首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tal DM  Capasso JM  Munson K  Karlish SJ 《Biochemistry》2001,40(42):12505-12514
This paper describes a novel approach to specific oxidative cleavage of Na(+),K(+)-ATPase, mediated by Cu(2+) ions and a hydrophobic phenanthroline, 4,7-diphenyl-1,10-phenanthroline (DPP), in the presence of ascorbate and H(2)O(2). The cleavage produces two major fragments of the alpha subunit, with apparent molecular masses of 96.5 and 76 kDa, and N-termini near the cytoplasmic entrance of transmembrane segments M1 and M3, respectively, The kinetics indicate that both cleavages are mediated by a single Cu(2+)-DPP complex. We infer that M3 and M1 are in proximity near the cytoplasmic surface. The yields of 96.5 and 76 kDa fragments are not significantly affected by ligands that stabilize different E(1) and E(2) conformations. In E(2)(K) and E(2)P conformations, a minor 5.5 kDa fragment with its N-terminus in M10 is also observed. The 96.5 and 76 kDa fragments are indistinguishable from two fragments near M3 and M1 produced by Fe(2+)-catalyzed cleavage described previously [Goldshleger, R., and Karlish, S. J. D. (1999) J. Biol. Chem. 274, 16213-16221], whereas other Fe(2+)-catalyzed cleavage fragments in the cytoplasmic P and A domains are not observed with the Cu(2+)-DPP complex. These findings provide experimental support for the concept of two separate Fe(2+) sites. A homology model, with Na(+),K(+)-ATPase residues within transmembrane segments and connecting loops substituted into the crystal structure of Ca(2+)-ATPase, shows the proximity between the sequences HFIH in M3 and EVWK in M1, near the cytoplasmic surface. Thus, the model strongly supports the conclusions based on cleavages mediated by the Cu(2+)-DPP complex (or Fe(2+) at site 2). As a corollary, the cleavages provide evidence for similar packing of M1 and M3 of Na(+),K(+)-ATPase and Ca(2+)-ATPase.  相似文献   

2.
This work utilizes Fe(2+)-catalyzed cleavages and molecular modeling to obtain insight into conformations of cytoplasmic domains and ATP-Mg(2+) binding sites of Na(+),K(+)-ATPase. In E(1) conformations the ATP-Fe(2+) complex mediates specific cleavages at 712VNDS (P domain) and near 440VAGDA (N domain). In E(2)(K), ATP-Fe(2+) mediates cleavages near 212TGES (A domain), near 440VAGDA, and between residues 460-490 (N domain). Cleavages at high ATP-Fe(2+) concentrations do not support suggestions for two ATP sites. A new reagent, fluorescein-DTPA, has been synthesized. The fluorescein-DTPA-Fe(2+) complex mediates cleavages similar to those mediated by ATP-Fe(2+). The data suggest the existence of N to P domain interactions in E(1)Na, with bound ATP-Fe(2+) or fluorescein-DPTA-Fe(2+), A-N, and A-P interactions in E(2)(K), and provide testable constraints for model building. Molecular models based on the Ca(2+)-ATPase structure are consistent with the predictions. Specifically, high-affinity ATP-Mg(2+) binding in E(1) is explained with the N domain tilted ca. 80 degrees toward the P domain, by comparison with well-separated N and P domains in the Ca-ATPase crystal structure. With ATP-Mg(2+) docked, bound Mg(2+) is close to both D710 (in 710DGVNDS) and D443 (in 440VAGDASE). D710 is known to be crucial for Mg(2+) binding. The cleavage and modeling data imply that D443 could also be a candidate for Mg(2+) binding. Comparison of E(1).ATP,Mg(2+) and E(2) models suggests an explanation of the high or low ATP affinities, respectively. We propose a scheme of ATP-Mg(2+) and Mg(2+) binding and N, P, and A domain interactions in the different conformations of the catalytic cycle.  相似文献   

