首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aetiology of SARS: Koch's postulates fulfilled   总被引:2,自引:0,他引:2  
Proof that a newly identified coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV) is the primary cause of severe acute respiratory syndrome (SARS) came from a series of studies on experimentally infected cynomolgus macaques (Macaca fascicularis). SARS-CoV-infected macaques developed a disease comparable to SARS in humans; the virus was re-isolated from these animals and they developed SARS-CoV-specific antibodies. This completed the fulfilment of Koch's postulates, as modified by Rivers for viral diseases, for SARS-CoV as the aetiological agent of SARS. Besides the macaque model, a ferret and a cat model for SARS-CoV were also developed. These animal models allow comparative pathogenesis studies for SARS-CoV infections and testing of different intervention strategies. The first of these studies has shown that pegylated interferon-alpha, a drug approved for human use, limits SARS-CoV replication and lung damage in experimentally infected macaques. Finally, we argue that, given the worldwide nature of the socio-economic changes that have predisposed for the emergence of SARS and avian influenza in Southeast Asia, such changes herald the beginning of a global trend for which we are ill prepared.  相似文献   

2.
Li BJ  Tang Q  Cheng D  Qin C  Xie FY  Wei Q  Xu J  Liu Y  Zheng BJ  Woodle MC  Zhong N  Lu PY 《Nature medicine》2005,11(9):944-951
Development of therapeutic agents for severe acute respiratory syndrome (SARS) viral infection using short interfering RNA (siRNA) inhibitors exemplifies a powerful new means to combat emerging infectious diseases. Potent siRNA inhibitors of SARS coronavirus (SCV) in vitro were further evaluated for efficacy and safety in a rhesus macaque (Macaca mulatta) SARS model using clinically viable delivery while comparing three dosing regimens. Observations of SARS-like symptoms, measurements of SCV RNA presence and lung histopathology and immunohistochemistry consistently showed siRNA-mediated anti-SARS efficacy by either prophylactic or therapeutic regimens. The siRNAs used provided relief from SCV infection-induced fever, diminished SCV viral levels and reduced acute diffuse alveoli damage. The 10-40 mg/kg accumulated dosages of siRNA did not show any sign of siRNA-induced toxicity. These results suggest that a clinical investigation is warranted and illustrate the prospects for siRNA to enable a massive reduction in development time for new targeted therapeutic agents.  相似文献   

3.
Following intranasal administration, the severe acute respiratory syndrome (SARS) coronavirus replicated to high titers in the respiratory tracts of BALB/c mice. Peak replication was seen in the absence of disease on day 1 or 2, depending on the dose administered, and the virus was cleared within a week. Viral antigen and nucleic acid were detected in bronchiolar epithelial cells during peak viral replication. Mice developed a neutralizing antibody response and were protected from reinfection 28 days following primary infection. Passive transfer of immune serum to na?ve mice prevented virus replication in the lower respiratory tract following intranasal challenge. Thus, antibodies, acting alone, can prevent replication of the SARS coronavirus in the lung, a promising observation for the development of vaccines, immunotherapy, and immunoprophylaxis regimens.  相似文献   

4.
He C  Pang W  Yong X  Zhu H  Lei M  Duan Q 《DNA and cell biology》2005,24(8):491-495
Experimental studies were performed to determine the role of a newly isolated reovirus (ReoV) from a severe acute respiratory syndrome (SARS) patient in the etiology of this newly described serious respiratory syndrome. Four cynomologus macaques were inoculated with this reovirus (BYD1) in an attempt to replicate the infection and pathology observed in SARS. The body temperature of the infected monkeys was monitored three times a day, and blood and fecal samples were periodically collected for specific immunology determinations. On days 7 and 33 after inoculation, necropsies for pathological accessment and pathogen isolation were performed. The four infected macaques developed a fever on days 3 and 4 after inoculation, and maintainted a febrile state for 4-6 days. The highest temperature in the animals recorded was 40.4 degrees C. After a recovery phase, the macaques developed a second febrile condition. Antibody titers against the reovirus injected by the intravenous route occurred in higher number than those in the nasal cavity. Four macaque monkeys demonstrated diffuse alveolar damage, characterized by hemorrhagic pneumonia, serosanguineous exudates, formation of hyaline membranes, and type II pneumocyte hyperplasia, which were similar to those that have been noted in SARS patients. Lymphocytes decreased in the cortex of the lymph node and in the white pulp of the spleen. ReoV was detected in pneumonic tissue by virus isolation and RT-PCR. The macaques infected with the newly isolated reovirus developed a fever, diffuse alveolar damage and pulmonary interstitial inflammation similar to that noted in SARS patients. This evidence demonstrates that ReoV might have a primary role in the etiology of SARS.  相似文献   

