首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differing selective pressures on islands versus the mainland may produce alternative evolutionary outcomes among closely related lineages. Conversely, lineages may be constrained to produce similar outcomes in different mainland and island environments, or mainland and island environments may not differ significantly. Among the best‐studied island radiations are Caribbean Anolis lizards. Distinct morphotypes, or ‘ecomorphs’, have been described, and the same ecomorphs have evolved independently on each Greater Antillean island. The mainland Anolis radiation has received much less attention. We use a large morphological data set and a novel phylogenetic hypothesis to show that mainland Anolis did not evolve the same morphotypes as island Anolis, despite some island species being more closely related to mainland species than to island species that share their morphotype. A maximum of four of the six Caribbean ecomorphs were found to exist on the mainland, and just 15 of 123 mainland species are assignable to a Caribbean ecomorph. This result was insensitive to differing taxon samples and alternative phylogenetic hypotheses. Mainland convergence to a Caribbean ecomorph occurs only among species assigned to the grass‐bush ecomorph. Thus, the ecomorphs that have evolved convergently multiple times in the Caribbean have not evolved in parallel on the mainland. These results are consistent with the hypothesis that mainland and island environments offer different selective pressures. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 852–859.  相似文献   

2.
Some of the most important insights into the ecological and evolutionary processes of diversification and speciation have come from studies of island adaptive radiations, yet relatively little research has examined how these radiations initiate. We suggest that Anolis sagrei is a candidate for understanding the origins of the Caribbean Anolis adaptive radiation and how a colonizing anole species begins to undergo allopatric diversification, phenotypic divergence and, potentially, speciation. We undertook a genomic and morphological analysis of representative populations across the entire native range of A. sagrei, finding that the species originated in the early Pliocene, with the deepest divergence occurring between western and eastern Cuba. Lineages from these two regions subsequently colonized the northern Caribbean. We find that at the broadest scale, populations colonizing areas with fewer closely related competitors tend to evolve larger body size and more lamellae on their toepads. This trend follows expectations for post‐colonization divergence from progenitors and convergence in allopatry, whereby populations freed from competition with close relatives evolve towards common morphological and ecological optima. Taken together, our results show a complex history of ancient and recent Cuban diaspora with populations on competitor‐poor islands evolving away from their ancestral Cuban populations regardless of their phylogenetic relationships, thus providing insight into the original diversification of colonist anoles at the beginning of the radiation. Our research also supplies an evolutionary framework for the many studies of this increasingly important species in ecological and evolutionary research.  相似文献   

3.
The history of life is punctuated by repeated periods of unusually rapid evolutionary diversification called adaptive radiation. The dynamics of diversity during a radiation reflect an overshooting pattern with an initial phase of exponential-like increase followed by a slower decline. Much attention has been paid to the factors that drive the increase phase, but far less is known about the causes of the decline phase. Decreases in diversity are rarely associated with climatic changes or catastrophic events, suggesting that they may be an intrinsic consequence of diversification. We experimentally identify the factors responsible for losses in diversity during the later stages of the model adaptive radiation of the bacterium Pseudomonas fluorescens. Proximately, diversity declines because of the loss of biofilm-forming niche specialist morphotypes. We show that this loss occurs despite the presence of strong divergent selection late in the radiation and is associated with continued adaptation of resident niche specialists to both the biotic and abiotic environments. These results suggest that losses of diversity in the latter stages of an adaptive radiation may be a general consequence of diversification through competition and lends support to the idea that the conditions favouring the emergence of diversity are different from those that ensure its long-term maintenance.  相似文献   

4.
Many of the classic examples of adaptive radiation, including Caribbean Anolis lizards, are found on islands. However, Anolis also exhibits substantial species richness and ecomorphological disparity on mainland Central and South America. We compared patterns and rates of morphological evolution to investigate whether, in fact, island Anolis are exceptionally diverse relative to their mainland counterparts. Quite the contrary, we found that rates and extent of diversification were comparable--Anolis adaptive radiation is not an island phenomenon. However, mainland and Caribbean anoles occupy different parts of morphological space; in independent colonizations of both island and mainland habitats, island anoles have evolved shorter limbs and better-developed toe pads. These patterns suggest that the two areas are on different evolutionary trajectories. The ecological causes of these differences are unknown, but may relate to differences in predation or competition among mainland and island communities.  相似文献   

5.
Morales et al. test predictions of adaptive radiation theory and phenotypic convergence in Myotis bats using genomic target capture and a morphological dataset that represents 80% of the species described for this genus. The authors demonstrate that ecomorphological convergence has occurred multiple times throughout the history of Myotis, despite finding no diversification rate shifts associated with phenotypic adaptation. These patterns provide evidence that parallel adaptive radiations can be the result of nonadaptive lineage diversification followed by repetitive exploitation of ecomorphological solutions.  相似文献   