3.
This paper provides evidence for an interaction of D443 in the N domain of Na(+),K(+)-ATPase with a Mg(2+) ion. Wild-type, D443N/A/C and S445A mutants of porcine Na(+),K(+)-ATPase (alpha1beta1) have been expressed in Pichia pastoris. By comparison with wild-type, D443N reduces the turn-over rate by about 40%. Binding affinity of ATP, measured directly, was not affected by D443N, D443A, or D443C mutations. AMP-PNP-Fe(2+)-catalyzed oxidative cleavage of Na(+),K(+)-ATPase produces two characteristic fragments, at (708)VNDS (P domain) and near (440)VAGDA (N domain), respectively. In the D443N and D443A mutants, both cleavages are suppressed, indicating an interaction between the residues with AMP-PNP-Fe(2+) bound. Previous work suggested that with ATP-Fe(2+) bound the N and P domains come into proximity, both D710 and D443 making contact with a single Fe(2+) (or Mg(2+)) ion. However, the crystal structure of Ca(2+)-ATPase with bound AMP-PCP and Mg(2+) confirm the involvement of D703 (D710) but show that E439 (D443) is too far to make contact with the Mg(2+). By contrast, in the crystal structure with bound ADP, AlF(4), and Mg(2+), representing the E(1)-P conformation, two Mg(2+) ions were observed. Significantly, ADP-Fe(2+)-mediated oxidative cleavage of renal Na,K-ATPase produces the fragment near (440)VAGDA (N domain), while the cleavage at (708)VNDS (P domain) is almost completely absent. The results are explained economically by the hypothesis that ATP is bound with two Mg(2+) (Fe(2+)) ions, a "catalytic" Mg(2+) interacting with D710 via the gamma phosphate and a "structural" Mg(2+) interacting with D443 via the alpha and beta phosphates and a water molecule, respectively.  相似文献   

4.
During Ca(2+) transport by sarcoplasmic reticulum Ca(2+)-ATPase, the conformation change of ADP-sensitive phosphoenzyme (E1PCa(2)) to ADP-insensitive phosphoenzyme (E2PCa(2)) is followed by rapid Ca(2+) release into the lumen. Here, we find that in the absence of K(+), Ca(2+) release occurs considerably faster than E1PCa(2) to E2PCa(2) conformation change. Therefore, the lumenal Ca(2+) release pathway is open to some extent in the K(+)-free E1PCa(2) structure. The Ca(2+) affinity of this E1P is as high as that of the unphosphorylated ATPase (E1), indicating the Ca(2+) binding sites are not disrupted. Thus, bound K(+) stabilizes the E1PCa(2) structure with occluded Ca(2+), keeping the Ca(2+) pathway to the lumen closed. We found previously (Yamasaki, K., Wang, G., Daiho, T., Danko, S., and Suzuki, H. (2008) J. Biol. Chem. 283, 29144-29155) that the K(+) bound in E2P reduces the Ca(2+) affinity essential for achieving the high physiological Ca(2+) gradient and to fully open the lumenal Ca(2+) gate for rapid Ca(2+) release (E2PCa(2) → E2P + 2Ca(2+)). These findings show that bound K(+) is critical for stabilizing both E1PCa(2) and E2P structures, thereby contributing to the structural changes that efficiently couple phosphoenzyme processing and Ca(2+) handling.  相似文献   

5.
Na+,K+-ATPase (pig alpha1,beta1) has been expressed in the methylotrophic yeast Pichia pastoris. A protease-deficient strain was used, recombinant clones were screened for multicopy genomic integrants, and protein expression, and time and temperature of methanol induction were optimized. A 3-liter culture provides 300-500 mg of membrane protein with ouabain binding capacity of 30-50 pmol mg-1. Turnover numbers of recombinant and renal Na+,K+-ATPase are similar, as are specific chymotryptic cleavages. Wild type (WT) and a D369N mutant have been analyzed by Fe2+- and ATP-Fe2+-catalyzed oxidative cleavage, described for renal Na+,K+-ATPase. Cleavage of the D369N mutant provides strong evidence for two Fe2+ sites: site 1 composed of residues in P and A cytoplasmic domains, and site 2 near trans-membrane segments M3/M1. The D369N mutation suppresses cleavages at site 1, which appears to be a normal Mg2+ site in E2 conformations. The results suggest a possible role of the charge of Asp369 on the E1 <--> E2 conformational equilibrium. 5'-Adenylyl-beta,gamma-imidodi-phosphate(AMP-PNP)-Fe2+-catalyzed cleavage of the D369N mutant produces fragments in P (712VNDS) and N (near 440VAGDA) domains, described for WT, but only at high AMP-PNP-Fe2+ concentrations, and a new fragment in the P domain (near 367CSDKTGT) resulting from cleavage. Thus, the mutation distorts the active site. A molecular dynamic simulation of ATP-Mg2+ binding to WT and D351N structures of Ca2+-ATPase (analogous to Asp369 of Na+,K+-ATPase) supplies possible explanations for the new cleavage and for a high ATP affinity, which was observed previously for the mutant. The Asn351 structure with bound ATP-Mg2+ may resemble the transition state of the WT poised for phosphorylation.  相似文献   

