首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protodrilidae belongs in a lineage that until now entirely consisted of deposit‐feeding, highly adapted interstitial annelids. Except for a pair of anterior palps, all protodrilids lack appendages, parapodia and chaetae; and have slender bodies adapted to glide between the sand grains by ciliary motion. The first exception to these characteristics is Megadrilus pelagicus n. sp. inhabiting the water column of the anchialine La Corona cave system in Lanzarote. Its morphology and evolutionary history are here investigated by combining observations from in vivo video recordings and advanced microscopy with phylogenetic analyses. Our studies revealed a unique pelagic, suspension feeding behaviour attained by its long ciliated palps in combination with an autopomorphic dorsal ciliated keel and several longitudinal and transverse ciliary bands. Phylogenetic analyses recovered Megadrilus pelagicus n. sp. nested within Protodrilidae indicating that its unique traits are derived within the family. These traits are traced in the tree topologies in correlation to cave colonization. The evolution of these traits can be functionally explained by the different demands of a pelagic suspension feeding strategy compared to the ancestral deposit‐feeding guild of the family. The origin of this suspension feeding strategy was presumably favoured by the partial isolation of the anchialine ecosystem, connected to the sea only through the highly porous volcanic subterranean bedrock. This crevicular connection limits the amount of predators and turbulence in the cave, but allows continuous water flow into the system carrying organic particles, which is the main source of food when photosynthetic primary production does not occur and sedimentation is limited. These conditions may select for pelagic suspension feeding as the most feasible life‐strategy in anchialine caves, which the dominance of pelagic, suspension feeding crustaceans and annelids in anchialine cave assemblages may also reflect. For species of ancestrally deposit‐feeding lineages entering the cave system, such as the annelid families Protodrilidae and Nerillidae, an adaptive‐shift from interstitial to crevicular habitats seemingly correlates with dramatic morphological changes and speciation. The dramatic changes observed in these primarily interstitial lineages compared to their relatives, point to alternative adaptive evolutionary pathways related to ecological fitness contrary to the previously proposed theories focusing on geological or stochastic processes.  相似文献   

2.
The evolutionary history of Axiokebuita and Speleobregma, two poorly known lineages of annelids exclusive from deep‐sea or marine caves but always from crevicular habitats, is explored here. Speleobregma lanzaroteum Bertelsen, 1986, and Axiokebuita cavernicola sp. n. are described from anchialine and marine caves of the Canary Islands using light and electron microscopy. Speleobregma lanzaroteum is previously known only from a single specimen from the water column of an anchialine cave in Lanzarote. Emended diagnosis, details on the ciliary patterns and behavioural observations are provided based on newly collected material and in situ observations. Axiokebuita cavernicola sp. n. is found in Pleistocene gravel deposits in a shallow water marine cave in Tenerife (Canary Islands). The new species is characterized by the presence of dorsal ciliary bands and short knob‐like neuropodial cirri from segment two. The porosity and permeability of the gravelly environment of Acavernicola sp. n. are shown to be equivalent to the water column or crevices of Speleobregma and other Axiokebuita spp. Phylogenetic analyses of five gene fragments and 44 terminals using maximum‐likelihood and Bayesian methods support a derived position of A. cavernicola sp. n. within Axiokebuita and confirm a sister‐group relationship of Axiokebuita with Speleobregma with high nodal support. The Axiokebuita–Speleobregma clade is morphologically characterized by a globular pygidium with adhesive glands and ventral ungrooved ciliated palps. Our results support two independent cave colonization events, favoured by the preadaptation of the members of Axiokebuita–Speleobregma lineage to crevicular habitats.  相似文献   

