首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bourmaud  Chloé  Gravier-bonnet  Nicole 《Hydrobiologia》2004,530(1-3):365-372
The life cycle of the aglaopheniid Macrorynchia philippina Kirchenpauer, 1872, is re-described from examination of live specimens collected from Réunion Island, Indian Ocean. Fertile colonies were collected on the outer slope of the coral reef and medusoid release happened a few hours later. Video sequences were recorded. Colonies were hermaphroditic: each phylactocarp contained one female and one male gonotheca. Sexual dimorphism was remarkable: sex could be recognized by colour, the female being red ochre, including about 40 oocytes disposed in a mosaic feature, and the male yellow ochre, having a homogeneous mass of spermatozoa. The blastostyle ran all around the gonangium near the closure of the two valves of the gonotheca, forming gubernacula. A ring of refringent corpuscles was clearly visible near the apex. Medusoids were indistinguishable inside the gonotheca. Male and female medusoids were released simultaneously at gamete maturity. Medusoid release involved the basal rupture of the blastostyle and the rupture of the links between the ectoderm surrounded the medusoid (the mantle), including the blastostyle (the mantle), and the gonothecal perisarc. While the two valves of the gonotheca were pushed and drew aside, the medusoid emerged by slipping out of the mantle that ruptured distally, forming a sheath; the bell of the medusoid did not contract. Immediately after emergence, quick and strong contractions of the bell allowed the medusoid to swim and induced spawning by breaking the ectoderm surrounding the gametic mass around the spadix. Spawning lasted only a few minutes: both oocytes and spermatozoa were expelled at each contraction. Spent medusoids remained alive only about 2 h. External fertilization gave rise to planulae 1 day later.  相似文献   

2.
3.
Cholinergic mechanism in Liriope tetraphylla (Cnidaria, Hydrozoa)   总被引:1,自引:0,他引:1  
Crude whole body homogenates of Liriope tetraphylla exhibit a cholinesterase particularly active on acetylthiocholine but not on butyrylthiocholine. The acetylthiocholine hydrolysis is completely blocked by neostigmine. The Michaelis-Menten constant for acetylthiocholine is 0.14 mM. The pharmacological analysis of the responses to the choline esters nicotine and atropine suggests the involvement in Liriope tetraphylla of a cholinergic mechanism in the pointing reflex. Butyrylcholine, nicotine and atropine (but not muscarinic agonists) caused the contraction of the subumbrellar radial muscles. The effects of atropine were dose-dependent and were depressed in competition with muscarinic agonists. MgCl2 interfered with the action of atropine. The results were explained by suggesting the existence, at least at the neuromuscular junction, of excitatory (nicotinic) and inhibitory (muscarinic) pre-synaptic receptors modulating the release of the (unknown) transmitter acting post-synaptically.  相似文献   

4.
Ravara, A., Wiklund, H., Cunha, M. R. & Pleijel, F. (2010). Phylogenetic relationships within Nephtyidae (Polychaeta, Annelida). —Zoologica Scripta, 39, 394–405. We present the first phylogeny of nephtyids, a common, soft‐bottom living polychaete family comprising five genera and over 100 species. Characters used to distinguish nephtyid genera are a matter of controversy and considerable confusion remains as to the generic delineations. The phylogeny is estimated with molecular data from the mitochondrial genes cytochrome oxidase I and 16S rDNA, the nuclear genes 18S rDNA and 28S rDNA and morphological data. The results reveal two well‐supported major clades, corresponding in part to the two main genera of the family, Aglaophamus and Nephtys. The species Nephtys pulchra and Nephtys australiensis are transferred to Aglaophamus, and new diagnoses for the genera are provided. Dentinephtys is synonymized with Nephtys, and Nephtys cornuta is sister to the remaining nephtyids and is referred to the new genus Bipalponephtys, together with Nephtys danida and Micronephthys neotena. Micronephthys is sister to Nephtys and Inermonephtys is of uncertain position.  相似文献   

