首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Aim Alternative hypotheses concerning genetic structuring of the widespread endemic New Guinean forest pademelons (Thylogale) based on current taxonomy and zoogeography (northern, southern and montane species groupings) and preliminary genetic findings (western and eastern regional groupings) are investigated using mitochondrial sequence data. We examine the relationship between the observed phylogeographical structure and known or inferred geological and historical environmental change during the late Tertiary and Quaternary. Location New Guinea and associated islands. Methods We used primarily museum specimen collections to sample representatives from Thylogale populations across New Guinea and three associated islands. Mitochondrial cytochrome b and control region sequence data were used to construct phylogenies and estimate the timing of population divergence. Results Phylogenetic analyses indicated subdivision of pademelons into ‘eastern’ and ‘western’ regional clades. This was largely due to the genetic distinctiveness of north‐eastern and eastern peninsula populations, as the ‘western’ clade included samples from the northern, southern and central regions of New Guinea. Two tested island groups were closely related to populations north of the Central Cordillera; low genetic differentiation of pademelon populations between north‐eastern New Guinea and islands of the Bismarck Archipelago is consistent with late Pleistocene human‐mediated translocations, while the Aru Islands population showed divergence consistent with cessation of gene flow in the mid Pleistocene. There was relatively limited genetic divergence between currently geographically isolated populations in subalpine and nearby mid‐montane or lowland regions. Main conclusions Phylogeographical structuring does not conform to zoogeographical expectations of a north/south division across the cordillera, nor to current species designations, for this generalist forest species complex. Instead, the observed genetic structuring of Thylogale populations has probably been influenced by geological changes and Pleistocene climatic changes, in particular the recent uplift of the north‐eastern Huon Peninsula and the lowering of tree lines during glacial periods. Low sea levels during glacial maxima also allowed gene flow between the continental Aru Island group and New Guinea. More work is needed, particularly multi‐taxon comparative studies, to further develop and test phylogeographical hypotheses in New Guinea.  相似文献   

2.
Aim To compare the phylogeny of the eucalypt and melaleuca groups with geological events and ages of fossils to discover the time frame of clade divergences. Location Australia, New Caledonia, New Guinea, Indonesian Archipelago. Methods We compare published molecular phylogenies of the eucalypt and melaleuca groups of the plant family Myrtaceae with geological history and known fossil records from the Cretaceous and Cenozoic. Results The Australasian eucalypt group includes seven genera, of which some are relictual rain forest taxa of restricted distribution and others are species‐rich and widespread in drier environments. Based on molecular and morphological data, phylogenetic analyses of the eucalypt group have identified two major clades. The monotypic Arillastrum endemic to New Caledonia is related in one clade to the more species‐rich Angophora, Corymbia and Eucalyptus that dominate the sclerophyll vegetation of Australia. Based on the time of rifting of New Caledonia from eastern Gondwana and the age of fossil eucalypt pollen, we argue that this clade extends back to the Late Cretaceous. The second clade includes three relictual rain forest taxa, with Allosyncarpia from Arnhem Land the sister taxon to Eucalyptopsis of New Guinea and the eastern Indonesian archipelago, and Stockwellia from the Atherton Tableland in north‐east Queensland. As monsoonal, drier conditions evolved in northern Australia, Arnhem Land was isolated from the wet tropics to the east and north during the Oligocene, segregating ancestral rain forest biota. It is argued also that the distribution of species in Eucalyptopsis and Eucalyptus subgenus Symphyomyrtus endemic in areas north of the stable edge of the Australian continent, as far as Sulawesi and the southern Philippines, is related to the geological history of south‐east Asia‐Australasia. Colonization (dispersal) may have been aided by rafting on micro‐continental fragments, by accretion of arc terranes onto New Guinea and by land brought into closer proximity during periods of low sea‐level, from the Late Miocene and Pliocene. The phylogenetic position of the few northern, non‐Australian species of Eucalyptus subgenus Symphyomyrtus suggests rapid radiation in the large Australian sister group(s) during this time frame. A similar pattern, connecting Australia and New Caledonia, is emerging from phylogenetic analysis of the Melaleuca group (Beaufortia suballiance) within Myrtaceae, with Melaleuca being polyphyletic. Main conclusion The eucalypt group is an old lineage extending back to the Late Cretaceous. Differentiation of clades is related to major geological and climatic events, including rifting of New Caledonia from eastern Gondwana, development of monsoonal and drier climates, collision of the northern edge of the Australian craton with island arcs and periods of low sea level. Vicariance events involve dispersal of biota.  相似文献   