3.
Climate oscillations during the Quaternary altered the distributions of terrestrial animals at a global scale. In mountainous regions, temperature fluctuations may have led to shifts in range size and population size as species tracked their shifting habitats upslope or downslope. This creates the potential for both allopatric speciation and population size fluctuations, as species are either constrained to smaller patches of habitat at higher elevations or able to expand into broader areas at higher latitudes. We considered the impact of climate oscillations on three pairs of marsupial species from the Andes (Thylamys opossums) by inferring divergence times and demographic changes. We compare four different divergence dating approaches, using anywhere from one to 26 loci. Each pair comprises a northern (tropical) lineage and a southern (subtropical to temperate) lineage. We predicted that divergences would have occurred during the last interglacial (LIG) period approximately 125 000 years ago and that population sizes for northern and southern lineages would either contract or expand, respectively. Our results suggest that all three north–south pairs diverged in the late Pleistocene during or slightly after the LIG. The three northern lineages showed no signs of population expansion, whereas two southern lineages exhibited dramatic, recent expansions. We attribute the difference in responses between tropical and subtropical lineages to the availability of ‘montane‐like’ habitats at lower elevations in regions at higher latitudes. We conclude that climate oscillations of the late Quaternary had a powerful impact on the evolutionary history of some of these species, both promoting speciation and leading to significant population size shifts.  相似文献   

4.
Anchialine caves in coastal locations develop in two ways: by pseudokarst processes that form talus caves, sea caves, tafoni, fissure caves and lava tubes, and by karst dissolutional processes that form stream caves, flank margin caves, and blue holes. Pseudokarst caves are of minor importance in anchialine cave habitat development, with some lava tubes being notable exceptions. Dissolution caves provide the most extensive, variable, and long-term environments for anchialine habitats. The Carbonate Island Karst Model (CIKM) allows dissolutional cave development in carbonate coasts to be understood as the interplay between freshwater and marine water mixing, sea-level change, rock maturity, and interaction with adjacent non-carbonate rocks. Glacioeustatic sea-level changes of the Quaternary have moved all coastal anchialine cave environments repeatedly through a vertical range of over 100 m, and modern anchialine environments could not develop at their current elevations until ~4,000 years ago when sea level reached its present position. Blue holes form by a variety of mechanisms, but the most common is upward stoping and collapse from deep dissolutional voids. As a result, they provide vertical connection between different levels of horizontal cave development produced by a variety of earlier sea-level positions. Blue holes are overprinted by successive sea-level fluctuations; each sea-level event adds complexity to the habitats within blue holes and the cave systems they connect. Blue holes can reach depths below the deepest glacioeustatic sea-level lowstand, and thereby provide a refugia for anchialine species when cave passages above are drained by Quaternary sea-level fall. Blue holes represent the most significant anchialine cave environment in the world, and may provide clues to anchialine cave species colonization and speciation events.  相似文献   

5.
The marine cave‐dwelling mysid Hemimysis margalefi is distributed over the whole Mediterranean Sea, which contrasts with the poor dispersal capabilities of this brooding species. In addition, underwater marine caves are a highly fragmented habitat which further promotes strong genetic structuring, therefore providing highly informative data on the levels of marine population connectivity across biogeographical regions. This study investigates how habitat and geography have shaped the connectivity network of this poor disperser over the entire Mediterranean Sea through the use of several mitochondrial and nuclear markers. Five deeply divergent lineages were observed among H. margalefi populations resulting from deep phylogeographical breaks, some dating back to the Oligo‐Miocene. Whether looking at the intralineage or interlineage levels, H. margalefi populations present a high genetic diversity and population structuring. This study suggests that the five distinct lineages observed in H. margalefi actually correspond to as many separate cryptic taxa. The nominal species, H. margalefi sensu stricto, corresponds to the westernmost lineage here surveyed from the Alboran Sea to southeastern Italy. Typical genetic breaks such as the Almeria‐Oran Front or the Siculo‐Tunisian Strait do not appear to be influential on the studied loci in H. margalefi sensu stricto. Instead, population structuring appears more complex and subtle than usually found for model species with a pelagic dispersal phase. The remaining four cryptic taxa are all found in the eastern basin, but incomplete lineage sorting is suspected and speciation might still be in process. Present‐day population structure of the different H. margalefi cryptic species appears to result from past vicariance events started in the Oligo‐Miocene and maintained by present‐day coastal topography, water circulation and habitat fragmentation.  相似文献   