6.
Based on the following observations we propose that the cytoplasmic loop between trans-membrane segments M6 and M7 (L6/7) of the alpha subunit of Na(+),K(+)-ATPase acts as an entrance port for Na(+) and K(+) ions. 1) In defined conditions chymotrypsin specifically cleaves L6/7 in the M5/M6 fragment of 19-kDa membranes, produced by extensive proteolysis of Na(+),K(+)-ATPase, and in parallel inactivates Rb(+) occlusion. 2) Dissociation of the M5/M6 fragment from 19-kDa membranes is prevented either by occluded cations or by competitive antagonists such as Ca(2+), Mg(2+), La(3+), p-xylylene bisguanidinium and m-xylylene bisguanidinium, or 1-bromo-2,4, 6-tris(methylisothiouronium)benzene and 1,3-dibromo-2,4,6-tris (methylisothiouronium)benzene (Br(2)-TITU(3+)). 3) Ca(2+) ions raise electrophoretic mobility of the M5/M6 fragment but not that of the other fragments of the alpha subunit. It appears that negatively charged residues in L6/7 recognize either Na(+) or K(+) ions or the competitive cation antagonists. Na(+) and K(+) ions are then occluded within trans-membrane segments and can be transported, whereas the cation antagonists are not occluded and block transport at the entrance port. The cytoplasmic segment of the beta subunit appears to be close to or contributes to the entrance port, as inferred from the following observations. 1) Specific chymotryptic cleavage of the 16-kDa fragment of the beta subunit to 15-kDa at 20 degrees C (Shainskaya, A., and Karlish, S. J. D. (1996) J. Biol. Chem. 271, 10309-10316) markedly reduces affinity for Br(2)-TITU(3+) and for Na(+) ions, detected by Na(+) occlusion assays or electrogenic Na(+) binding, whereas Rb(+) occlusion is unchanged. 2) Na(+) ions specifically protect the 16-kDa fragment against this chymotryptic cleavage.  相似文献   

7.
Tyr(122)-hydrophobic cluster (Y122-HC) is an interaction network formed by the top part of the second transmembrane helix and the cytoplasmic actuator and phosphorylation domains of sarcoplasmic reticulum Ca(2+)-ATPase. We have previously found that Y122-HC plays critical roles in the processing of ADP-insensitive phosphoenzyme (E2P) after its formation by the isomerization from ADP-sensitive phosphoenzyme (E1PCa(2)) (Wang, G., Yamasaki, K., Daiho, T., and Suzuki, H. (2005) J. Biol. Chem. 280, 26508-26516). Here, we further explored kinetic properties of the alanine-substitution mutants of Y122-HC to examine roles of Y122-HC for Ca(2+) release process in E2P. In the steady state, the amount of E2P decreased so that of E1PCa(2) increased with increasing lumenal Ca(2+) concentration in the mutants with K(0.5) 110-320 microm at pH 7.3. These lumenal Ca(2+) affinities in E2P agreed with those estimated from the forward and lumenal Ca(2+)-induced reverse kinetics of the E1PCa(2)-E2P isomerization. K(0.5) of the wild type in the kinetics was estimated to be 1.5 mM. Thus, E2P of the mutants possesses significantly higher affinities for lumenal Ca(2+) than that of the wild type. The kinetics further indicated that the rates of lumenal Ca(2+) access and binding to the transport sites of E2P were substantially slowed by the mutations. Therefore, the proper formation of Y122-HC and resulting compactly organized structure are critical for both decreasing Ca(2+) affinity and opening the lumenal gate, thus for Ca(2+) release from E2PCa(2). Interestingly, when K(+) was omitted from the medium of the wild type, the properties of the wild type became similar to those of Y122-HC mutants. K(+) binding likely functions via producing the compactly organized structure, in this sense, similarly to Y122-HC.  相似文献   

