首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper records the first example of a demosponge spicule framework in a single specimen of a Devonian stromatoporoid from the Frasnian of southern Belgium. The small sample (2.5 × 2 cm) is a component in a brecciated carbonate from a carbonate mound in La Boverie Quarry 30 km east of Dinant. Because of the small size of the sample, generic identification is not confirmed, but the stromatoporoid basal skeleton is similar to the genus Stromatopora. The spicules are arranged in the calcified skeleton, but not in the gallery space, and are recrystallized as multi‐crystalline calcite. The spicules fall into two size ranges: 10–20 μm diameter and 500–2000 μm long for the large ones and between 5–15 μm diameter and 50–100 μm length for the small ones. In tangential section, the spicules are circular, they have a simple structure, and no axial canal has been preserved. The large spicules are always monaxons, straight or slightly curved styles or strongyles. The spicules most closely resemble halichondrid/axinellid demosponge spicules and are important rare evidence of the existence of spicules in Palaeozoic stromatoporoids, reinforcing the interpretation that stromatoporoids were sponges. The basal skeleton may have had an aragonitic spherulitic mineralogy. Furthermore, the spicules indicate that this stromatoporoid sample is a demosponge.  相似文献   

2.
Exceptionally well‐preserved specimens of the reticulosan sponge Cyathophycus loydelli from the Sandbian (Late Ordovician) Llanfawr Mudstones Formation of Llandrindod, Waes, UK, have been examined using scanning electron microscopy (SEM). The specimens include exquisitely detailed pyritized spicules, and granular pyritization of surrounding soft tissues. Spicules frequently show axial canals of diameter similar to those of modern siliceous sponges, with hexagonal symmetry typical of modern demosponges rather than hexactinellids. In one case, the axial filament is also preserved. The largest spicules (ray diameter >20 μm) show a complex structure, with a laminar external region similar to that of the extant hexactinellid Monorhaphis. Some spicules preserve sub‐micron detail of the spicule surface, resembling the reticulate collagenous sheath of Monorhaphis. The hexagonal symmetry of the canal confirms that at least some Reticulosa are not crown‐group hexactinellids, but stem‐group Hexactinellida or Demospongea, or stem‐group Silicea. This suggests that a square canal is a sufficient diagnostic feature of total‐group Hexactinellida, but that hexagonal canals were more widely distributed among Early Silicea and were probably not restricted to demosponges. Alternatively, comparison with the structure of modern verongiid fibres suggests that these may be homologous with the outer layers of Cyathophycus spicules, and Cyathophycus may instead be a stem‐group demosponge. The preserved detail of the surface layer shows that pyritization can preserve certain material with extraordinarily fine resolution.  相似文献   

3.
From the Kimmeridgian (Upper Jurassic) of Portugal, the coralline sponge Sobralispongia densespiculata nov. gen. and nov. sp. is described. Main characteristics are a crustose habit, a primary spicule skeleton of very densely packed styles and subtylostyles arranged in a plumose architecture, microscleres of possibly aster-type, and a microgranular to fibrous secondary calcareous skeleton. The primary mineralogy of the calcareous skeleton was probably high-Mg calcitic. An assignment to the demosponge Order Axinellida is proposed.  相似文献   

4.
Growth patterns of Lower Palaeozoic sponges   总被引:1,自引:0,他引:1  
Detailed studies of the growth patterns of modern siliceous sponges are restricted to demosponges and theoretical models. It is generally assumed that sponge growth is essentially incremental, with completion of one arbitrary unit being followed by external addition. All recent species are thick-walled, but Lower Palaeozoic sponges are dominated by thin-walled hexactinellids, with most Cambrian taxa consisting of a single spicule layer. Large populations of a primitive dictyospongiid have allowed the reconstruction of the growth patterns of their spicules and body morphology. The results indicate that growth occurred through continuous expansion of the globose body, accompanied by continuous enlargement of existing spicules, with a spicule size limit being reached only during the lifetime of a few individuals. It is noted that this skeletal growth pattern is otherwise restricted to deuterostomes. Consecutive appearance of successive spicule size orders appears to have maintained a maximum inhalant pore area. Comparisons with more limited data from two acanthose hexactinellids and a hazeliid demosponge indicate that an identical growth pattern operated in these species. The subsequent evolution of growth patterns is discussed, with various mechanisms producing the later thick-walled morphologies of hexactinellids and demosponges. The implications of these observations are discussed with reference to identification and systematics, since spicule size and arrangement are shown to vary during growth.  相似文献   