5.
The diversity of hydrozoan life cycles, as manifested in the wide range of polyp, colony, and medusa morphologies, has been appreciated for centuries. Unraveling the complex history of characters involved in this diversity is critical for understanding the processes driving hydrozoan evolution. In this study, we use a phylogenetic approach to investigate the evolution of morphological characters in Hydrozoa. A molecular phylogeny is reconstructed using ribosomal DNA sequence data. Several characters involving polyp, colony, and medusa morphology are coded in the terminal taxa. These characters are mapped onto the phylogeny and then the ancestral character states are reconstructed. This study confirms the complex evolutionary history of hydrozoan morphological characters. Many of the characters involving polyp, colony, and medusa morphology appear as synapomorphies for major hydrozoan clades, yet homoplasy is commonplace.  相似文献   

6.
Taxonomic relationships within the corals and anemones (Phylum Cnidaria: Class Anthozoa) are based upon few morphological characters. The significance of any given character is debatable, and there is little fossil record available for deriving evolutionary relationships. We analyzed complete 18S ribosomal sequences to examine subclass-level and ordinal-level organization within the Anthozoa. We suggest that the Subclass Ceriantipatharia is not an evolutionarily relevant grouping. The Order Corallimorpharia appears paraphyletic and closely related to the Order Scleractinia. The 18S rRNA gene may be insufficient for establishing robust phylogenetic hypotheses concerning the specific relationships of the Corallimorpharia and the Ceriantharia and the branching sequence for the orders within the Hexacorallia. The 18S rRNA gene has sufficient phylogenetic signal, however, to distinguish among the major groupings within the Class Anthozoa, and we use this information to suggest relationships for the enigmatic taxa Dactylanthus and Dendrobrachia.  相似文献   

7.
A previously unknown association between a luminous bacterium, Vibrio harveyi, and a benthic hydrozoan, Aglaophenia octodonta, is described. Aglaophenia hydrocladia showed a clear fluorescence in the folds along the hydrocaulus and at the base of the hydrotheca, suggesting the presence of luminous bacteria. This hypothesis was confirmed by isolation of luminous bacteria from Aglaophenia homogenates. Phenotypic characterization of bacterial isolates was performed by several morphological, biochemical, and cultural tests, completed with 16S rDNA sequence analysis. All the isolates were referred to a single species: V. harveyi. The association between V. harveyi and A. octodonta has epidemiological as well as ecological significance. Therefore, A. octodonta may function as habitat “islands” providing a unique set of environmental conditions for luminous bacteria colonization, quite different from those already recorded from the plankton for other Vibrio species.  相似文献   

8.
Hydrozoans of the genus Zanclea have been acknowledged only recently as a fundamental component of the highly diverse fauna associated with reef‐building scleractinian corals. Although widely distributed in coral reefs and demonstrated to be important in protecting corals from predation and diseases, the biodiversity of these hydrozoans remains enigmatic due to the paucity of available morphological characters, incomplete morphological characterisations and the possible existence of cryptic species. Recently, molecular techniques have revealed the existence of multiple hidden genetic lineages not yet supported by diagnostic morphological characters. In this work, we further explore the morpho‐diversity of three genetic lineages, namely Zanclea associated with the coral genera Goniastrea (clade I), Porites (clade II) and Pavona (clade VI). Aside from providing a complete classical characterisation of the polyp and medusa stage of each clade, we searched for new potential taxonomic indicators either on symbiotic hydroids or on host corals. On the hydroids, statistical analyses on almost 7,000 nematocyst capsules revealed a significant difference in terms of nematocyst size among the three Zanclea clades investigated. On each host coral genus, we identified peculiar skeletal modifications related to the presence of Zanclea symbionts. Lastly, we discussed the potential diagnostic value of these footprints in the characterisation of Zanclea–scleractinian associations.  相似文献   