8.
Gastric H(+),K(+)-ATPase consists of alpha-subunit with 10 transmembrane domains and beta-subunit with a single transmembrane domain. We constructed cDNAs encoding chimeric beta-subunits between the gastric H(+),K(+)-ATPase and Na(+),K(+)-ATPase beta-subunits and co-transfected them with the H(+),K(+)-ATPase alpha-subunit cDNA in HEK-293 cells. A chimeric beta-subunit that consists of the cytoplasmic plus transmembrane domains of Na(+),K(+)-ATPase beta-subunit and the ectodomain of H(+),K(+)-ATPase beta-subunit assembled with the H(+),K(+)-ATPase alpha-subunit and expressed the K(+)-ATPase activity. Therefore, the whole cytoplasmic and transmembrane domains of H(+),K(+)-ATPase beta-subunit were replaced by those of Na(+),K(+)-ATPase beta-subunit without losing the enzyme activity. However, most parts of the ectodomain of H(+),K(+)-ATPase beta-subunit were not replaced by the corresponding domains of Na(+), K(+)-ATPase beta-subunit. Interestingly, the extracellular segment between Cys(152) and Cys(178), which contains the second disulfide bond, was exchangeable between H(+),K(+)-ATPase and Na(+), K(+)-ATPase, preserving the K(+)-ATPase activity intact. Furthermore, the K(+)-ATPase activity was preserved when the N-terminal first 4 amino acids ((67)DPYT(70)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the corresponding amino acids ((63)SDFE(66)) of Na(+),K(+)-ATPase beta-subunit. The ATPase activity was abolished, however, when 4 amino acids ((76)QLKS(79)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the counterpart ((72)RVAP(75)) of Na(+),K(+)-ATPase beta-subunit, indicating that this region is the most N-terminal one that discriminates the H(+),K(+)-ATPase beta-subunit from that of Na(+), K(+)-ATPase.  相似文献   

9.
Ma H  Zhong L  Inesi G  Fortea I  Soler F  Fernandez-Belda F 《Biochemistry》1999,38(47):15522-15527
Chimeric exchanges and mutations were produced in the Ca(2+)-ATPase (SERCA) to match (in the majority of cases) corresponding sequences of the Na(+),K(+)-ATPase. The effects of these mutations on the concentration dependence of the specific Ca(2+)-ATPase inhibition by thapsigargin (TG) and cyclopiazonic acid (CPA) were then determined. Extensive chimeric mutations on the large cytosolic loop, on the S4 stalk segment, and on the M3 transmembrane segments produced little or no modification of the Ca(2+)-ATPase sensitivity to either inhibitor. On the other hand, the presence of a six amino acid Na(+), K(+)-ATPase sequence within the S3 stalk segment of the Ca(2+)-ATPase raised 60-fold the apparent K(i) for TG and 250-fold the apparent K(i) for CPA. More limited mutations within the same S3 segment, however, affected differently the concentration dependence of the Ca(2+)-ATPase inhibition by TG or CPA. Specifically, single mutation of Phe256 to Val increased 20-fold the apparent K(i) for TG, while having very little effect on the apparent K(i) for CPA. These findings indicate significant overlap of the TG and CPA binding domains within the S3 stalk segment of the Ca(2+)-ATPase, where the contribution of each protein residue is dependent on the structures of the two inhibitors. Saturating concentrations of either or both TG and CPA produce an identical reduction of the affinity of the ATPase for ATP, suggesting that only one inhibitor can bind at any time due to significant overlap of their binding domains. It is suggested that perturbations produced by binding of either inhibitor within the stalk segment interfere with the long-range functional linkage between ATP utilization in the ATPase cytosolic region and Ca(2+) binding in the membrane-bound region.  相似文献   