5.
Macaque model for severe acute respiratory syndrome   总被引:13,自引:0,他引:13       下载免费PDF全文
Rhesus and cynomolgus macaques were challenged with 10(7) PFU of a clinical isolate of the severe acute respiratory syndrome (SARS) coronavirus. Some of the animals developed a mild self-limited respiratory infection very different from that observed in humans with SARS. The macaque model as it currently exists will have limited utility in the study of SARS and the evaluation of therapies.  相似文献   

6.
To determine the role of innate immune responses in controlling influenza A virus replication, rhesus macaques (RM) were administered pegylated IFN-alpha prior to virus challenge. Systemic and mucosal pegylated IFN-alpha administration induced expression of the interferon-stimulated genes (ISG) MxA and OAS in the airways. RM treated with IFN-alpha 24 hours prior to influenza virus challenge had significantly lower peak vRNA levels in the trachea compared to untreated animals. In addition to blunting viral replication, IFN-alpha treatment minimized the weight loss and spike in body temperature after influenza infection of RM. These results confirm the importance of IFN-alpha induced innate immune responses in the rapid control of influenza A virus replication in primates.  相似文献   

7.
No single animal model for severe acute respiratory syndrome (SARS) reproduces all aspects of the human disease. Young inbred mice support SARS-coronavirus (SARS-CoV) replication in the respiratory tract and are available in sufficient numbers for statistical evaluation. They are relatively inexpensive and easily accessible, but their use in SARS research is limited because they do not develop illness following infection. Older (12- to 14-mo-old) BALB/c mice develop clinical illness and pneumonitis, but they can be hard to procure, and immune senescence complicates pathogenesis studies. We adapted the SARS-CoV (Urbani strain) by serial passage in the respiratory tract of young BALB/c mice. Fifteen passages resulted in a virus (MA15) that is lethal for mice following intranasal inoculation. Lethality is preceded by rapid and high titer viral replication in lungs, viremia, and dissemination of virus to extrapulmonary sites accompanied by lymphopenia, neutrophilia, and pathological changes in the lungs. Abundant viral antigen is extensively distributed in bronchial epithelial cells and alveolar pneumocytes, and necrotic cellular debris is present in airways and alveoli, with only mild and focal pneumonitis. These observations suggest that mice infected with MA15 die from an overwhelming viral infection with extensive, virally mediated destruction of pneumocytes and ciliated epithelial cells. The MA15 virus has six coding mutations associated with adaptation and increased virulence; when introduced into a recombinant SARS-CoV, these mutations result in a highly virulent and lethal virus (rMA15), duplicating the phenotype of the biologically derived MA15 virus. Intranasal inoculation with MA15 reproduces many aspects of disease seen in severe human cases of SARS. The availability of the MA15 virus will enhance the use of the mouse model for SARS because infection with MA15 causes morbidity, mortality, and pulmonary pathology. This virus will be of value as a stringent challenge in evaluation of the efficacy of vaccines and antivirals.  相似文献   

8.
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) can be proteolytically activated by cathepsins B and L upon viral uptake into target cell endosomes. In contrast, it is largely unknown whether host cell proteases located in the secretory pathway of infected cells and/or on the surface of target cells can cleave SARS S. We along with others could previously show that the type II transmembrane protease TMPRSS2 activates the influenza virus hemagglutinin and the human metapneumovirus F protein by cleavage. Here, we assessed whether SARS S is proteolytically processed by TMPRSS2. Western blot analysis revealed that SARS S was cleaved into several fragments upon coexpression of TMPRSS2 (cis-cleavage) and upon contact between SARS S-expressing cells and TMPRSS2-positive cells (trans-cleavage). cis-cleavage resulted in release of SARS S fragments into the cellular supernatant and in inhibition of antibody-mediated neutralization, most likely because SARS S fragments function as antibody decoys. trans-cleavage activated SARS S on effector cells for fusion with target cells and allowed efficient SARS S-driven viral entry into targets treated with a lysosomotropic agent or a cathepsin inhibitor. Finally, ACE2, the cellular receptor for SARS-CoV, and TMPRSS2 were found to be coexpressed by type II pneumocytes, which represent important viral target cells, suggesting that SARS S is cleaved by TMPRSS2 in the lung of SARS-CoV-infected individuals. In summary, we show that TMPRSS2 might promote viral spread and pathogenesis by diminishing viral recognition by neutralizing antibodies and by activating SARS S for cell-cell and virus-cell fusion.  相似文献   