3.
The moist and cool cloud forests of East Africa represent a network of isolated habitats that are separated by dry and warm lowland savannah, offering an opportunity to investigate how strikingly different selective regimes affect species diversification. Here, we used the passerine genus Zosterops (white‐eyes) from this region as our model system. Species of the genus occur in contrasting distribution settings, with geographical mountain isolation driving diversification, and savannah interconnectivity preventing differentiation. We analyze (1) patterns of phenotypic and genetic differentiation in high‐ and lowland species (different distribution settings), (2) investigate the potential effects of natural selection and temporal and spatial isolation (evolutionary drivers), and (3) critically review the taxonomy of this species complex. We found strong phenotypic and genetic differentiation among and within the three focal species, both in the highland species complex and in the lowland taxa. Altitude was a stronger predictor of phenotypic patterns than the current taxonomic classification. We found longitudinal and latitudinal phenotypic gradients for all three species. Furthermore, wing length and body weight were significantly correlated with altitude and habitat type in the highland species Z. poliogaster. Genetic and phenotypic divergence showed contrasting inter‐ and intraspecific structures. We suggest that the evolution of phenotypic characters is mainly driven by natural selection due to differences in the two macro‐habitats, cloud forest and savannah. In contrast, patterns of neutral genetic variation appear to be rather driven by geographical isolation of the respective mountain massifs. Populations of the Z. poliogaster complex, as well as Z. senegalensis and Z. abyssinicus, are not monophyletic based on microsatellite data and have higher levels of intraspecific differentiation compared to the currently accepted species.  相似文献   

4.
An ecological comparison, with special reference to tropical affinities, is made between the rain forests of New Zealand and south-east Australia, based on the distribution of seventy physiognomic-structural attributes in mature forests at selected sites (ten in New Zealand, twenty in Australia, and four in New Guinea to represent authentic humid tropical lowland rain forest). The structural data were recorded in a standard pro forma and subjected to classification, ordination and two-parameter analysis. In the classification, the Australian and New Zealand sites, with two exceptions, separated at the four-group level. The more complex (cool subtropical) Australian types were the least related to the New Zealand forests, which are closest to Australian simple (submontane) types. There was a similar distinction in the ordination, in which the trend along the first two vectors was latitudinal, correlated with extremes of temperature and with moisture availability. The relative contributions of the structural attributes to the various site groupings in the classification and ordination are enumerated, and provide an objective scale of comparison of the forests. Structural attributes designated by analysis as exclusively or preferentially tropical by reference to the New Guinea sites are then used to assess degree of tropical affinity. The simplified cool temperate (montane) forests dominated by one species of Notho-fagus in New Zealand and Australia are closely related. The Australian forests of the sub-montane zone (mean annual temperature 12–15° C) which are typically dominated by Ceratopetalum apetalum, Nothofagus moorei or Doryphora sassafras, are similar to the podocarp-broadleaf forests, with or without kauri, of New Zealand. The Australian forests of the cool subtropical zone (mean annual temperature 15–17°C) which have mixed dominants, have some affinities with the kauri-podocarp-broadleaf forests of North Auckland. In New Zealand, a broadleaf type in which kauri is absent or rare on basalt in North Auckland (lat. 35° S) was the most complex forest sampled and is marginally subtropical.  相似文献   

5.
The Australasian archipelago is biologically extremely diverse as a result of a highly puzzling geological and biological evolution. Unveiling the underlying mechanisms has never been more attainable as molecular phylogenetic and geological methods improve, and has become a research priority considering increasing human‐mediated loss of biodiversity. However, studies of finer scaled evolutionary patterns remain rare particularly for megadiverse Melanesian biota. While oceanic islands have received some attention in the region, likewise insular mountain blocks that serve as species pumps remain understudied, even though Australasia, for example, features some of the most spectacular tropical alpine habitats in the World. Here, we sequenced almost 2 kb of mitochondrial DNA from the widespread diving beetle Rhantus suturalis from across Australasia and the Indomalayan Archipelago, including remote New Guinean highlands. Based on expert taxonomy with a multigene phylogenetic backbone study, and combining molecular phylogenetics, phylogeography, divergence time estimation, and historical demography, we recover comparably low geographic signal, but complex phylogenetic relationships and population structure within R. suturalis. Four narrowly endemic New Guinea highland species are subordinated and two populations (New Guinea, New Zealand) seem to constitute cases of ongoing speciation. We reveal repeated colonization of remote mountain chains where haplotypes out of a core clade of very widespread haplotypes syntopically might occur with well‐isolated ones. These results are corroborated by a Pleistocene origin approximately 2.4 Ma ago, followed by a sudden demographic expansion 600,000 years ago that may have been initiated through climatic adaptations. This study is a snapshot of the early stages of lineage diversification by peripatric speciation in Australasia, and supports New Guinea sky islands as cradles of evolution, in line with geological evidence suggesting very recent origin of high altitudes in the region.  相似文献   