6.
The Mediterranean islands have a long history of human‐mediated introductions resulting in frequent replacements of their fauna and flora. Although these histories are sometimes well documented or may be inferred from paleontological studies, the use of phylogenetic and population genetic reconstruction methods provides a complementary perspective for answering questions related to the history of insular species. In the present study, we infer the colonization history of Mallorca (Balearic Islands) by the European rabbit (Oryctolagus cuniculus) and the Iberian hare (Lepus granatensis) using sequence variation of the mitochondrial DNA control region from continental and insular specimens (total of 489 sequences). Additionally, the taxonomic identity of Mallorcan L. granatensis was confirmed using a diagnostic nuclear marker. For both Mallorcan rabbits and hares, genetic diversity was comparable to the continental populations, suggesting the introduction of multiple lineages. Two Mallorcan haplogroups were found in hares, which likely correspond to two introduction events. Rabbits from Mallorca were identified as belonging to the subspecies Oryctolagus cuniculus cuniculus, and may have been originated both from Iberian and French populations. The molecular estimates of the timing of the colonization events of the Mallorcan lagomorphs are consistent with human‐mediated introductions by early settlers on the islands. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 748–760.  相似文献   

7.
Phylogeographic studies have made a significant contribution to the interpretation of genetic lineage distribution in response to climate changes, such as during glaciation events of the Neogene. However, the effects of ancient landscapes associated with global sea level rises, tectonic processes, and climatology driving lineage evolution have been largely overlooked. These effects can be tested in widespread lineages of cold‐tolerant species that have endured cooling, and thus, phylogeographic patterns may reflect large‐scale processes that were not reset by the ice ages. We hereby combine geological evidence from marine sedimentary basins, Andean orogeny, and climatology with molecular dating and statistical phylogeography to infer how geological and climatic processes affected the distribution of lineages in cold‐tolerant Nothofagus species during the Cenozoic. A total of 239 populations along the entire range of all species within the genus Nothofagus (N. antarctica, N. betuloides, N. dombeyi, N. nitida, and N. pumilio) were sampled and analyzed by sequencing three non‐coding regions of the chloroplast. We found 30 chloroplast DNA haplotypes that were geographically structured. Molecular dating calibrated with fossils revealed that ancestral lineages appeared in Eocene/Oligocene, whereas most divergences took place during the Miocene; in turn, Bayesian skyline plots showed that population expansion occurred in the Early Pleistocene (1.5–1 million years ago). Lineage divergence from all wide‐ranging Nothofagus was spatially and temporally concordant with episodic marine transgressions and warmer times in Patagonia during Eocene/Miocene Epochs. Long‐lasting stable raised areas preserved haplotype diversity throughout Patagonia, from where cold‐tolerant taxa expanded their ranges during pre‐Quaternary times. The detailed study of such ancient divergences is novel and allows us to infer the effects of geological processes on distribution patterns of ancient lineages, that is, phylogeology.  相似文献   

8.
Quaternary climatic oscillations appear to have influenced the genetic diversity and evolutionary history of arid‐adapted plants. To understand the processes involved and reveal evolutionary relationships, haplotypes were examined from Calligonum roborovskii, an endemic species occurring in the arid zones across the desert regions of north‐western China, and seven other species also from Calligonum section Medusa, including C. gobicum, C. mongolicum and the narrow endemic species C. ebi‐nuricum, C. pumilum, C. taklimakanense, C. trifarium and C. yengisaricum. Forty‐three haplotypes were identified in 422 individuals from 51 natural populations, from variation of two plastid DNA intergenic spacers (rpl32trnL and ycf6psbM). A high level of total genetic diversity was found across species for which more than two populations were examined, including C. gobicum, C. mongolicum, C. pumilum and C. roborovskii. A distinct isolation‐by‐distance pattern in each of these species was suggested by the Mantel test, indicating that restricted gene flow caused high genetic differentiation among populations. Three haplotypes were shared by two or three species each, but the other 40 haplotypes were species‐specific. The 43 haplotypes split into three major clades, but not species‐specific lineages; most of the Calligonum species were not reciprocally monophyletic, probably due to incomplete lineage sorting or introgression. The identified haplotypes were dated to 1.97 Mya (95% highest posterior density: 2.95–0.99 Mya) and diverged until the late Pleistocene, possibly linked to aridification and enlargement of deserts caused by climate changes. Variation of desert habitats during the Pleistocene might play a key role in causing the divergence.  相似文献   