5.
The earliest evidence for animal life comes from the fossil record of 24-isopropylcholestane, a sterane found in Cryogenian deposits, and whose precursors are found in modern demosponges, but not choanoflagellates, calcareans, hexactinellids, or eumetazoans. However, many modern demosponges are also characterized by the presence of siliceous spicules, and there are no convincing demosponge spicules in strata older than the Cambrian. This temporal disparity highlights a problem with our understanding of the Precambrian fossil record – either these supposed demosponge-specific biomarkers were derived from the sterols of some other organism and are simply retained in modern demosponges, or spicules do not primitively characterize crown-group demosponges. Resolving this issue requires resolving the phylogenetic placement of another group of sponges, the hexactinellids, which not only make a spicule thought to be homologous to the spicules of demosponges, but also make their first appearance near the Precambrian/Cambrian boundary. Using two independent analytical approaches and data sets – traditional molecular phylogenetic analyses and the presence or absence of specific microRNA genes – we show that demosponges are monophyletic, and that hexactinellids are their sister group (together forming the Silicea). Thus, spicules must have evolved before the last common ancestor of all living siliceans, suggesting the presence of a significant gap in the silicean spicule fossil record. Molecular divergence estimates date the origin of this last common ancestor well within the Cryogenian, consistent with the biomarker record, and strongly suggests that siliceous spicules were present during the Precambrian but were not preserved.  相似文献   

6.
Germanium (Ge), in the form of germanic acid, at a Ge/Si molar ratio of 1.0 inhibits gemmule development and silica deposition in the marine demosponge Suberites domuncula. Lower Ge/Si ratios inhibit the growth in length of the silica spicules (tylostyles) producing short structures, but with relatively normal morphology and close to normal width; spherical protuberances occasionally occur on these spicules. A few of the short spicules possess completely round rather than pointed tips. Many of the latter develop when Ge is added (pulsed) to growing animals, thus inducing a change in spicule type. These results indicate that the growth in length of the axial filament is more sensitive to Ge inhibition than is silica deposition and that pointed spicule tips normally develop because the growth of the axial filament at the spicule tip is more rapid than silica deposition. Newly formed spicules initiate silica deposition at the spicule head but the absence of Ge-induced bulbs as in freshwater spicules (oxeas) leaves open the question of whether there is a silicification center(s) present in Suberites tylostyles. The morphogenesis of freshwater oxeas and of marine tyolstyles appears fundamentally different-bidirectional growth in the former and unidirectional growth in the latter. X-ray analysis demonstrate relatively uniform Ge incorporation into the silica spicules with considerable variation from spicule to spicule in the incorporated level. Increased silicic acid concentration induces the formation of siliceous spheres, suggesting that the axial filament becomes prematurely encased in silica.  相似文献   

7.
The first mitochondrial (mt) genomes of demosponges have recently been sequenced and appear to be markedly different from published eumetazoan mt genomes. Here we show that the mt genome of the haplosclerid demosponge Amphimedon queenslandica has features that it shares with both demosponges and eumetazoans. Although the A. queenslandica mt genome has typical demosponge features, including size, long noncoding regions, and bacterialike rRNA genes, it lacks atp9, which is found in the other demosponges sequenced to date. We found strong evidence of a recent transposon-mediated transfer of atp9 to the nuclear genome. In addition, A. queenslandica bears an incomplete tRNA set, unusual amino acid deletion patterns, and a putative control region. Furthermore, the arrangement of mt rRNA genes differs from that of other demosponges. These genes evolve at significantly higher rates than observed in other demosponges, similar to previously observed nuclear rRNA gene rates in other haplosclerid demosponges.  相似文献   