10.
In this study we reveal regions of Na(+),K(+)-ATPase and H(+),K(+)-ATPase that are involved in cation selectivity. A chimeric enzyme in which transmembrane hairpin M5-M6 of H(+),K(+)-ATPase was replaced by that of Na(+),K(+)-ATPase was phosphorylated in the absence of Na(+) and showed no K(+)-dependent reactions. Next, the part originating from Na(+),K(+)-ATPase was gradually increased in the N-terminal direction. We demonstrate that chimera HN16, containing the transmembrane segments one to six and intermediate loops of Na(+),K(+)-ATPase, harbors the amino acids responsible for Na(+) specificity. Compared with Na(+),K(+)-ATPase, this chimera displayed a similar apparent Na(+) affinity, a lower apparent K(+) affinity, a higher apparent ATP affinity, and a lower apparent vanadate affinity in the ATPase reaction. This indicates that the E(2)K form of this chimera is less stable than that of Na(+),K(+)-ATPase, suggesting that it, like H(+),K(+)-ATPase, de-occludes K(+) ions very rapidly. Comparison of the structures of these chimeras with those of the parent enzymes suggests that the C-terminal 187 amino acids and the beta-subunit are involved in K(+) occlusion. Accordingly, chimera HN16 is not only a chimeric enzyme in structure, but also in function. On one hand it possesses the Na(+)-stimulated ATPase reaction of Na(+),K(+)-ATPase, while on the other hand it has the K(+) occlusion properties of H(+),K(+)-ATPase.  相似文献   

11.
The mgtC gene of Salmonella enterica serovar Typhimurium encodes a membrane protein of unknown function that is important for full virulence in the mouse. Since mgtC is part of an operon with mgtB which encodes a Mg(2+)-transporting P-type ATPase, MgtC was hypothesized to function in ion transport, possibly in Mg(2+) transport. Consequently, MgtC was expressed in Xenopus laevis oocytes, and its effect on ion transport was evaluated using ion selective electrodes. Oocytes expressing MgtC did not exhibit altered currents or membrane potentials in response to changes in extracellular H(+), Mg(2+), or Ca(2+), thus ruling out a previously postulated function as a Mg(2+)/H(+) antiporter. However, addition of extracellular K(+) markedly hyperpolarized membrane potential instead of the expected depolarization. Addition of ouabain to block the oocyte Na(+),K(+)-ATPase completely prevented hyperpolarization and restored the normal K(+)-induced depolarization response. These results suggested that the Na(+),K(+)-ATPase was constitutively activated in the presence of MgtC resulting in a membrane potential largely dependent on Na(+),K(+)-ATPase. Consistent with the involvement of Na(+),K(+)-ATPase, oocytes expressing MgtC exhibited an increased rate of (86)Rb(+) uptake and had increased intracellular free [K(+)] and decreased free [Na(+)] and ATP. The free concentrations of Mg(2+) and Ca(2+) and cytosolic pH were unchanged, although the total intracellular Ca(2+) content was slightly elevated. These results suggest that the serovar Typhimurium MgtC protein may be involved in regulating membrane potential but does not directly transport Mg(2+) or another ion.  相似文献   

12.
By means of a functional expression system and site-directed mutagenesis, we analyzed the role of the putative K(+)-binding site, Glu-345, located in the fourth transmembrane segment of the gastric H(+),K(+)-ATPase alpha-subunit. In the present study, we used several mutants, with alanine, isoleucine, leucine, glutamine, valine, lysine, and aspartic acid instead of Glu-345, and analyzed the H(+),K(+)-ATPase partial reactions of the mutants to determine the precise role of this residue. All the mutants except E345Q exhibited no H(+),K(+)-ATPase activity. The E345Q mutant showed 3-times higher affinity for ATP. This mutation shifted the optimum pH toward a more alkaline one. The E345A, E345I, E345L, E345V as well as E345Q mutants were phosphorylated with ATP as in the case of the wild-type H(+),K(+)-ATPase, whereas the E345K mutant was not phosphorylated. The E345Q mutant was dephosphorylated in the presence of K(+), but its affinity for K(+) was significantly lower than that of the wild type. The E345A, E345I, E345L, and E345V mutants did not exhibit sensitivity to K(+) in the dephosphorylation step below 3 mM K(+). Therefore, Glu-345 is important for the conformational change induced by K(+), especially in the dephosphorylation step in which K(+) reacts with the enzyme from the luminal side with high affinity and accelerates the release of inorganic phosphate. The glutamic acid in the fourth transmembrane segment is conserved, and was found to be involved in the cation-induced conformational change in H(+),K(+)-ATPase as well as Na(+),K(+)-ATPase and Ca(2+)-ATPase, however, the precise roles of the side chain in the function were different.  相似文献   