9.
The alterations in the phylogeographical structures of insects in response to the uplift of the Qinghai–Tibet Plateau and the Quaternary glaciations in eastern Asia, particularly in northern China, remain largely unknown. In this study, we selected Apocheima cinerarius, a moth with flightless females, using molecular data (complete mitochondrial genomes and nuclear data) and ecological niche modelling (ENM) to investigate the effects of paleoclimatic changes on the evolutionary history of insects in the area of northern China. The phylogenetic tree of complete mitochondrial genomes indicated that there were two lineages, the western and eastern lineages. The nuclear gene analyses also detected unique haplotypes in each lineage. Time of the most recent common ancestor (TMRCA) of the two lineages was approximately in Early–Middle Pleistocene. Bayesian skyline plots revealed that the western lineage underwent a population expansion event after the Last Glacial Maximum, whereas the eastern lineage underwent expansion between the Last Interglacial and the Last Glacial Maximum. Our results suggest that A. cinerarius expanded eastward from western sites until the moth was distributed across the entire region of northern China. Then, A. cinerarius underwent contraction into isolated glacial refugia followed by subsequent expansion driven by Pleistocene climate changes, which established a narrow sympatric area. Our results indicate that the Quaternary environmental fluctuations had profound influences on the diversification and demography of an insect in northern China, and the same species in north‐western China and north‐eastern China have different demographic histories.  相似文献   

10.
Various hypotheses have been proposed about the Quaternary evolutionary history of plant species on the Qinghai–Tibet Plateau (QTP), yet only a handful of studies have considered both population genetics and ecological niche context. In this study, we proposed and compared climate refugia hypotheses based on the phylogeographic pattern of Anisodus tanguticus (three plastid DNA fragments and nuclear internal transcribed spacer regions from 32 populations) and present and past species distribution models (SDMs). We detected six plastid haplotypes in two well‐differentiated lineages. Although all haplotypes could be found in its western (sampling) area, only haplotypes from one lineage occurred in its eastern area. Meanwhile, most genetic variations existed between populations (FST = 0.822). The SDMs during the last glacial maximum and last interglacial periods showed range fragmentation in the western area and significant range contraction in the eastern area, respectively, in comparison with current potential distribution. This species may have undergone intraspecific divergence during the early Quaternary, which may have been caused by survival in different refugia during the earliest known glacial in the QTP, rather than geological isolation due to orogenesis events. Subsequently, climate oscillations during the Quaternary resulted in a dynamic distribution range for this species as well as the distribution pattern of its plastid haplotypes and nuclear genotypes. The interglacial periods may have had a greater effect on A. tanguticus than the glacial periods. Most importantly, neither genetic data nor SDM alone can fully reveal the climate refugia history of this species. We also discuss the conservation implications for this important Tibetan folk medicine plant in light of these findings and SDMs under future climate models. Together, our results underline the necessity to combine phylogeographic and SDM approaches in future investigations of the Quaternary evolutionary history of species in topographically complex areas, such as the QTP.  相似文献   

11.
The blind cave gudgeon Milyeringa veritas is restricted to groundwaters of Cape Range and Barrow Island, northwestern Australia. It occurs in freshwater caves and in seawater in anchialine systems. It is associated with the only other stygobitic cave vertebrate in Australia, the blind cave eel, Ophisternon candidum, the world's longest cave fish, and a diverse stygofauna comprising lineages with tethyan tracks and widely disjunct distributions, often from North Atlantic caves. The cave gudgeon inhabits a karst wetland developed in Miocene limestones in an arid area. There is an almost complete lack of information on the basic biology of this cave fish, despite it being listed as threatened under the Western Australian Wildlife Conservation Act. Allozyme frequencies and distributions indicate significant population sub-structuring on the Cape Range peninsula such that the populations are essentially isolated genetically suggesting that more than one biological species is present. Further, they suggest that the vicariant events may have been associated with a series of eustatic low sealevels. Analysis of intestinal contents indicates that they are opportunistic feeders, preying on stygofauna and accidentals trapped in the water, at least at the sites sampled which were open to the surface, a conclusion supported by the results of stable isotope ratio analysis. The gudgeons are found in freshwater caves and throughout deep anchialine systems in which they occur in vertically stratified water columns in which there is a polymodal distribution of water chemistries (temperature, pH, salinity, dissolved oxygen, redox, dissolved inorganic nitrogen series, hydrogen sulphide).  相似文献   