8.
Halysitid tabulates: sponges in corals' clothing   总被引:1,自引:0,他引:1  
Abundant pyritic pseudomorphs of monaxonic siliceous spicules (ophirhabds and ?heloclones) have been found entrapped in the calcareous skeleton of the halysitid tabulate Quepora ?agglomeratiformis (Whitfield) from late Ordovician limestones of Frobisher Bay, Baffin Island, Canada. The finding indicates a poriferan (choristid or sublithistid) affinity of halysitids, early Palaeozoic marine fossils related so far to corals. They probably derived from a monaxonic group of early demosponges that adapted during the Ordovician to Ca2+ stress conditions in epicontinental seas by excreting the excessive Ca2+ influx to their tissues as variously designed chains of basally secreted calcareous tubes.  相似文献   

9.
The two sponge classes, Hexactinellida and Demospongiae, comprise a skeleton that is composed of siliceous skeletal elements (spicules). Spicule growth proceeds by appositional layering of lamellae that consist of silica nanoparticles, which are synthesized via the sponge-specific enzyme silicatein. While in demosponges during maturation the lamellae consolidate to a solid rod, the lamellar organization of hexactinellid spicules largely persists. However, the innermost lamellae, near the spicule core, can also fuse to a solid axial cylinder. Similar to the fusion of siliceous nanoparticles and lamella, in several hexactinellid species individual spicules unify during sintering-like processes. Here, we study the different stages of a process that we termed bio-sintering, within the giant basal spicule (GBS) of Monorhaphis chuni. During this study, a major GBS protein component (27 kDa) was isolated and analyzed by MALDI-TOF-MS. The sequences were used to isolate and clone the encoding cDNA via degenerate primer PCR. Bioinformatic analyses revealed a significant sequence homology to silicatein. In addition, the native GBS protein was able to mediate bio-silica synthesis in vitro. We conclude that the syntheses of bio-silica in M. chuni, and the subsequent fusion of nanoparticles to lamellae, and finally to spicules, are enzymatically-driven by a silicatein-like protein. In addition, evidence is now presented that in hexactinellids those fusions involve sintering-like processes.  相似文献   

10.
The skeleton of the siliceous sponges (Porifera: Hexactinellida and Demospongiae) is supported by spicules composed of bio-silica. In the axial canals of megascleres, harboring the axial filaments, three isoforms of the enzyme silicatein (-alpha, -beta and -gamma) have been identified until now, using the demosponges Tethya aurantium and Suberites domuncula. Here we describe the composition of the proteinaceous components of the axial filament from small spicules, the microscleres, in the demosponge Geodia cydonium that possesses megascleres and microscleres. The morphology of the different spicule types is described. Also in G. cydonium the synthesis of the spicules starts intracellularly and they are subsequently extruded to the extracellular space. In contrast to the composition of the silicateins in the megascleres (isoforms: -alpha, -beta and -gamma), the axial filaments of the microscleres contain only one form of silicatein, termed silicatein-alpha/beta, with a size of 25kDa. Silicatein-alpha/beta undergoes three phosphorylation steps. The gene encoding silicatein-alpha/beta was identified and found to comprise the same characteristic sites, described previously for silicateins-alpha or -beta. It is hypothesized, that the different composition of the axial filaments, with respect to silicateins, contributes to the morphology of the different types of spicules.  相似文献   

11.
New taxa of uncertain position within the infraclass Polyneoptera (Gryllomantidae fam. nov.: Gryllomantis gen. nov., Lower Cretaceous; Mantoblattidae fam. nov.: Mantoblatta mira gen. et sp. nov., Upper Cretaceous) and within the order Dictyoptera (Pseudojantaropterix gen. nov., Lower Cretaceous) are described. The superfamily Umenocoleoidea of uncertain position within the latter order is discussed on the basis of new information on Jantarimantidae and some other Cretaceous Dictyoptera.  相似文献   