6.
We used a comparative phylogeographical approach to investigate the origins of the disjunct wet forest biota of the Golfo Dulce region along the Pacific slope of Costa Rica. This region is isolated by Pacific dry forests north and south and isolated from Caribbean wet forests by mountains. We studied three sympatric lowland frog species in the Craugastor fitzingeri species group that prefer wet forest but differ in their response to dry habitats. In dry forest, C. fitzingeri can survive along streams while C. crassidigitus and C. talamancae are entirely absent. We collected samples from across the ranges of all three species, and obtained mitochondrial DNA sequence data from the COI and cytochrome b genes. We observed significant phylogeographical structure in C. crassidigitus and C. talamancae, but much less in C. fitzingeri, demonstrating that mountain barriers and dry forest habitat have reduced mitochondrial gene flow in the strictly wet-forest species. Additionally, we discovered that the Golfo Dulce and Central Panama populations of C. crassidigitus appear to have diverged in the Pliocene or earlier, suggesting that the dry forest separating these populations is old. Our phylogenetic analysis of 12 of approximately 16 species of the C. fitzingeri species group suggests that the three lowland species are each other's closest relatives. Because of this shared phylogenetic history, we attribute the striking differences in phylogeographical structure to the different ecologies of the frogs. In summary, we find that what appear to be minor differences in the natural history of these three closely related species may profoundly impact the potential for dispersal, range size, and cladogenesis.  相似文献   

7.
Mesalina are small lacertid lizards occurring in the Saharo‐Sindian deserts from North Africa to the east of the Iranian plateau. Earlier phylogenetic studies indicated that there are several species complexes within the genus and that thorough taxonomic revisions are needed. In this study, we aim at resolving the phylogeny and taxonomy of the M. brevirostris species complex distributed from the Middle East to the Arabian/Persian Gulf region and Pakistan. We sequenced three mitochondrial and three nuclear gene fragments, and in combination with species delimitation and species‐tree estimation, we infer a time‐calibrated phylogeny of the complex. The results of the genetic analyses support the presence of four clearly delimited species in the complex that diverged approximately between the middle Pliocene and the Pliocene/Pleistocene boundary. Species distribution models of the four species show that the areas of suitable habitat are geographically well delineated and nearly allopatric, and that most of the species have rather divergent environmental niches. Morphological characters also confirm the differences between the species, although sometimes minute. As a result of all these lines of evidence, we revise the taxonomy of the Mesalina brevirostris species complex. We designate a lectotype for Mesalina brevirostris Blanford, 1874; resurrect the available name Eremias bernoullii Schenkel, 1901 from the synonymy of M. brevirostris; elevate M. brevirostris microlepis (Angel, 1936) to species status; and describe Mesalina saudiarabica, a new species from Saudi Arabia.  相似文献   