12.
Surprisingly, little is known about the extent of genetic structure within widely distributed and polytypic African species that are not restricted to a particular habitat type. The few studies that have been conducted suggested that speciation among African vertebrates may be intrinsically tied to habitat and the dynamic nature of biome boundaries. In the present study, we assessed the geographic structure of genetic variation across two sister‐species of drongos, the Square‐tailed Drongo (Dicrurus ludwigii) and the Shining Drongo (D. atripennis), that are distributed across multiple sub‐Saharan biogeographic regions and habitat types. Our results indicate that D. ludwigii consists of two strongly divergent lineages, corresponding to an eastern–southern lineage and a central‐western lineage. Furthermore, the central‐western lineage may be more closely related to D. atripennis, a species restricted to the Guineo‐Congolian forest block, and it should therefore be ranked as a separate species from the eastern–southern lineage. Genetic structure is also recovered within the three primary lineages of the D. atripennisD. ludwigii complex, suggesting that the true species diversity still remains underestimated. Additional sampling and data are required to resolve the taxonomic status of several further populations. Overall, our results suggest the occurrence of complex diversification patterns across habitat types and biogeographic regions in sub‐Saharan Africa birds.  相似文献   

13.
Based on broad, nearly rangewide sampling, we reanalysed the phylogeography of the Lacerta viridis complex using the mitochondrial cytochrome b gene and the intron 7 of the nuclear β‐fibrinogen gene. Using the mitochondrial marker, we identified in phylogenetic analyses 10 terminal clades clustering in four deeply divergent main lineages whose relationships are weakly resolved. These lineages correspond to Lacerta bilineata, L. viridis, the previously identified Adriatic or West Balkan lineage and a newly discovered fourth lineage from the Anatolian Black Sea coast and the south‐eastern Balkan Peninsula. Except for the latter lineage, there is considerable phylogeographic structuring in each lineage, with higher diversity in the south of the distribution ranges. This pattern indicates the existence of two distinct microrefugia in the Italian Peninsula and Sicily and of up to seven microrefugia in the Balkan Peninsula, but of only one refugium along the Black Sea coast of Anatolia. We identified secondary contact zones of the main lineages and of terminal clades within these lineages. However, most of the formerly described putative contact zone of L. bilineata and L. viridis turned out to be a contact zone between the Adriatic lineage and L. viridis, but L. bilineata seems to be involved only marginally. Our nuclear marker could not unambiguously resolve whether there is gene flow in contact zones. Thus, further research is necessary to decide whether the four main lineages are conspecific or whether they represent distinct biological species. We restrict the name L. v. meridionalis to the newly identified genetic lineage from Turkey and south‐eastern Europe, synonymize some previously recognized taxa and suggest a tentative nomenclature for the L. viridis complex.  相似文献   

14.
Despite the well‐known effects that Quaternary climate oscillations had on shaping intraspecific diversity, their role in driving homoploid hybrid speciation is less clear. Here, we examine their importance in the putative homoploid hybrid origin and evolution of Ostryopsis intermedia, a diploid species occurring in the Qinghai‐Tibet Plateau (QTP), a biodiversity hotspot. We investigated interspecific relationships between this species and its only other congeners, O. davidiana and O. nobilis, based on four sets of nuclear and chloroplast population genetic data and tested alternative speciation hypotheses. All nuclear data distinguished the three species clearly and supported a close relationship between O. intermedia and the disjunctly distributed O. davidiana. Chloroplast DNA sequence variation identified two tentative lineages, which distinguished O. intermedia from O. davidiana; however, both were present in O. nobilis. Admixture analyses of genetic polymorphisms at 20 SSR loci and sequence variation at 11 nuclear loci and approximate Bayesian computation (ABC) tests supported the hypothesis that O. intermedia originated by homoploid hybrid speciation from O. davidiana and O. nobilis. We further estimated that O. davidiana and O. nobilis diverged 6–11 Ma, while O. intermedia originated 0.5–1.2 Ma when O. davidiana is believed to have migrated southward, contacted and hybridized with O. nobilis possibly during the largest Quaternary glaciation that occurred in this region. Our findings highlight the importance of Quaternary climate change in the QTP in causing hybrid speciation in this important biodiversity hotspot.  相似文献   