12.
The incertae sedis Carpathoporella Dragastan, 1995, reported from the Lower Cretaceous of the Western Tethyan domain, is usually interpreted as remains of calcareous algae (Dasycladales or Characeae). New thin-section material from the Aptian of Albania sheds light not only on its biogenic nature but also on the morphological variability of this taxon. In fact, Carpathoporella represents the debris of colonial, bushy, most likely gorgonid octocorals with tuberculated spheroids that may be fused at least near the basal root-like holdfast. Colony branching originates from longitudinally grooved calcareous branches or internodes. Possible relationships to other Upper Cretaceous to Palaeogene genera are discussed and a revised critical inventory of Cretaceous octocorals is presented. Due to the evidenced morphological features, Carpathoporella could either represent an ancestral isidid octocoral of the order Alcyonacea such as Moltkia Steenstrup or, due to the likely primary aragonitic skeletal mineralogy, a representative of Epiphaxum Lonsdale of the order Helioporacea. Due to morphological analogies, the new combination Carpathoporella elliotti (Radoičić) is proposed. In any case, the Lower Cretaceous record from Tethyan peri-reefal shallow-water carbonates is highlighted since numerous skeletal findings of fossil gorgonid Octocorallia were so far only known from Upper Cretaceous and younger strata of outer shelf environments of the boreal realm. The origin of deep-water Upper Cretaceous octocorals from Lower Cretaceous shallow-water taxa such as Carpathoporella is proposed as a possible further example of onshore/offshore evolutionary pattern.  相似文献   

13.
The siliceous skeleton of demosponges is constructed of spicules. We have studied the formation of spicules in primmorphs from Suberites domuncula. Scanning electron microscopy and transmission electron-microscopical (TEM) analyses have revealed, in the center of the spicules, an axial canal that is 0.3–1.6 m wide and filled with an axial filament. This filament is composed of the enzyme silicatein, which synthesizes the spicules. TEM analysis has shown that spicule formation starts intracellularly and ends extracellularly in the mesohyl. At the initial stage, the axial canal is composed only of silicatein, whereas membranous structures and fibrils (10–15 nm in width) can later also be identified, suggesting that intracellular components protrude into the axial canal. Antibodies against silicatein have been applied for Western blotting; intracellularly, silicatein is processed to the mature form (24 kDa), whereas the pro-enzyme with the propeptide (33 kDa) is detected extracellularly. Silicatein undergoes phosphorylation at five sites. Immunohistological analysis has shown that silicatein exists in the axial canal (axial filament) and on the surface of the spicules, suggesting that they grow by apposition. Finally, we have demonstrated that the enzymic reaction of silicatein is inhibited by anti-silicatein antibodies. These data provide, for the first time, a comprehensive outline of spicule formation.This work was supported by grants from the European Commission (SILIBIOTEC), the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung und Forschung Germany (project: Center of Excellence BIOTECmarin) and the International Human Frontier Science Program.  相似文献   

14.
Cambrian spicular sponge faunas are dominated by a distinctive assemblage of demosponges and hexactinellids that are known from Burgess shale-type faunas worldwide. Most of these are previously unknown outside the Lower-Middle Cambrian (and perhaps Tremadoc) and have no obvious close relatives in later sequences. This paper describes examples of Choia sp., Pirania auraeum sp. nov. and Hamptonia christi sp. nov. from the Arenig of Morocco, associated with isolated hexactinellid spicules. A summary of the stratigraphic ranges of the major Cambrian sponge lineages is provided. These indicate an environmental contrast in the Lower Palaeozoic evolution of hexactinellids and non-lithistid demosponges, with demosponges probably undergoing cryptic diversification in nearshore environments during the Upper Ordovician.  相似文献   

