP is, thus, likely to be an effective inhibitor of cytochrome P-450.  相似文献   

13.
The effect of spin state on cytochrome P-450 reduction was studied with a reconstituted system consisting of P-450C21 and NADPH-cytochrome P-450 reductase (NADPH:ferricytochrome oxidoreductase, EC 1.6.2.4) purified from bovine adrenocortical microsomes. The absolute high spin contents of substrate-free, progesterone-bound and 17 alpha-hydroxyprogesterone-bound P-450C21 were estimated from the analysis of thermally induced difference spectra to be 25, 78 and 94% at 25 degrees C, respectively, in 50 mM potassium phosphate buffer (pH 7.2) containing 20% glycerol, 0.1 mM EDTA and 0.5% Emulgen 913. The effect of the high spin content on P-450C21 reduction by NADPH in the reconstituted system was analyzed by a steady-state method and by a stopped-flow method at 25 degrees C. The steady-state results showed that the rate of P-450C21 reduction was not affected by the high spin content of substrate-bound P-450C21 but was very slow without a steroid substrate. Biphasic reduction of P450C21 containing two first-order processes was observed in the stopped-flow experiment in the presence of either of the steroid substrates, but the reduction was very slow without the substrate. There were no significant differences in the rate and the amount of the fast phase of reduction between 17 alpha-hydroxyprogesterone-bound and progesterone-bound P-450C21. Both kinetic studies indicate that the spin state does not control the electron transfer from NADPH to P-450C21 via NADPH-cytochrome P-450 reductase but the presence of substrate is essential for the reduction of P-450C21.  相似文献   

14.
Adrenal mitochondrial cytochrome P-450 which functions in cholesterol side chain cleavage (P-450scc) exhibited type I (lambdamax 385, lambdamin 420 nm) and inverse type I (lambdamin 385, lambdamax 420 nm) difference spectra with several steroids. The magnitude and type of response were dependent on the particular steroid and on the extent to which cholesterol was bound to the cytochrome in the intact mitochondrion. the inverse type I difference spectrum induced by 3beta-hydroxy-pregn-5-ene-20-one (pregnenolone) was dependent on the proportion of high spin cholesterol-cytochrome P-450scc complexes. With rat adrenal mitochondria cholest-5-ene-3beta, 20alpha-diol (20alpha-hydroxycholesterol) invariably induced a smaller inverse type I response and, under conditions where cytochrome P-450scc was nearly free of cholesterol, even produced a small type I response. Two distinct steroid binding sites on cytochrome P-450scc were detected by, respectively, the slow type I response to cholest-5-ene-3beta, 25-diol (25-hydroxycholesterol) and the rapid type I response to a subsequent addition of cholest-5-ene-3beta, 20alpha, 22 R-triol (20alpha, 22R-dihydroxycholesterol). The relative proportions of the spectral responses to these steroids were dependent on the previous extent of adrenal activation by adrenocorticotropic hormone (ACTH), because this stimulatory process altered the combination of mitochondrial cholesterol with cytochrome P-450scc. It is proposed that the two steroid binding sites on cytochrome P-450scc interact with steroids in the following way: site I binds cholesterol, 25-hydroxycholesterol, and 20alpha, 22R-dihydroxycholesterol with formation of a partially high spin cytochrome; site II binds both pregnenolone and 20alpha-OH cholesterol resulting in a low spin cytochrome. Interactions between sites I and II are not competitive, and occupancy of site II ensures a low spin state irrespective of the occupancy of site I. A second mode of interaction by 20alpha, 22R-dihydroxycholesterol stabilizes a high spin cytochrome and is competitive with site II binding by 20alpha-hydroxycholesterol or pregnenolone. Formation of a maximally high spin cytochrome follows occupancy by 20alpha, 22R-dihydroxycholesterol at both sites.  相似文献   