15.
Our understanding of the evolutionary history and ecology of cave‐associated species has been driven historically by studies of morphologically adapted cave‐restricted species. Our understanding of the evolutionary history and ecology of nonrestricted cave species, troglophiles, is limited to a few studies, which present differing accounts of troglophiles’ relationship with the cave habitat, and its impact on population dynamics. Here, we used phylogenetics, demographic statistics, and population genetic methods to study lineage divergence, dates of divergence, and population structure in the Cave Salamander, Eurycea lucifuga, across its range. In order to perform these analyses, we sampled 233 individuals from 49 populations, using sequence data from three gene loci as well as genotyping data from 19 newly designed microsatellite markers. We find, as in many other species studied in a phylogeographic context, discordance between patterns inferred from mitochondrial relationships and those inferred by nuclear markers indicating a complicated evolutionary history in this species. Our results suggest Pleistocene‐based divergence among three main lineages within E. lucifuga corresponding to the western, central, and eastern regions of the range, similar to patterns seen in species separated in multiple refugia during climatic shifts. The conflict between mitochondrial and nuclear patterns is consistent with what we would expect from secondary contact between regional populations following expansion from multiple refugia.  相似文献   

16.
Aim To infer phylogenetic relationships among five species of the cave‐adapted shrimp genus Typhlatya in order to test competing hypotheses of dispersal and colonization of the disjunct cave localities occupied by these five species. Location Typhlatya species are found in caves and anchialine ponds across the northern margin of the Caribbean Sea, along the Mediterranean and Adriatic coasts and on oceanic islands in the Atlantic and eastern Pacific oceans. This study focuses on five species, one from Bermuda, one from the Caicos Islands and three from the Yucatan Peninsula of Mexico. Methods Partial sequences (c. 1400 bp) from the mitochondrial cytochrome b, 16S rDNA and COI genes were obtained from representative samples of the five species. Phylogenetic inference was carried out with maximum parsimony and maximum likelihood analyses. Parsimony networks were constructed for the Bermudian species Typhlatya iliffei and one Yucatan species Typhlatya mitchelli, to determine the degree of connectivity among populations inhabiting different cave systems. Results All three land masses were recovered as monophyletic. The two insular marine species from Bermuda and the Caicos Islands formed a clade, while the three continental freshwater species from the Yucatan Peninsula formed another. Within both Bermuda and the Yucatan, shared haplotypes were found in different cave systems, suggesting recent or ongoing gene flow among populations in both locales. Main conclusions The two insular marine Typhlatya species originated from an ancestral marine population, possibly already cave‐adapted, that is suggested to have colonized the Caicos Islands and subsequently dispersed to Bermuda via the Gulf Stream. Divergence estimates suggest that colonization occurred before the formation of present‐day anchialine cave habitat, which did not form on either island until the late Pliocene to early Pleistocene. Divergence estimates also indicate that the Yucatan freshwater species split before the formation of freshwater cave habitat in the Yucatan. These species could have inhabited crevicular marine habitats before the late Pliocene/early Pleistocene in the Yucatan or elsewhere in the Caribbean, and subsequently migrated to freshwater caves once they formed.  相似文献   

17.
18.

Aim

Climatic oscillations have been suggested to promote speciation and changes in species distributions, mostly in connection with the Last Glacial Maximum (LGM). However, the LGM is just the most recent of the 20+ glacial‐interglacial periods that characterise the Quaternary. Here, we investigate the role of climatic changes and geomorphological features in shaping the evolution, distribution and population dynamics of the South American cactus Cereus hildmannianus.

Location

South‐eastern South America.

Methods

We built a large fossil‐calibrated phylogeny for cacti (family Cactaceae), comprising 128 species distributed in all subfamilies, using a Bayesian relaxed clock. We used the results to derive a secondary calibration for a population‐level phylogeny in C. hildmannianus. We amplified two plastid (trnQ‐5′rps16 and psbJ‐petA) and one nuclear marker (PhyC) for 24 populations. We estimated population dynamics, ancestral areas, and species distribution models to infer the clade's evolutionary history in time and space.