15.
皖南早寒武世荷塘组海绵骨针化石   总被引:10,自引:1,他引:9  
本文报道皖南休宁县早寒武世荷塘组黑色页岩中产出的海绵骨针化石组合,这些海绵骨针化石具有较高的丰度和分异度,它们以二轴四射针、T型针、三轴六射针和三轴五射针为主。骨针形态完整,并保存了内部轴丝、轴管以及同心圈层等微细构造。黄铁矿化在化石的保存中起了重要的作用,化石产出的时代可能为梅树村阶至筇竹寺阶(Tommotian-Atdabanian),这个化石组合证实了海绵动物在早寒武世已开始迅速分异。  相似文献   

16.
Calibration of the divergence times of sponge lineages and understanding of their phylogenetic history are hampered by the difficulty in recognizing crown versus stem groups in the fossil record. A new specimen from the lower Cambrian (Series 2, Stage 3; approximately 515 Ma) Sirius Passet Biota of North Greenland has yielded a diagnostic spicule assemblage of the extant demosponge lineages Haploscleromorpha and/or Heteroscleromorpha. The specimen has disarticulated approximately in situ, but represents an individual sponge that possessed monaxon spicules combined with a range of slightly smaller sigma, toxa and unique spiral morphologies. The combination of spicule forms, together with their relatively large size, suggests that the sponge represents the stem lineage of Haploscleromorpha + Heteroscleromorpha. This is the first crown‐group demosponge described from the early Cambrian and provides the most reliable calibration point currently available for phylogenetic studies.  相似文献   

17.
Botting, J.P., Muir, L.A., Xiao, S., Li, X. & Lin, J.‐P. 2012: Evidence for spicule homology in calcareous and siliceous sponges: biminerallic spicules in Lenica sp. from the Early Cambrian of South China. Lethaia, Vol. 45, pp. 463–475. The relationships of the extant sponge classes, and the nature of the last common ancestor of all sponges, are currently unclear. Early sponges preserved in the fossil record differ greatly from extant taxa, and therefore information from the fossil record is critical for testing hypotheses of sponge phylogenetic relationships that are based on modern taxa. New specimens of the enigmatic sponge Lenica sp., from the Early Cambrian Hetang Biota of South China, exhibit an unusual spicule structure. Each spicule consists of a siliceous core with an axial canal, an organic outer layer and a middle layer interpreted to have been originally calcium carbonate. This finding confirms previous work suggesting the existence of biminerallic spicules in early sponges. Combined with data from other early sponges, the new findings imply that the two fundamental spicule structures of modern sponges were derived from a compound, biminerallic precursor. Spicules are therefore homologous structures in Calcarea and Silicea, and if sponges are paraphyletic with respect to Eumetazoa, then spicules may also have been a primitive feature of Metazoa. □Calcarea, Early Cambrian, Hetang Biota, phylogeny, Silicea, taphonomy.  相似文献   

18.
Thirty-eight specimens belonging to four genera and 15 species of the nudibranch family Phyllidiidae were examined to investigate whether the morphology of their integumentary calcareous spicules and/or the occurrence of the spicules within the regions of the body could be used to distinguish genera and species. The spicules were studied separately from five regions of the body of each specimen—the foot, gills, mantle, dorsal pustules (or ridges in Reticulidia) and rhinophores. The mantle itself plus its pustules were found to possess the full complement of spicules in every individual. Four types of spicules were recorded overall—smooth diactines, centro-polytylote diactines, triactines and tetractines. Different regions of the body were found to possess different spicule types: (a) only smooth diactines in the gills, (b) both smooth diactines and triactines in the foot and (c) all of smooth diactines, centro-polytylote diactines and triactines in the mantle, dorsal pustules and the rhinophores. Among the genera, three types of spicules (smooth diactine, triactine, and tetractine) are present in Phyllidia, Phyllidiopsis and Reticulidia, but the form of the spicules is not diagnostic between these genera or between the constituent species. The fourth type of spicule (centro-polytylote diactine) is present exclusively in Phyllidiella, and is diagnostic for that genus. However, we failed to find any difference in spicule form, or composition, or location in the body between the three (closely related) species of Phyllidiella we investigated. Therefore, our key conclusion is that spicule morphology is an extremely important character to tell the genus Phyllidiella apart from all the other genera of the family, but it is not taxonomically informative at the level of species.  相似文献   