8.
Aim This paper documents reconstructions of the vegetation patterns in Australia, Southeast Asia and the Pacific (SEAPAC region) in the mid‐Holocene and at the last glacial maximum (LGM). Methods Vegetation patterns were reconstructed from pollen data using an objective biomization scheme based on plant functional types. The biomization scheme was first tested using 535 modern pollen samples from 377 sites, and then applied unchanged to fossil pollen samples dating to 6000 ± 500 or 18,000 ± 1000 14C yr bp . Results 1. Tests using surface pollen sample sites showed that the biomization scheme is capable of reproducing the modern broad‐scale patterns of vegetation distribution. The north–south gradient in temperature, reflected in transitions from cool evergreen needleleaf forest in the extreme south through temperate rain forest or wet sclerophyll forest (WSFW) and into tropical forests, is well reconstructed. The transitions from xerophytic through sclerophyll woodlands and open forests to closed‐canopy forests, which reflect the gradient in plant available moisture from the continental interior towards the coast, are reconstructed with less geographical precision but nevertheless the broad‐scale pattern emerges. 2. Differences between the modern and mid‐Holocene vegetation patterns in mainland Australia are comparatively small and reflect changes in moisture availability rather than temperature. In south‐eastern Australia some sites show a shift towards more moisture‐stressed vegetation in the mid‐Holocene with xerophytic woods/scrub and temperate sclerophyll woodland and shrubland at sites characterized today by WSFW or warm‐temperate rain forest (WTRF). However, sites in the Snowy Mountains, on the Southern Tablelands and east of the Great Dividing Range have more moisture‐demanding vegetation in the mid‐Holocene than today. South‐western Australia was slightly drier than today. The single site in north‐western Australia also shows conditions drier than today in the mid‐Holocene. Changes in the tropics are also comparatively small, but the presence of WTRF and tropical deciduous broadleaf forest and woodland in the mid‐Holocene, in sites occupied today by cool‐temperate rain forest, indicate warmer conditions. 3. Expansion of xerophytic vegetation in the south and tropical deciduous broadleaf forest and woodland in the north indicate drier conditions across mainland Australia at the LGM. None of these changes are informative about the degree of cooling. However the evidence from the tropics, showing lowering of the treeline and forest belts, indicates that conditions were between 1 and 9 °C (depending on elevation) colder. The encroachment of tropical deciduous broadleaf forest and woodland into lowland evergreen broadleaf forest implies greater aridity. Main conclusions This study provides the first continental‐scale reconstruction of mid‐Holocene and LGM vegetation patterns from Australia, Southeast Asia and the Pacific (SEAPAC region) using an objective biomization scheme. These data will provide a benchmark for evaluation of palaeoclimate simulations within the framework of the Palaeoclimate Modelling Intercomparison Project.  相似文献   

9.
Green pythons, which are regionally variable in colour patterns, are found throughout the lowland rainforest of New Guinea and adjacent far northeastern Australia. The species is popular in commercial trade and management of this trade and its impacts on natural populations could be assisted by molecular identification tools. We used mitochondrial nucleotide sequences and a limited allozyme data to test whether significantly differentiated populations occur within the species range. Phylogenetic analysis of mtDNA sequences revealed hierarchal phylogeographic structure both within New Guinea and between New Guinea and Australia. Strongly supported reciprocally monophyletic mitochondrial lineages, northern and southern, were found either side of the central mountain range that runs nearly the length of New Guinea. Limited allozyme data suggest that population differentiation is reflected in the nuclear as well as the mitochondrial genome. A previous morphological analysis did not find any phenotypic concordance with the pattern of differentiation observed in the molecular data. The southern mitochondrial lineage includes all of the Australian haplotypes, which form a single lineage, nested among the southern New Guinean haplotypes.  相似文献   

10.
Aim This study addresses the origins of terrestrial biodiversity of the Fijian islands using the ant genus Lordomyrma (Hymenoptera: Formicidae: Myrmicinae) as a model system. We derive the evolution of the genus and determine its closest extra-Fijian relatives from geological data, molecular phylogenetic reconstruction and divergence estimates. Location Ant taxa were sampled in the Southwest Pacific, Melanesia, Southeast Asia, Australia and mainland China. Methods Phylogeny and divergence estimates of the ant genus Lordomyrma based on four nuclear genes (28S, ArgK, LW Rh, CAD) plus data on Indo-Pacific geological history are used to address current hypotheses regarding the origins of the Fijian biota. Results The genus Lordomyrma probably originated in mainland Asia, with subsequent colonization of Australia and the Pacific. The Fijian Lordomyrma clade is monophyletic, and originated c. 8.8 Ma, when it diverged from a sister group in Papua New Guinea. Main conclusions The colonization of Fiji by Lordomyrma is probably a result of long-distance dispersal from New Guinea, possibly aided by island hopping across the Vitiaz Arc. The timeline of diversification in Lordomyrma is broadly congruent with the Miocene fragmentation of the Vitiaz Arc and the Pliocene emergence of Vanua Levu. The biotic shuttle hypothesis, which posits ‘Eua Island as the source of Fijian endemics, is rejected based on the sister relationship of Fiji and New Guinea lineages, as well as on the Miocene submergence of the terrane below sea level. The diversity of Fijian Lordomyrma results from the radiation of a single lineage, which diverged from a New Guinea sister group. The genus appears to have originated in Asia rather than in Australia.  相似文献   