Results

Our results show a major population divergence of C. hildmannianus at c. 2.60 Ma, which is strikingly coincident with the transition of the Pliocene–Pleistocene and onset of Quaternary glaciations. This was followed by a complex phylogeographic scenario involving population expansions across ecologically diverse regions.

Main conclusions

Contrary to the dominant research focus on the LGM, our study indicates a major impact of the first Quaternary glaciation on the distribution and population divergence of a South American plant species. Further intraspecific events seem related to successive climatic changes and geomorphology, including the development of the coastal plain and its peculiar diversity. We propose that the first Quaternary glaciation acted as a major evolutionary bottleneck, whereby many warm‐adapted lineages succumbed, while those that survived could diversify and better cope with subsequent climatic oscillations.  相似文献   

19.
Using the land‐bound vertebrates on the marine islands as model organisms, two metrics are presented that permit quantitative and succinct synopses of the ‘evolutionary maturity’ of the hosted faunal assemblages. In turn, these reflect the geo‐physical settings and geological developments of the substrates. The assemblage lineage‐taxonomy spectrum (ALTS) is based on the constituent lineages’ taxonomic distinctiveness and diversity. Individual lineages within assemblages can in most cases be assigned to one of six categories, LT1?LT6: LT1 is a non‐endemic taxon, whereas LT6 comprises multiple endemic genera from a family that arose elsewhere. If required, the scheme can be expanded: LT9 is an endemic order. The data can then be combined to provide an assemblage spectrum, for example, 00:08:38:30:08:15[ 13 ]. Here, the first six values denote the number of lineages assigned to each category expressed as percentages of the overall total, with the sum of the processed lineages listed as the seventh (in brackets and bold). The ALTS metric highlights efficiently the key features of a marine island's biological assemblage. Notably, the contrast between spectra for suites on geologically and geo‐physically varied island types can be striking, for instance the squamate suite on the young, proximate orogenic margin island of Taiwan is coded 78:16:05:00:00:00[ 37 ] whereas the one on the distantly located, Late Eocene composite terrane island of New Caledonia is 00:11:00:11:33:44[ 9 ]. To overcome the subjectivity that is inherent in assigning supraspecific ranks, an alternative assemblage lineage‐age spectrum (ALAS) is also introduced that makes use of the binary logarithm values of the colonization times of the island lineages (0–2, 2–4, … , 32–64, >64 Ma). It is represented using a seven‐plus‐two‐number code, for instance Madagascar's squamates are 00:06:00:00:19:62:12[ 19 ( 16 )]; most colonizations took place in the Palaeogene (66–23 Ma); there are 19 lineages, but only 16 are presently age‐dated. In addition to marine‐island biogeography studies, the ALTS–ALAS spectrum approach is potentially useful for encapsulating biotas in other sorts of insular setting (e.g. lakes, mountain tops), and for evaluating palaeogeographical models. Furthermore, it may help emphasize the conservation value of an island's faunal assemblage.  相似文献   

20.
Pleistocene climatic fluctuations had major impacts on desert biota in southwestern North America. During cooler and wetter periods, drought‐adapted species were isolated into refugia, in contrast to expansion of their ranges during the massive aridification in the Holocene. Here, we use Melampodium leucanthum (Asteraceae), a species of the North American desert and semi‐desert regions, to investigate the impact of major aridification in southwestern North America on phylogeography and evolution in a widespread and abundant drought‐adapted plant species. The evidence for three separate Pleistocene refugia at different time levels suggests that this species responded to the Quaternary climatic oscillations in a cyclic manner. In the Holocene, once differentiated lineages came into secondary contact and intermixed, but these range expansions did not follow the eastwardly progressing aridification, but instead occurred independently out of separate Pleistocene refugia. As found in other desert biota, the Continental Divide has acted as a major migration barrier for M. leucanthum since the Pleistocene. Despite being geographically restricted to the eastern part of the species’ distribution, autotetraploids in M. leucanthum originated multiple times and do not form a genetically cohesive group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号