19.
Summary Liassic sponge mounds of the central High Atlas (Rich area, northern Morocco) have a stratigraphic range from the Lower/Upper Sinemurian boundary interval up to the lower parts of the Lower Pliensbachian (Carixian). The base of Liassic sponge mounds consists of a transgressive discontinuity, i.e., a condensed section of microbioclastic wackestones with firm- and hardgrounds, ferruginous stromatolites, sponge spicules and ammonites. The top of Liassic sponge mounds is an irregular palaeorelief covered by cherty marl-limestone rhythmites, namely hemipelagic spicular wackestones with radiolaria. In the Rich area, section Foum Tillicht, the sponge mound succession has a total thickness of about 250 meters. Within this succession we distinguished between three mound intervals. The lower mound interval shows only small, meter-scale sponge mounds consisting of boundstones with lyssakine sponges, commensalicTerebella and the problematicumRadiomura. This interval forms a shallowing-upward sequence culminating in a bedded facies withTubiphytes, calcareous algae (Palaeodasycladus), sponge lithoclasts, coated grains, and thin rims of marine cement. The middle mound interval is aggradational with decametric mounds and distinct thrombolitic textures and reefal cavities. The mound assemblage here consists of hexactinellid sponges, lithistid demosponges, non-rigid demosponges,Radiomura, Serpula (Dorsoserpula), Terebella, encrusting bryozoa, and minor contributions by calcareous sponges, and excavating sponges (typeAka). Thrombolites are dendrolitic and may reach sizes of several tens of centimeters, similar to the maximum size of siliceous sponges. The upper mound interval appears retrogradational and geometries change upsection from mound shapes to flat lenses and level-bottom, biostromal sponge banks. The biotic assemblage is similar to that of the middle mound interval and there is no difference between mound and bank communities. The demise of sponge mounds is successive from regional spread in the Sinemurian to more localised spots in the Lower Pliensbachian. This reduction correlates with an increasing influence of pelagic conditions. At Foum Tillicht, sponge mounds lack any photic contribution and there is virtually no differentiation into subcommunities between mound surface and cavity dwelling organisms. There is some evidence that the heterotrophic food web of mound communities was sourced by oxygen minimum zone edge effects, namely microbial recycling of essential elements such as N and P. Basin geometry suggests a waterdepth of several 100's of meters, well below the photic zone and possibly only controlled by the depth range of the oxygen minimum zone. Palaeoceanographic conditions of well-stratified deeper water masses diminished gradually during widespread transgression across the Sinemurian to Pliensbachian boundary culminating in the Lower Pliensbachianibex ammonite zone.  相似文献   

20.
Abundant and well-preserved assemblages of disarticulated sponge spicules occur in Middle and Late Cambrian platform carbonates of western Hunan, China. Assemblages recovered from 11 stratigraphic horizons include calcisponges, demosponges, and hexactinellids. Hexactinellida, in particular, are both abundant and diverse in Upper Cambrian carbonates. Comparison with spicule assemblages from Australia indicates that many of these taxa have long stratigraphic ranges, limiting their use in correlation. The morphological diversity of these spicules exceeds that known for living siliceous sponges, supporting the observation that during the Cambrian radiation, sponges, like other metazoans, evolved a variety of architectural forms not observed in later periods. Like conodonts, individual sponges can produce more than one spicule form; thus, an "apparatus genus" concept based on multiple co-occurring elements may eventually prove useful in the biostratigraphic and paleobiological interpretation of disarticulated sponge spicules. Four distinctive forms are recognized as new taxa: Australispongia sinensis new genus and species, Flosculus gracilis new genus and species, Pinnatispongia bengtsoni new genus and species, and Nabaviella paibiensis new species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号