11.
12.
The glider genus Petaurus comprises a group of arboreal and nocturnal marsupial species from New Guinea and Australia. Molecular data were generated in order to examine phylogenetic relationships among species within the genus and explore the time-scale of diversification and biogeographic history of the genus in Australia and New Guinea. All known species and subspecies of Petaurus (with the exception of P. biacensis) were sequenced for two mitochondrial genes (ND2 and ND4) and one nuclear marker (omega-globin gene). Phylogenetic analyses confirmed the monophyly of the genus relative to other petaurids and showed a sister relationship of P. australis to the rest of Petaurus. The analyses revealed that currently recognised species of Petaurus formed distinct mitochondrial DNA (mtDNA) clades. Considerable mtDNA diversity and seven distinct clades were identified within the species P. breviceps, with the distribution of each clade showing no correspondence with the distributional limits of known subspecies. Molecular dating analyses using BEAST suggested an early to mid-Miocene origin (18–24 mya) for the genus. Ancestral area reconstructions, using BayesTraits, did not resolve the location for the centre of origin of Petaurus, but provided evidence for at least one dispersal event from New Guinea to Australia that led to the evolution of extant Australian populations of P. breviceps, P. norfolcensis and P. gracilis. The timing of this dispersal event appears to pre-date the Pleistocene, adding to the growing number of studies that suggest faunal connections occurred between Australia and New Guinea in the Late Miocene to Pliocene period.  相似文献   

13.
The genus Elaeocarpus contains approximately 360 species and occurs in mesic forest communities from India, through to China, Southeast Asia, New Guinea, Australia, and New Caledonia. Elaeocarpus fossils are best known from the Eocene to the Miocene of Australia and the late Pliocene–early Pleistocene of India, but have not been documented from East Asia before. Here we describe six new species of Elaeocarpus, E. nanningensis sp. nov. from the late Oligocene Yongning Formation of the Nanning Basin, E. presikkimensis sp. nov. from the Miocene Erzitang Formation of the Guiping Basin, E. prerugosus sp. nov., E. prelacunosus sp. nov., E. preserratus sp. nov., and E. preprunifolioides sp. nov. from the late Miocene Foluo Formation of the Nankang Basin in Guangxi, South China. This is the first reliable report for the genus occurring in East Asia, and the fossils indicate that Elaeocarpus had colonized this region by the late Oligocene and represented by a morphologically diverse group of species by the late Miocene. This sheds new insights into the timing and migration patterns of the genus in East Asia. Elaeocarpus is typically a rainforest genus occurring in mesic forests. Based on the habitat of their morphologically similar modern relatives we propose that these three sedimentary basins were warm and wet adjacent to mountainous regions with the evergreen or rain forests during the late Oligocene to Miocene.  相似文献   

14.
Aim To test the hypothesis that animal communities within environmentally relatively uniform lowland forests are characterized by low beta diversity, both in tropical and in temperate areas. Location Lowland forests in the basins of the Sepik and Ramu rivers in New Guinea, the Amazon river in Bolivia, and the Elbe and Dyje rivers in the Czech Republic. Methods A network of 5–6 study sites spanning distances from 20–80 to 300–500 km in each study area was systematically surveyed for all frogs, using visual detection and call tracking. The community data were analysed for alpha and beta diversity. Results Local (alpha) diversity of frog communities was similar in the two tropical areas, New Guinea (mean ± SE of 22 ± 1.4 species per site) and Amazonia (24 ± 1.7 species), but was significantly lower in Europe (8 ± 0.8 species). In Amazonia, 36 of the total of 70 species were recorded from single sites. In contrast, widespread species dominated in Europe, whereas New Guinea exhibited an intermediate pattern with both local and widespread species well represented. The rate of species accumulation across different sites was lowest in Europe, intermediate in New Guinea and highest in Amazonia. The regional species diversity, expressed as the combined number of species from five study sites, was 1.5 times higher than the local species diversity at a single site in Europe, 2.0 times higher in New Guinea and 2.7 times higher in Amazonia. The proportion of species shared between communities decreased with geographic distance in New Guinea and Europe, but not in Amazonia. Main conclusions Frog communities in the lowland tropical rain forests of New Guinea and Amazonia had similar numbers of species, but differed in their beta diversity. More species in Amazonia had restricted distributions than in New Guinea. Both tropical areas had markedly higher alpha and beta diversity than the temperate area in Europe.  相似文献   