15.
This paper is concerned with camphor-bound bacterial cytochrome P-450 and processes that alter its spin-state equilibrium and influence its transition to the nonactive form, cytochrome P-420, as well as its renaturation to the native camphor-bound cytochrome P-450. Spermine, a polycation carrying a charge of 4 +, and potassium, a monovalent cation, were shown to differently cause an increase of high-spin content of camphor-bound cytochrome P-450. The spermine-induced spin transition saturates around 75% of the high spin; a further addition of KCl to the spermine-containing sample shifted the spin state to 95% of the high spin. The volume change of these spin transitions as measured by the use of high pressure indicated an excess of -40 mL/mol for the sample containing potassium as compared to that containing spermine. These results suggest that the proposed privileged site for potassium has not been occupied by spermine and that pressure forces both the camphor and the potassium ion from its sites, allowing solvent movement into the protein as well as ordering of solvent by the excluded camphor and potassium. Cytochrome P-420 was produced from cytochrome P-450 by hydrostatic pressure in the presence of potassium, spermine, and cysteine. Potassium cation shows a bigger effect on the stability of cytochrome P-450 than spermine or cysteine, as revealed by a higher value of the pressure of half-inactivation, P1/2, and a bigger inactivation volume change. However, potassium cation did not promote renaturation of cytochrome P-420 to cytochrome P-450 while the presence of spermine did.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
S L Wagner  R D Gray 《Biochemistry》1985,24(14):3809-3814
Spectral changes accompanying the binding of the nonionic detergent n-octyl beta-D-glucopyranoside (n-octyl glucoside) to cytochrome P-450LM2 purified from liver microsomes of phenobarbital-treated rabbits have been compared to changes in catalytic activity obtained in a reconstituted system consisting of various levels of detergent, P-450LM2, and NADPH-cytochrome P-450 reductase. In the absence of substrate and reductase, addition of n-octyl glucoside to 2-3 mM resulted in a difference spectrum (detergent-bound minus detergent-free cytochrome) characterized by a small maximum at 390 nm and a minimum at 410 nm, suggestive of a slight stabilization of the high-spin (S = 5/2) state of the cytochrome. As the detergent concentration was increased to 4-8 mM (corresponding to maximal activity and pentameric or hexameric P-450), a new peak appeared at 427 nm while the minimum remained at 410 nm. Between 10 and 30 mM n-octyl glucoside (conditions which produced catalytically inactive and monomeric P-450) the minimum in the difference spectrum shifted to 390 nm and the maximum to 425 nm, characteristic of a shift in spin equilibrium toward low-spin (S = 1/2) cytochrome. At low and high detergent concentrations, substrate [d-benzphetamine with n-octyl glucoside or cyclohexane with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)] was bound to P-450LM2 with formation of high-spin P-450, although the increase in high-spin cytochrome was less at high detergent levels than at low. The affinity of P-450 for substrate decreased by 2-3-fold at high detergent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Compartmentation of ATP within renal proximal tubular cells   总被引:2,自引:0,他引:2  
Temperature-dependent spin changes of the heme iron atom on cytochrome P-450scc were studied by optical absorption and circular dichroism measurements. The optical absorption and circular dichroism spectra of cholesterol-free cytochrome P-450scc did not change between 10 and 26 degrees C. In contrast, the absorbance at 390 nm and the ellipticity at 330 nm of cholesterol-bound cytochrome P-450scc decreased upon temperature elevation, and the absorbance at 424 nm correspondingly increased. These spectral changes were reversible in respect of temperature. The far-ultraviolet circular dichroism spectra of both cholesterol-bound and -free cytochrome P-450scc were not affected by temperature. In addition, bound cholesterol molecule is not released from the cytochrome molecule by increasing temperature. From these results, we propose that temperature modulates specific interactions between the heme protein and bound cholesterol rather than the gross secondary structural changes of the protein.  相似文献   

18.
A form of cytochrome P-450 catalyzing lanosterol 14 alpha-demethylation (tentatively called "P-450(14)DM") was purified from microsomes of semi-anaerobically grown cells of Saccharomyces cerevisiae to gel electrophoretic homogeneity. An apparent monomeric Mr = 58,000 was estimated for the purified cytochrome by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both optical and EPR spectra of oxidized P-450(14)DM are characteristic of low spin ferric heme proteins, and its reduced CO complex showed a Soret absorption peak at 447 nm. As in the case of hepatic microsomal cytochromes P-450, the ethyl isocyanide complex of reduced P-450(14)DM was in a pH-dependent equilibrium between two states having Soret peaks at 429 and 453 nm, the equilibrium being considerably shifted toward the 453-nm state. Oxidized P-450(14)DM was peculiar in that in its CD spectrum there was a negative shoulder at 425 nm and the 350- and 414-nm troughs possessed larger and relatively smaller [theta] values, respectively, than those reported for other low spin ferric cytochromes P-450. Lanosterol was the only compound which caused a Type I spectral change in oxidized P-450(14)DM. The lanosterol-induced low to high spin state change was, however, only slight even at saturating concentrations of the sterol, indicating that the lanosterol-P-450(14)DM adduct was in a spin state equilibrium.  相似文献   