9.
10.
Severe acute respiratory syndrome (SARS), caused by a novel coronavirus (CoV) known as SARS-CoV, is a contagious and life-threatening respiratory illness with pneumocytes as its main target. A full understanding of how SARS-CoV would interact with lung epithelial cells will be vital for advancing our knowledge of SARS pathogenesis. However, an in vitro model of SARS-CoV infection using relevant lung epithelial cells is not yet available, making it difficult to dissect the pathogenesis of SARS-CoV in the lungs. Here, we report that SARS-CoV can productively infect human bronchial epithelial Calu-3 cells, causing cytopathic effects, a process reflective of its natural course of infection in the lungs. Indirect immunofluorescence studies revealed a preferential expression of angiotensin-converting enzyme 2 (ACE-2), the functional receptor of SARS-CoV, on the apical surface. Importantly, both ACE-2 and viral antigen appeared to preferentially colocalize at the apical domain of infected cells. In highly polarized Calu-3 cells grown on the membrane inserts, we found that cells exposed to virus through the apical rather than the basolateral surface showed high levels of viral replication. Progeny virus was released into the apical chamber at titers up to 5 logs higher than those recovered from the basolateral chambers of polarized cultures. Taken together, these results indicate that SARS-CoV almost exclusively entered and was released from the apical domain of polarized Calu-3 cells, which might provide important insight into the mechanism of transmission and pathogenesis of SARS-CoV.  相似文献   

11.
BACKGROUND: In vitro and clinical observations in HIV-infected patients receiving interferon alpha therapy have shown a reduction in HIV loads. Limited investigations have explored the innate or adaptive immune responses of IFN-alpha on SIV replication in vivo. METHODS: Seven chronically infected rhesus macaques were given pegylated IFN-alpha 2a (n = four) or saline (n = three) injections once weekly for 14 weeks. Weekly peripheral blood samples were taken for safety parameters, viral load determinations, and measurements of innate and adaptive immune responses. RESULTS: Pharmacokinetic measurements demonstrated therapeutic peg-IFN-alpha levels for the initial period of therapy and IFN-alpha inducible antiviral molecules were increased sporadically in the PBMC mRNA of the treatment group. Despite the demonstrable effect of the IFN-alpha injections, the treatment had no effect on plasma viral RNA levels. CONCLUSIONS: This work demonstrates that while short term IFN-alpha therapy induces innate antiviral immunity, it does not dramatically enhance or suppress viral replication. However, studies in the SIV model to determine therapeutic potential of chronic IFN-alpha therapy for the treatment of HIV will require macaque specific cytokines.  相似文献   

12.
Liang L  He C  Lei M  Li S  Hao Y  Zhu H  Duan Q 《DNA and cell biology》2005,24(8):485-490
Guinea pigs were inoculated with a reovirus (ReoV) and coronavirus (SARS-CoV) isolated from SARS patients to determine their potential role in the etiology of SARS. Animals infected with ReoV died between day 22 and day 30 postinoculation (PI) while 70% of the animals inoculated with ReoV and SARS-CoV died between day 4 to day 7 PI. The titer of neutralizing antibodies against ReoV and SARS-CoV ranged from 80 to 160 when the animals were inoculated with the two viruses, respectively, while the titer of the antibodies was just below 10 in coinfections. The animal inoculated with ReoV developed diffuse alveolar damage similar to the exudative and leakage inflammation found in SARS patients, and was characterized by diffuse hemorrhage, fibroid exudation, hyaline membrane formation, and type II pneumocytes hyperplasia in alveolar interstitia. The pulmonary epithelial necrosis, excoriation, and early fibrosis of pulmonary tissue were only observed in ReoV-SARS-CoV groups and in SARS-CoV/ReoV groups. Other typical pathological changes included hemorrhagic necrosis in lymph nodes and spleen and hydropic degeneration in the liver. On the contrary, guinea pigs infected with SARS-CoV only developed interstitial pneumonitis. Our experiment demonstrate that ReoV might be one of the primary causes of SARS, since simultaneous coinfection can duplicate the typical pathological changes similar to that of SARS patients. This guinea pig model may provide a useful animal model for SARS.  相似文献   