9.
Microboring or euendolithic microorganisms, which colonize and penetrate various carbonate substrates, are abundant in coral reef ecosystems and play a major role in reef carbonate dissolution. A few studies reported the presence of euendoliths in stylasterid coral skeletons but the biological identity, distribution and abundance of these microorganisms remain largely unknown. Observations of over 100 stylasterid colonies, collected in the Indo-Pacific area, revealed for the first time that the association between these corals and euendolith organisms appears to be quite common in shallow tropical waters. The most abundant euendolith was identified as a cryptic stage in the development of the rhodophyte Porphyra (Conchocelis stage). The euendoliths were observed in the skeletons of seven species of three genera (four Stylaster, two Distichopora and one Lepidotheca). The presence of euendoliths inside skeletons conferred a particular colour to the studied stylasterid corals. Distribution and abundance of microborings varied significantly among stylasterid species and among branches of a single colony and so did the colour of their skeletons. Colonization of skeletons and the associated colour distribution were almost uniform in some stylasterids, forming an upward gradually diminishing or sharply limited gradient. This study shows that patterns of euendolith colonization and growth in stylasterid skeletons may depend on the stage of the euendolith development as well as on their environmental requirements such as light exposure.  相似文献   

10.
Sea anemones (order Actiniaria) are among the most diverse and successful members of the anthozoan subclass Hexacorallia, being found at all depths and latitudes and in all marine habitats. Members of this group exhibit the greatest variation in anatomy, biology, and life history in Hexacorallia, and lack any morphological synapomorphy. Nonetheless, previous molecular phylogenetic studies have found that Actiniaria is monophyletic with respect to other extant hexacorallians. However, relationships within Actiniaria have remained unresolved, as none of these earlier works have included sufficient taxon sampling to estimate relationships within Actiniaria. We have analyzed sequences from two mitochondrial and two nuclear markers for representatives of approximately half of the family-level diversity within the order, and present the first phylogenetic tree for Actiniaria. We concur with previous studies that have suggested that molecular evolution is unusually slow in this group. We determine that taxonomic groups based on the absence of features tend not to be recovered as monophyletic, but that at least some classical anatomical features define monophyletic groups.  相似文献   

11.
Twenty-two species of benthic hydroids, belonging to ten families and 14 genera, were found in a hydroid collection obtained in the Balleny Islands during the BioRoss expedition with the NIWA research vessel Tangaroa in 2004. Twenty of those species constitute new records for the Balleny Islands, raising the total number of known species in the area to 25. Most are members of the subclass Leptothecata, although the subclass Anthoathecata is also relatively well represented. Kirchenpaueriidae and Sertulariidae constitute families with the greatest numbers of species in the collection, with five species (20%) each. Oswaldella with five species (20%) and Staurotheca with four (16%), were the most diverse genera. Twelve species (63%) are endemic to Antarctic waters, most of them with a circum-Antarctic distribution, and 17 (89%) are restricted to Antarctic or Antarctic/sub-Antarctic waters. Although the Balleny Islands hydroid fauna seems to be a typical Antarctic assemblage, it has some striking peculiarities, namely the absence or low representation of some typical and widespread Antarctic genera (Antarctoscyphus and Schizotricha/Symplectoscyphus, respectively).  相似文献   

12.
Cytochrome b sequences were used to investigate both the systematic position of the Musophagidae and the species relationships within the family. Phylogenetic analyses (neighbour-joining, maximum likelihood and maximum parsimony) supported the hypothesis that the Musophagidae are more closely related to the cuckoos, parrots and the Hoatzin than the gamebirds. Within the family, three major clades are evident that correspond to the three subfamilies generally recognized. The 'grey turacos' and the turacin-bearing turacos form two separate monophyletic groups. Corythaixoides leucogaster appears to be basal within the subfamily Criniferinae (the 'grey turacos'). This analysis yields a hypothesis for the controversy surrounding the position of Gallirex porphyreolophus and Tauraco johnstoni, which appear to be closely related and basal to the other turacin-bearing turacos. The Musophaga species are placed within the Tauraco clade and appear to be specialized forms of typical turacos. The superspecies persa forms a monophyletic group, within which T. hartlaubi falls. This is an association that has not been suggested previously.  相似文献   