19.
Using the optical absorbance spectroscopy method, the interaction of a number of biospecific ligands (steroids, adrenodoxin) with homogeneous cytochrome P-450 (11 beta) from bovine adrenal mitochondria was investigated. The parameters of the steroid-protein interaction in a number of substrates and products of the 11 beta- and 18 (19)-hydroxylation with the active site of cytochrome P-450 (11 beta) were determined. A sharp decrease in the cytochrome affinity for steroids upon the insertion of the first hydroxy group was observed, which provides for a predominant formation of monohydroxylated products from the substrate and minimum amounts of dihydroxylated ones, despite the presence of more than one position for the substrate hydroxylation by cytochrome P-450 (11 beta). Some structural elements of the steroid molecule were determined as any alterations in these strongly affect the enzyme affinity for the steroid. These structures are: 1) delta 4-3-oxo structure; 2) either 21-hydroxy group of pregnen steroids or the one fulfilling its functions, 17 beta-hydroxy or 17-oxo group of androsten steroids, and 3) the 11th position of all the substrates under study. It was shown that the binding of various substrates into stoichiometric (1:1) steroid-protein complexes provides a transition to high spin state from 30-40% (cortisol, corticosterone) to 90-95% (11-deoxycorticosterone) of hemoprotein iron. Using the experimental system containing individual cytochrome P-450 (11 beta) and adrenodoxin, as well as the steroid and nonionic detergent Tween 20, it was shown that the parameters of substrate binding and hemoprotein spin equilibrium did not differ from the corresponding parameters of the cytochrome-adrenodoxin dienzyme complex. The peculiarities of the multiligand interactions in the 11 beta-hydroxylase system, involving cytochrome, substrates and ferredoxin demonstrate some analogy with a bacterial camphor hydroxylase system and some differences from the mitochondrial system for the side chain cleavage of cholesterol.  相似文献   

20.
The interactions between purified rat hepatic microsomal cytochrome P-450 and the type I ligands benzphetamine and cytochrome b5 have been studied in the presence of phospholipid using difference spectrophotometry. Cytochrome b5 was shown to interact with cytochrome P-450 to form a tight 1:1 complex (Kd = 275 nM), in which the proportion of high spin cytochrome P-450 was increased from 7 to 30%. The presence of saturating cytochrome b5 was shown to cause a decrease in the apparent Kd for benzphetamine binding from 111 microM to 40 microM. Likewise, the presence of benzphetamine was shown to cause a decrease in the apparent dissociation constant for cytochrome b5 binding to cytochrome P-450 (Kd = 90 nM). The above interactions were resolved into the basic equilibria inter-relating the various ligation states of the hemoprotein in an energetically closed eight-state free energy coupling model and the relative magnitudes of the microequilibria were analyzed to determine the degree of coupling of the interactions between cytochrome P-450 and both benzphetamine and cytochrome b5. Consequently, the spin state changes in cytochrome P-450 induced by benzphetamine and cytochrome b5 binding were shown to arise because these ligands interact 7 and 4 times more tightly with high spin cytochrome P-450, respectively. Furthermore, the data revealed that these ligands interact at independent sites on cytochrome P-450. Thus the effects of cytochrome b5 upon benzphetamine binding and vice versa were rationalized simply in terms of an increase in the proportion of a high spin (high affinity) conformation of cytochrome P-450 brought about by pre-equilibration with the effector ligand, with the intrinsic binding affinities of the two ligands for the low or high spin states remaining relatively unaltered. The thermodynamic parameters associated with the interactions between cytochrome P-450 and cytochrome b5, determined from the temperature dependence of these interactions, revealed that these protein interactions are entropy driven and probably occur by a hydrophobic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号