13.
The plasma membrane H(+)-ATPase AHA2 of Arabidopsis thaliana, which belongs to the P-type ATPase superfamily of cation-transporting ATPases, pumps protons out of the cell. To investigate the mechanism of ion transport by P-type ATPases we have mutagenized Asp(684), a residue in transmembrane segment M6 of AHA2 that is conserved in Ca(2+)-, Na(+)/K(+)-, H(+)/K(+)-, and H(+)-ATPases and which coordinates Ca(2+) ions in the SERCA1 Ca(2+)-ATPase. We describe the expression, purification, and biochemical analysis of the Asp(684) --> Asn mutant, and provide evidence that Asp(684) in the plasma membrane H(+)-ATPase is required for any coupling between ATP hydrolysis, enzyme conformational changes, and H(+)-transport. Proton pumping by the reconstituted mutant enzyme was completely abolished, whereas ATP was still hydrolyzed. The mutant was insensitive to the inhibitor vanadate, which preferentially binds to P-type ATPases in the E(2) conformation. During catalysis the Asp(684) --> Asn enzyme accumulated a phosphorylated intermediate whose stability was sensitive to addition of ADP. We conclude that the mutant enzyme is locked in the E(1) conformation and is unable to proceed through the E(1)P-E(2)P transition.  相似文献   

14.
Epithelial Na(+) channel (ENaC)-mediated Na(+) absorption and BK channel-mediated K(+) secretion in the cortical collecting duct (CCD) are modulated by flow, the latter requiring an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), microtubule integrity, and exocytic insertion of preformed channels into the apical membrane. As axial flow modulates HCO(3)(-) reabsorption in the proximal tubule due to changes in both luminal Na(+)/H(+) exchanger 3 and H(+)-ATPase activity (Du Z, Yan Q, Duan Y, Weinbaum S, Weinstein AM, Wang T. Am J Physiol Renal Physiol 290: F289-F296, 2006), we sought to test the hypothesis that flow also regulates H(+)-ATPase activity in the CCD. H(+)-ATPase activity was assayed in individually identified cells in microperfused CCDs isolated from New Zealand White rabbits, loaded with the pH-sensitive dye BCECF, and then subjected to an acute intracellular acid load (NH(4)Cl prepulse technique). H(+)-ATPase activity was defined as the initial rate of bafilomycin-inhibitable cell pH (pH(i)) recovery in the absence of luminal K(+), bilateral Na(+), and CO(2)/HCO(3)(-), from a nadir pH of ~6.2. We found that 1) an increase in luminal flow rate from ~1 to 5 nl·min(-1)·mm(-1) stimulated H(+)-ATPase activity, 2) flow-stimulated H(+) pumping was Ca(2+) dependent and required microtubule integrity, and 3) basal and flow-stimulated pH(i) recovery was detected in cells that labeled with the apical principal cell marker rhodamine Dolichos biflorus agglutinin as well as cells that did not. We conclude that luminal flow modulates H(+)-ATPase activity in the rabbit CCD and that H(+)-ATPases therein are present in both principal and intercalated cells.  相似文献   

15.
The structure of a synthetic peptide corresponding to the fifth membrane-spanning segment (M5) in Na(+),K(+)-ATPase in sodium dodecyl sulfate (SDS) micelles was determined using liquid-state nuclear magnetic resonance (NMR) spectroscopy. The spectra reveal that this peptide is substantially less alpha-helical than the corresponding M5 peptide of Ca(2+)-ATPase. A well-defined alpha-helix is shown in the C-terminal half of the peptide. Apart from a short helical stretch at the N-terminus, the N-terminal half contains a non-helical region with two proline residues and sequence similarity to a non-structured transmembrane element of the Ca(2+)-ATPase. Furthermore, this region spans the residues implicated in Na(+) and K(+) transport, where they are likely to offer the flexibility needed to coordinate Na(+) as well as K(+) during active transport.  相似文献   