15.
Aim We use data from 13 mountain regions and surrounding lowland areas to identify (1) the origins, traits and cultural uses of alien plant species that establish in mountains, (2) the alien species that are most likely to be a threat and (3) how managers might use this information to prevent further invasions. Location Australia, Canada, Chile, India, New Zealand, South Africa, Spain, Switzerland, USA. Methods Lists of alien species were compiled for mountains and their surrounding or nearby lowlands. Principal co‐ordinates analysis was performed on a matrix of similarities created using presence/absence data for alien species. The significance of differences between means for (1) similarity metrics of lowland and mountain groups and (2) species traits of lowland and mountain alien floras was determined using t‐tests. In seven of the 13 mountain regions, lists of alien species undergoing management were compiled. The significance of differences between proportions of traits for species requiring and not requiring management input was determined with chi‐square tests. Results We found that the proximal lowland alien flora is the main determinant of a mountain region’s alien species composition. The highest similarities between mountain floras were in the Americas/Pacific Region. The majority of alien species commonly found in mountains have agricultural origins and are of little concern to land managers. Woody species and those used for ornamental purposes will often pose the greatest threat. Main conclusions Given the documented potential threat of alien species invading mountains, we advise natural resource managers to take preventive measures against the risk of alien plant invasion in mountains. A strategy for prevention should extend to the surrounding lowland areas and in particular regulate the introduction of species that are already of management concern in other mountains as well as climatically pre‐adapted alien mountain plants. These may well become more problematic than the majority of alien plants currently in mountains.  相似文献   

16.
The world's richest mangrove‐restricted avifauna is in Australia and New Guinea. The history of differentiation of the species involved and their patterns of intraspecific genetic variation remain poorly known. Here, we use sequence data derived from two mitochondrial protein‐coding genes to study the evolutionary history of eight co‐distributed mangrove‐restricted and mangrove‐associated birds from the Australian part of this region. Utilizing a comparative phylogeographical framework, we observed that the study species present concordantly located phylogeographical breaks across their shared geographical distribution, a plausible signature of common mechanisms of vicariance underlying this pattern. Barriers such as the Canning Gap, Bonaparte Gap, and the Carpentarian Gaps all had important but varying degrees of impact on the studied species. The Burdekin Gap along Australia's eastern seaboard probably had only a minor influence as a barrier to gene flow in mangrove birds. Statistical phylogeographical simulations were able to discriminate among alternative scenarios involving six different geographical and temporal population separations. Species exhibiting recent colonizations into mangroves include Rhipidura phasiana, Myiagra ruficollis, and Myzomela erythrocephala. By contrast, Peneoenanthe pulverulenta, Pachycephala melanura, Pachycephala lanioides, Zosterops luteus, and Colluricincla megarhyncha all had deeper histories, reflected as more marked phylogeographical divisions separating populations on the eastern seaboard/Cape York Peninsula from more western regions such as the Arnhem Land, the Pilbara, and the Kimberley. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 574–598.  相似文献   

17.
Aim Comparative responses of Nothofagus species to water deficits were studied to determine whether rainfall regimes could limit the latitudinal ranges of tropical and temperate forest species. Location The study species are native to New Guinea, New Caledonia, Australia, New Zealand, Chile and Argentina. Methods Seedlings of Nothofagus species from a broad latitudinal range were grown in a common environment. Changes in conductance, relative water content and water potential were measured in detached shoots, and together with measurements of tissue injury and biomass allocation, were compared between tropical and temperate species. Results Differences in responses to water deficits between tropical and temperate species appear to reflect differences in climate regimes. In particular, species native to ever‐wet rainfall regimes in New Guinea, where water deficits are generally likely to be short‐lived, were effective at conserving water by reduced stomatal conductance. In contrast, high‐latitude evergreen species on average showed greater development of traits that should enhance water uptake. This was particularly evident in Nothofagus cunninghamii from southern Australia, which developed low water potentials at moderate levels of tissue water deficit and higher root:leaf biomass than tropical species, potentially allowing carbon assimilation to be maximized during warmer, but drier, summer months. However, water relations varied among high‐latitude species. In particular, deciduous species on average showed higher rates of conductance, even during moderate levels of tissue water deficit, than evergreen species. Main conclusions The tropical species appear to conserve water during periods of water deficit (relative to temperate species), which is unlikely to have substantial opportunity costs for growth in ever‐wet climates. However, spread of tropical species to higher latitudes may be limited by water conservation strategies that limit carbon gain in climates in which temperature seasonality is often paired with drier summers. Evergreen species from high latitudes, such as N. cunninghamii, commonly showed traits that should increase water uptake. However, this strategy, while probably maximizing growth in temperate climates with cool winters and drier summers, must limit competitiveness at lower latitudes in summer‐wet climates. We conclude that responses to water regimes may make a significant contribution to the latitudinal limits of some evergreen rain forest species.  相似文献   