13.
The emergence of viral respiratory pathogens with pandemic potential, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and influenza A H5N1, urges the need for deciphering their pathogenesis to develop new intervention strategies. SARS-CoV infection causes acute lung injury (ALI) that may develop into life-threatening acute respiratory distress syndrome (ARDS) with advanced age correlating positively with adverse disease outcome. The molecular pathways, however, that cause virus-induced ALI/ARDS in aged individuals are ill-defined. Here, we show that SARS-CoV-infected aged macaques develop more severe pathology than young adult animals, even though viral replication levels are similar. Comprehensive genomic analyses indicate that aged macaques have a stronger host response to virus infection than young adult macaques, with an increase in differential expression of genes associated with inflammation, with NF-κB as central player, whereas expression of type I interferon (IFN)-β is reduced. Therapeutic treatment of SARS-CoV-infected aged macaques with type I IFN reduces pathology and diminishes pro-inflammatory gene expression, including interleukin-8 (IL-8) levels, without affecting virus replication in the lungs. Thus, ALI in SARS-CoV-infected aged macaques developed as a result of an exacerbated innate host response. The anti-inflammatory action of type I IFN reveals a potential intervention strategy for virus-induced ALI.  相似文献   

14.
15.
The clinical picture of severe acute respiratory syndrome (SARS) is characterized by pulmonary inflammation and respiratory failure, resembling that of acute respiratory distress syndrome. However, the events that lead to the recruitment of leukocytes are poorly understood. To study the cellular response in the acute phase of SARS coronavirus (SARS-CoV)-host cell interaction, we investigated the induction of chemokines, adhesion molecules, and DC-SIGN (dendritic cell-specific ICAM-3-grabbing nonintegrin) by SARS-CoV. Immunohistochemistry revealed neutrophil, macrophage, and CD8 T-cell infiltration in the lung autopsy of a SARS patient who died during the acute phase of illness. Additionally, pneumocytes and macrophages in the patient's lung expressed P-selectin and DC-SIGN. In in vitro study, we showed that the A549 and THP-1 cell lines were susceptible to SARS-CoV. A549 cells produced CCL2/monocyte chemoattractant protein 1 (MCP-1) and CXCL8/interleukin-8 (IL-8) after interaction with SARS-CoV and expressed P-selectin and VCAM-1. Moreover, SARS-CoV induced THP-1 cells to express CCL2/MCP-1, CXCL8/IL-8, CCL3/MIP-1alpha, CXCL10/IP-10, CCL4/MIP-1beta, and CCL5/RANTES, which attracted neutrophils, monocytes, and activated T cells in a chemotaxis assay. We also demonstrated that DC-SIGN was inducible in THP-1 as well as A549 cells after SARS-CoV infection. Our in vitro experiments modeling infection in humans together with the study of a lung biopsy of a patient who died during the early phase of infection demonstrated that SARS-CoV, through a dynamic interaction with lung epithelial cells and monocytic cells, creates an environment conducive for immune cell migration and accumulation that eventually leads to lung injury.  相似文献   

16.
目的建立敏感的SARS小动物模型。方法通过显微注射技术,将编码SARS-CoV细胞受体的人血管紧张素转换酶(hACE2)基因导入小鼠的基因组中制备了hACE2转基因小鼠,在小鼠ACE2(mACE2)启动子的调控下,hACE2蛋白在转基因小鼠的肺脏、心脏、肾脏和小肠表达。我们观察了野生型和转基因小鼠在SARS冠状病毒接种后病原学和病理学方面的反应。结果在接种后第3天和第7天,病毒能够更有效地在转基因小鼠的肺脏复制,而且转基因小鼠出现更严重的肺损伤。肺组织的损伤包括肺间质充血、出血,单核细胞、淋巴细胞浸润及血浆蛋白的渗出,肺泡上皮细胞增生、脱落,此外,在转基因小鼠的某些器官还发现了血管炎、变性和坏死等病理变化。在转基因小鼠的肺上皮细胞、血管内皮细胞和脑神经细胞检测到病毒抗原。结论转基因小鼠比野生型小鼠对SARS病毒更易感,而且表现出更接近SARS患者的病理变化。  相似文献   