16.
The Na(+),K(+)-ATPase plays key roles in brain function. Recently, missense mutations in the Na(+),K(+)-ATPase were found associated with familial rapid-onset dystonia parkinsonism (FRDP). Here, we have characterized the functional consequences of FRDP mutations Phe785Leu and Thr618Met. Both mutations lead to functionally altered, but active, Na(+),K(+)-pumps, that display reduced apparent affinity for cytoplasmic Na(+), but the underlying mechanism differs between the mutants. In Phe785Leu, the interaction of the E(1) form with Na(+) is defective, and the E(1)-E(2) equilibrium is not displaced. In Thr618Met, the Na(+) affinity is reduced because of displacement of the conformational equilibrium in favor of the K(+)-occluded E(2)(K(2)) form. In both mutants, K(+) interaction at the external activating sites of the E(2)P phosphoenzyme is normal. The change of cellular Na(+) homeostasis is likely a major factor contributing to the development of FRDP in patients carrying the Phe785Leu or Thr618Met mutation. Phe785Leu moreover interferes with Na(+) interaction on the extracellular side and reduces the affinity for ouabain significantly. Analysis of two additional Phe(785) mutants, Phe785Leu/Leu786Phe and Phe785Tyr, demonstrated that the aromatic function of the side chain, as well as its exact position, is critical for Na(+) and ouabain binding. The effects of substituting Phe(785) could be explained by structural modeling, demonstrating that Phe(785) participates in a hydrophobic network between three transmembrane segments. Thr(618) is located in the cytoplasmic part of the molecule near the catalytic site, and the structural modeling indicates that the Thr618Met mutation interferes with the bonding pattern in the catalytic site in the E(1) form, thereby destabilizing E(1) relative to E(2)(K(2)).  相似文献   

17.
Treatment of Ca2(+)-ATPase from sarcoplasmic reticulum with V8 protease from Staphylococcus aureus produced appreciable amounts of a Ca2(+)-ATPase fragment (p85) in the presence of Ca2+ (E1 conformation of the enzyme), along with many other peptide fragments that were also formed in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (E2 conformation). p85 was formed as a carboxyl-terminal cleavage product of Ca2(+)-ATPase by a split of the peptide bond between Glu-231 and Ile-232. Other conformation-dependent V8 splits were localized to the "hinge" region, involved in ATP binding, between the middle and COOH-terminal one-third of the Ca2(+)-ATPase polypeptide chain. Representative split products in this region (p48,p31) were identified as NH2-terminal and COOH-terminal cleavage products of p85. In the membrane p85 probably remains associated with its complementary NH2-terminal fragment(s) and retains the capacity to bind Ca2+ as evidenced by resistance to V8 degradation in Ca2+ and ability to become phosphorylated by ATP. However, the hydrolysis rate of the phosphorylated enzyme is reduced, indicating that peptide cleavage at Glu-231 interferes with Ca2+ transport steps after phosphorylation. Binding of Ca2+ to V8 and tryptic fragments of Ca2(+)-ATPase was studied on the basis of Ca2(+)-induced changes in electrophoretic mobility and 45Ca2+ autoradiography after transfer of peptides to Immobilon membranes. These data indicate binding by the NH2-terminal 1-198 amino acid residues (corresponding to the tryptic A2 fragment) and the COOH-terminal 715-1001 amino acid residues (corresponding to p31). By contrast the central portion of Ca2(+)-ATPase, including the NH2-terminal portion of p85, is devoid of Ca2+ binding. These results question an earlier proposition that Ca2(+)-binding is located to the "stalk" region of Ca2(+)-ATPase (Brandl, C. J., Green, N. M., Korczak, B., and MacLennan, D. H.) (1986) Cell 44, 597-607) but are in agreement with recent data obtained by oligonucleotide-directed mutagenesis of Ca2(+)-ATPase (Clarke, D. M., Loo, T. W., Inesi, G., and MacLennan, D. H. (1989) Nature 339, 476-478). These different studies suggest that Ca2+ translocation sites may have an intramembranous location and are formed predominantly by the carboxyl-terminal part of the Ca2(+)-ATPase polypeptide chain.  相似文献   