18.
The Crocidura obscurior or West African pygmy shrew complex is endemic to West African forests from south‐eastern Guinea, eastern Liberia, southern Côte d'Ivoire and south‐western Ghana. We explore the genetic and morphometric diversity of 239 individuals of the C. obscurior complex from 17 localities across its geographical range. Using genetic data from three mitochondrial (16S, cytochrome b and COI) and four nuclear markers (BRCA1, STAT5A, HDAC2 and RIOK3) and skull geometric morphometrics, we show that this complex is composed of two cryptic and sympatric species, C. obscurior and C. eburnea. We then test several hypotheses to infer their evolutionary history. The observed phylogeographical pattern based on cytochrome b and COI sequences fits the forest refuge theory: during arid phases of the Plio‐Pleistocene, around 3.5, 2.1, 1 and 0.5 Mya, a small number of populations survived in isolated forest patches and diverged allopatrically. During wetter climatic periods, forests expanded, leading to secondary contacts between previously isolated populations. Our results also suggest the possible contribution of episodes of isolation in subrefuges. Historical variation of the West African hydrographic network could also have contributed to the observed patterns of genetic differentiation. Rivers such as the Volta and Sassandra may act as past and/or current barriers to gene flow. Although these two species have sympatric distributions, their phylogeographical histories are somewhat dissimilar due to small differences in their dispersal abilities and ecological requirements.  相似文献   

19.
Tropical forests constitute some of the most diverse and complex terrestrial ecosystems on the planet. From the Miocene onward, they have acted as a backdrop to the ongoing evolution of our closest living relatives, the great apes, and provided the cradle for the emergence of early hominins, who retained arboreal physiological adaptations at least into the Late Pliocene. There also now exists growing evidence, from the Late Pleistocene onward, for tool‐assisted intensification of tropical forest occupation and resource extraction by our own species, Homo sapiens. However, between the Late Pliocene and Late Pleistocene there is an apparent gap in clear and convincing evidence for the use of tropical forests by hominins, including early members of our own genus. In discussions of Late Pliocene and Early Pleistocene hominin evolution, including the emergence and later expansion of Homo species across the globe, tropical forest adaptations tend to be eclipsed by open, savanna environments. Thus far, it is not clear whether this Early‐Middle Pleistocene lacuna in Homo‐rainforest interaction is real and representative of an adaptive shift with the emergence of our species or if it is simply reflective of preservation bias.  相似文献   

20.
The aim of the present study was to understand the effects of abiotic conditions on seasonal feeding activity of diverse herbivores on the same oak tree species in two different forests. We tracked changes in herbivore feeding activities on an oak tree species (Quercus serrata) in two localities: a low elevation small hillock forest patch (Muan, MN) and a middle elevation mountain forest patch (Mt. Jirisan, JR). A total of five sites were selected in each of two forest localities. Data for leaf expansion, leaf chemical qualities, leaf damage ratio, and numbers of lepidopteran caterpillars were collected during spring (May) and summer (July to August), 2012. Leaf expansion rate was higher at the low hillock forest than the mid‐mountain forest from spring to summer. Nitrogen and carbon content decreased seasonally at both localities. Lepidopteran larval diversity was high in the mid‐mountain forest, and two‐way ANOVA showed that species richness of lepidopteran larvae was significantly affected by the interaction between season and locality. Leaf damage by all herbivores was higher in the low hillock forest than the mid‐mountain forest in spring, but was higher in the mid‐mountain forest in summer. Relative proportion of general herbivores increased from spring to summer in the mid‐mountain forest, but not in the low hillock forest. Canonical Correspondence Analysis (CCA) ordination showed that altitude‐ and season‐related variables were significant species and environment interaction factors. Our data indicate that locality and temperature disproportionally affected the feeding activities of diverse herbivores in two different temperate forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号