13.
Fifty-six sequences of the mitochondrial 16S RNA gene were generated for hydroids, belonging to six nominal families — Eudendriidae, Lafoeidae, Haleciidae, Sertulariidae, Plumulariidae and Aglaopheniidae — collected from bathyal environments of the Gulf of Cadiz (22 haplotypes), Greenland (1 haplotype), Azores (1 haplotype), the shallow waters of the UK (17 haplotypes) and Portugal (2 haplotypes). When combined and analysed with 68 additional sequences published in GenBank, corresponding to 63 nominal species of these families (nine species in common between the GenBank sequences and those presented by the authors), cryptic species were detected (e.g. two species of Nemertesia and other of Lafoea ), as well as apparent cases of conspecificity (e.g. Nemertesia antennina and N. perrieri and Aglaophenia octodonta , A. pluma and A. tubiformis ). Other taxonomic inconsistencies were found in the data including cases where species from different genera clustered together (e.g. Sertularia cupressina , Thuiaria thuja , Abietinaria abietina and Ab. filicula ). The mitochondrial 16S rRNA proved to be a useful DNA 'barcode' gene for hydroids, not only allowing discrimination of species, but also in some cases of populations, genera and families, and their intra- or interphylogenetic associations. Although still under-represented in public data bases, the 16S rRNA gene is starting to be used frequently in the study of hydroids. These data provide powerful complementary evidence for advancing our understanding of hydrozoan systematics.  相似文献   

14.
The cDNAs encoding the genes of new proteins, homologous to the well-known Green Fluorescent Protein (GFP) from the hydroid jellyfish Aequorea victoria, were cloned. Two green fluorescent proteins from one unidentified anthomedusa, a yellow fluorescent protein from Phialidium sp., and a nonfluorescent chromoprotein from another unidentified anthomedusa were characterized. Thus, a broad diversity of GFP-like proteins among the organisms of the class Hydrozoa in both spectral properties and primary structure was shown.Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 1, 2005, pp. 49–53.Original Russian Text Copyright © 2005 by Yanushevich, Shagin, Fradkov, Shakhbazov, Barsova, Gurskaya, Labas, Matz, K. Lukyanov, S. Lukyanov.  相似文献   

15.
The Campanulariidae is a group of leptomedusan hydroids (Hydrozoa, Cnidaria) that exhibit a diverse array of life cycles ranging from species with a free medusa stage to those with a reduced or absent medusa stage. Perhaps the best-known member of the taxon is Obelia which is often used as a textbook model of hydrozoan life history. However, Obelia medusae have several unique features leading to a hypothesis that Obelia arose, in a saltational fashion, from an ancestor that lacked a medusa, possibly representing an example of a rare evolutionary reversal. To address the evolution of adult sexual stages in Campanulariidae, a molecular phylogenetic approach was employed using two nuclear (18S rDNA and calmodulin) and two mitochondrial (16S rDNA and cytochrome c oxidase subunit I) genes. Prior to the main analysis, we conducted a preliminary analysis of leptomedusan taxa which suggests that Campanulariidae as presently considered needs to be redefined. Campanulariid analyses are consistent with morphological understanding in that three major clades are recovered. However, several recognized genera are not monophyletic calling into question some "diagnostic" features. Furthermore, ancestral states were reconstructed using parsimony, and a sensitivity analysis was conducted to investigate possible evolutionary transitions in life-history stages. The results indicate that life-cycle transitions have occurred multiple times, and that Obelia might be derived from an ancestor with Clytia-like features.  相似文献   

16.
Twenty-seven species of benthic hydroids have been found in a small collection from off Bouvet Island (Antarctic Ocean). The material was obtained during the XXI/2 German Antarctic expedition with R.V. Polarstern 2003–2004. Of the 27 species collected, 21 were unknown from those waters. Consequently, the number of known species of benthic hydroids from the area has risen to 32, representing a high diversity location for this group in the Southern Ocean considering the sampling effort made. All species, including those previously known from Bouvet waters, are considered with respect to geographical distribution.The present work is an addition to the special issue “Macrobenthic studies at Bouvet island”, presenting work carried out from on board RV Polarstern in 2003/2004 and published in Polar Biology 29 (2006)  相似文献   