18.
Proposed models for the catalytic subunit of the E1E2-ATPases (ion pumps) predict that the first four transmembrane domains (M1 - M4) reside in the NH2 terminal one-third of the molecule, and the remainder (M5 - M10) in the COOH terminal one-third. The amino-acid sequences for the 5'-(p-fluorosulfonyl)-benzoyl-adenosine (FSBA) binding region residing just before M5 segment are very well conserved among distinct ion pumps. Taking advantage of these models, we have constructed a set of chicken chimeric ion pumps between the (Na++ K+)-ATPase alpha-subunit and the Ca(2+)-ATPase using the FSBA-binding site as an exchange junction, thereby preserving overall topological structure as E1E2 ATPases. From various functional assays on these chimeric ion pumps, including ouabain-inhibitable ATPase activity, Ca2+ binding, Ca2+ uptake, and subunit assembly based on immuno-coprecipitation, the following conclusions were obtained: (a) A (Na++ K+)-ATPase inhibitor, ouabain, binds to the regions before M4 in the alpha-subunit and exerts its inhibitory effect. (b) The regions after M5 of the (Na++ K+)-ATPase alpha-subunit bind the beta-subunit, even when these regions are incorporated into the corresponding domains in the Ca(2+)-ATPase. (c) The corresponding domains of the Ca(2+)-ATPase, the regions after M5, bind 45Ca even when it is incorporated into the corresponding position of the (Na++ K+)-ATPase alpha-subunit.  相似文献   

19.
A cytoplasmic nontransport K(+)/Rb(+) site in the P-domain of the Na(+), K(+)-ATPase has been identified by anomalous difference Fourier map analysis of crystals of the [Rb(2)].E(2).MgF(4)(2-) form of the enzyme. The functional roles of this third K(+)/Rb(+) binding site were studied by site-directed mutagenesis, replacing the side chain of Asp(742) donating oxygen ligand(s) to the site with alanine, glutamate, and lysine. Unlike the wild-type Na(+), K(+)-ATPase, the mutants display a biphasic K(+) concentration dependence of E(2)P dephosphorylation, indicating that the cytoplasmic K(+) site is involved in activation of dephosphorylation. The affinity of the site is lowered significantly (30-200-fold) by the mutations, the lysine mutation being most disruptive. Moreover, the mutations accelerate the E(2) to E(1) conformational transition, again with the lysine substitution resulting in the largest effect. Hence, occupation of the cytoplasmic K(+)/Rb(+) site not only enhances E(2)P dephosphorylation but also stabilizes the E(2) dephosphoenzyme. These characteristics of the previously unrecognized nontransport site make it possible to account for the hitherto poorly understood trans-effects of cytoplasmic K(+) by the consecutive transport model, without implicating a simultaneous exposure of the transport sites toward the cytoplasmic and extracellular sides of the membrane. The cytoplasmic K(+)/Rb(+) site appears to be conserved among Na(+), K(+)-ATPases and P-type ATPases in general, and its mode of operation may be associated with stabilizing the loop structure at the C-terminal end of the P6 helix of the P-domain, thereby affecting the function of highly conserved catalytic residues and promoting helix-helix interactions between the P- and A-domains in the E(2) state.  相似文献   

20.
The molecular architecture of the yeast plasma membrane H(+)-ATPase phosphorylation region was explored by Fe(2+)-catalyzed cleavage. An ATP-Mg(2+).Fe(2+) complex was found to act as an affinity cleavage reagent in the presence of dithiothreitol/H(2)O(2). Selective enzyme cleavage required bound adenine nucleotide, either ATP or ADP, in the presence of Mg(2+). The fragment profile included a predominant N-terminal 61-kDa fragment, a minor 37-kDa fragment, and three prominent C-terminal fragments of 39, 36, and 30 kDa. The 61-kDa N-terminal and 39-kDa C-terminal fragments were predicted to originate from cleavage within the conserved MLT(558)GDAVG sequence. The 37-kDa fragment was consistent with cleavage within the S4/M4 sequence PVGLPA(340)V, while the 30-kDa and 36-kDa C-terminal fragments appeared to originate from cleavage in or around sequences D(646)TGIAVE and DMPGS(595)ELADF, respectively. The latter are spatially close to the highly conserved motif GD(634)GVND(638)APSL and conserved residues Thr(558) and Lys(615), which have been implicated in coordinating Mg(2+) and ATP. Overall, these results demonstrate that Fe(2+) associated with ATP and Mg(2+) acts as an affinity cleavage agent of the H(+)-ATPase with backbone cleavage occurring in conserved regions known to coordinate metal-nucleotide complexes. This study provides support for a three-dimensional organization of the phosphorylation region of the yeast plasma membrane H(+)-ATPase that is consistent with, but not identical to, typical P-type enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号