17.
Activation of host innate immune responses was studied in severe acute respiratory syndrome coronavirus (SCV)-infected human A549 lung epithelial cells, macrophages, and dendritic cells (DCs). In all cell types, SCV-specific subgenomic mRNAs were seen, whereas no expression of SCV proteins was found. No induction of cytokine genes (alpha interferon [IFN-alpha], IFN-beta, interleukin-28A/B [IL-28A/B], IL-29, tumor necrosis factor alpha, CCL5, or CXCL10) or IFN-alpha/beta-induced MxA gene was seen in SCV-infected A549 cells, macrophages, or DCs. SCV also failed to induce DC maturation (CD86 expression) or enhance major histocompatibility complex class II expression. Our data strongly suggest that SCV fails to activate host cell cytokine gene expression in human macrophages and DCs.  相似文献   

18.
Severe acute respiratory syndrome coronavirus (SARS-CoV) infection often caused severe end stage lung disease and organizing phase diffuse alveolar damage, especially in the elderly. The virus-host interactions that governed development of these acute end stage lung diseases and death are unknown. To address this question, we evaluated the role of innate immune signaling in protection from human (Urbani) and a recombinant mouse adapted SARS-CoV, designated rMA15. In contrast to most models of viral pathogenesis, infection of type I, type II or type III interferon knockout mice (129 background) with either Urbani or MA15 viruses resulted in clinical disease outcomes, including transient weight loss, denuding bronchiolitis and alveolar inflammation and recovery, identical to that seen in infection of wildtype mice. This suggests that type I, II and III interferon signaling play minor roles in regulating SARS pathogenesis in mouse models. In contrast, infection of STAT1−/− mice resulted in severe disease, high virus titer, extensive pulmonary lesions and 100% mortality by day 9 and 30 post-infection with rMA15 or Urbani viruses, respectively. Non-lethal in BALB/c mice, Urbani SARS-CoV infection in STAT1−/− mice caused disseminated infection involving the liver, spleen and other tissues after day 9. These findings demonstrated that SARS-CoV pathogenesis is regulated by a STAT1 dependent but type I, II and III interferon receptor independent, mechanism. In contrast to a well documented role in innate immunity, we propose that STAT1 also protects mice via its role as an antagonist of unrestrained cell proliferation.  相似文献   

19.
Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel coronavirus. Since its associated morbidity and mortality have been postulated to be due to immune dysregulation, we investigated which of the viral proteins is responsible for chemokine overexpression. To delineate the viral and cellular factor interactions, the role of four SARS coronavirus proteins, including nonstructural protein 1 (nsp-1), nsp-5, envelope, and membrane, were examined in terms of cytokine induction. Our results showed that the SARS coronavirus nsp-1 plays an important role in CCL5, CXCL10, and CCL3 expression in human lung epithelial cells via the activation of NF-kappaB.  相似文献   

20.
To define the role of alpha/beta interferons (IFN-alpha/beta) in simian immunodeficiency virus (SIV) infection, IFN-alpha and IFN-beta mRNA levels and mRNA levels of Mx, an antiviral effector molecule, were determined in lymphoid tissues of rhesus macaques infected with pathogenic SIV. IFN-alpha/beta responses were induced during the acute phase and persisted in various lymphoid tissues throughout the chronic phase of infection. IFN-alpha/beta responses were most consistent in tissues with high viral RNA levels; thus, IFN-alpha/beta responses were not generally associated with effective control of SIV replication. IFN-alpha/beta responses were differentially regulated in different lymphoid tissues and at different stages of infection. The most consistent IFN-alpha/beta responses in acute and chronic SIV infection were observed in peripheral lymph nodes. In the spleen, only a transient increase in IFN-alpha/beta mRNA levels during acute SIV infection was observed. Further, IFN-alpha and IFN-beta mRNA levels showed a tissue-specific expression pattern during the chronic, but not the acute, phase of infection. In the acute phase of infection, SIV RNA levels in lymphoid tissues of rhesus macaques correlated with mRNA levels of both IFN-alpha and IFN-beta, whereas during chronic SIV infection only increased IFN-alpha mRNA levels correlated with the level of virus replication in the same tissues. In lymphoid tissues of all SIV-infected monkeys, higher viral RNA levels were associated with increased Mx mRNA levels. We found no evidence that monkeys with increased Mx mRNA levels in lymphoid tissues had enhanced control of virus replication. In fact, Mx mRNA levels were associated with high viral RNA levels in lymphoid tissues of chronically infected animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号