17.
The hydrozoan family Aglaopheniidae (Cnidaria) is widespread worldwide and contains some of the most easily recognizable hydroids because of their large colony size and characteristic microscopic structure. The systematics of the group has, however, been controversial and dedicated molecular analyses are lacking. We therefore analysed existing and new 16S rRNA sequences of Aglaopheniidae, in a total of 98 16S sequences corresponding to 25 putative species (25 nominal and three undescribed) from seven genera. The monophyly of the subfamilies Gymnangiinae and Aglaopheniinae, and tribes Aglaopheniini and Cladocarpini were not verified with 16S sequence data. The genera Gymnangium and Aglaophenia can only be considered valid if both Gymnangium gracicaule and Aglaophenia latecarinata are removed from their respective genera. The phenotypically similar Cladocarpus and Streptocaulus are probably monophyletic and clearly distinct genetically. The genus Lytocarpia may be polyphyletic. The nominal species Aglaophenia pluma, Aglaophenia tubiformis, and Aglaophenia octodonta are probably conspecific, as are also the species Aglaophenia acacia and Aglaophenia elongata. The 16S data revealed the existence of two potentially unnamed species of Aglaophenia respectively from the Azores and Madeira. The phylogeographical structure of the taxa with the greatest representation of haplotypes from the north‐east Atlantic and Mediterranean, revealed the influence of Mediterranean waters in Madeira and the Azores, and gene flow between deep waters of the Mediterranean and Atlantic. The last glaciations in Europe may have caused genetic bottlenecks but also high intraspecific haplotype diversity. Finally, Macrorhynchia philippina was detected in samples from Madeira and possibly represents an invasive species. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 717–727.  相似文献   

18.
The sea snake subfamily Laticaudinae consists of a single genus with eight named species, based on morphological characters. We used microsatellite and mitochondrial DNA (mtDNA) data to clarify the adaptive radiation of these oviparous sea snakes in the South Pacific, with special reference to New Caledonia and Vanuatu. A mitochondrial DNA data set (ND4 gene 793 bp) was obtained from 345 individuals of the five species of Laticauda sp. sea snakes endemic to the region. Maximum likelihood and Bayesian approaches yielded the same optimal tree topology, identifying two major clades (yellow-banded and blue-banded sea snakes). Although all laticaudine sea snakes rely on small islands as oviposition sites, the two lineages differ in their use of marine vs. terrestrial habitats. A highly aquatic species (Laticauda laticaudata) shows a strong pattern of genetic isolation by distance, implying that the patchy distribution of terrestrial habitats has had little impact on gene flow. The more terrestrial clade (Laticauda colubrina, Laticauda frontalis, Laticauda guineai, Laticauda saintgironsi) shows stronger geographic differentiation in allelic frequencies, associated with island groups rather than with geographic distance. Microsatellites and mtDNA suggest that L. frontalis (restricted to Vanuatu) represents a recent founder-induced speciation event, from allopatric migrants of the New Caledonian taxon L. saintgironsi. A major divergence in speciation patterns between the two major clades of laticaudine snakes thus correlates with (and perhaps, is driven by) differences in the importance of terrestrial habitats in the species' ecology.  相似文献   

19.
20.
Summary Blastomeres of two-cell, four-cell, and eight-cell embryos of Hydractinia echinata were injected with horseradish-peroxidase (HRP) or fluorescein isothiocyanate (FITC)-dextran. The fate of the descendants of the injected blastomeres was followed until the planula larva had developed. The results obtained after HRP or FITC-dextran injection were essentially the same. Blastomeres are equivalent up to the four-cell stage, i.e. half-blastomeres produce half of the ectoderm of the planula larva and quarter-blastomeres give rise to one quarter of the larval ectoderm. During normal embryogenesis, the larval anterior-posterior axis corresponds to the animal-vegetal axis of the zygote. Thus, the labelled areas of larvae consisting of the progeny of injected half or quarter blastomeres normally stretch along the larval anterior-posterior axis. Normally, material giving rise to anterior or posterior larval parts, respectively, is separated at the third cleavage. Irrespective of the type of experiment, the progeny of injected blastomeres always contributed to endoderm formation, i.e. in larvae resulting from injected embryos the endoderm was more or less uniformly labelled. Application of vital stains locally to the exterior of zygotes and following these markers through first and second cleavage, produced evidence that in the vast majority of cases, the second cleavage is meridional. Offprint requests to: A. Schlawny  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号