6.
Ecological opportunity – through entry into a new environment, the origin of a key innovation or extinction of antagonists – is widely thought to link ecological population dynamics to evolutionary diversification. The population‐level processes arising from ecological opportunity are well documented under the concept of ecological release. However, there is little consensus as to how these processes promote phenotypic diversification, rapid speciation and adaptive radiation. We propose that ecological opportunity could promote adaptive radiation by generating specific changes to the selective regimes acting on natural populations, both by relaxing effective stabilizing selection and by creating conditions that ultimately generate diversifying selection. We assess theoretical and empirical evidence for these effects of ecological opportunity and review emerging phylogenetic approaches that attempt to detect the signature of ecological opportunity across geological time. Finally, we evaluate the evidence for the evolutionary effects of ecological opportunity in the diversification of Caribbean Anolis lizards. Some of the processes that could link ecological opportunity to adaptive radiation are well documented, but others remain unsupported. We suggest that more study is required to characterize the form of natural selection acting on natural populations and to better describe the relationship between ecological opportunity and speciation rates.  相似文献   

7.
Living amphibians exhibit a diversity of ecologies, life histories, and species‐rich lineages that offers opportunities for studies of adaptive radiation. We characterize a diverse clade of frogs (Kaloula, Microhylidae) in the Philippine island archipelago as an example of an adaptive radiation into three primary habitat specialists or ecotypes. We use a novel phylogenetic estimate for this clade to evaluate the tempo of lineage accumulation and morphological diversification. Because species‐level phylogenetic estimates for Philippine Kaloula are lacking, we employ dense population sampling to determine the appropriate evolutionary lineages for diversification analyses. We explicitly take phylogenetic uncertainty into account when calculating diversification and disparification statistics and fitting models of diversification. Following dispersal to the Philippines from Southeast Asia, Kaloula radiated rapidly into several well‐supported clades. Morphological variation within Kaloula is partly explained by ecotype and accumulated at high levels during this radiation, including within ecotypes. We pinpoint an axis of morphospace related directly to climbing and digging behaviors and find patterns of phenotypic evolution suggestive of ecological opportunity with partitioning into distinct habitat specialists. We conclude by discussing the components of phenotypic diversity that are likely important in amphibian adaptive radiations.  相似文献   

8.
The pace of phenotypic diversification during adaptive radiation should decrease as ecological opportunity declines. We test this prediction using phylogenetic comparative analyses of a wide range of morphological traits in Greater Antillean Anolis lizards. We find that the rate of diversification along two important axes of Anolis radiation—body size and limb dimensions—decreased as opportunity declined, with opportunity quantified either as time elapsed in the radiation or as the diversity of competing anole lineages inferred to have been present on an island at different times in the past. Most previous studies of the ecological opportunity hypothesis have focused on the rate of species diversification; our results provide a complementary perspective, indicating that the rate of phenotypic diversification declines with decreasing opportunity in an adaptive radiation.  相似文献   

9.

Background

Deterministic evolution, phylogenetic contingency and evolutionary chance each can influence patterns of morphological diversification during adaptive radiation. In comparative studies of replicate radiations, convergence in a common morphospace implicates determinism, whereas non-convergence suggests the importance of contingency or chance.

Methodology/Principal Findings

The endemic cichlid fish assemblages of the three African great lakes have evolved similar sets of ecomorphs but show evidence of non-convergence when compared in a common morphospace, suggesting the importance of contingency and/or chance. We then analyzed the morphological diversity of each assemblage independently and compared their axes of diversification in the unconstrained global morphospace. We find that despite differences in phylogenetic composition, invasion history, and ecological setting, the three assemblages are diversifying along parallel axes through morphospace and have nearly identical variance-covariance structures among morphological elements.

Conclusions/Significance

By demonstrating that replicate adaptive radiations are diverging along parallel axes, we have shown that non-convergence in the common morphospace is associated with convergence in the global morphospace. Applying these complimentary analyses to future comparative studies will improve our understanding of the relationship between morphological convergence and non-convergence, and the roles of contingency, chance and determinism in driving morphological diversification.  相似文献   

10.
Parallel evolutionary radiations in adjacent locations have been documented in many systems, but typically at limited geographical scales. Here, we compare patterns of evolutionary radiation at the global scale in iguanian lizards, the dominant clade of lizards. We generated a new time‐calibrated phylogeny including 153 iguanian species (based on mitochondrial and nuclear data) and obtained data on morphology and microhabitats. We then compared patterns of species diversification, morphological disparity, and ecomorphological relationships in the predominantly Old World and New World clades (Acrodonta and Pleurodonta, respectively), focusing on the early portions of these radiations. Acrodonts show relatively constant rates of species diversification and disparity over time. In contrast, pleurodonts show an early burst of species diversification and less‐than‐expected morphological disparity early in their history, and slowing diversification and increasing disparity more recently. Analyses including all species (with MEDUSA) suggest accelerated diversification rates in certain clades within both Acrodonta and Pleurodonta, which strongly influences present‐day diversity patterns. We also find substantial differences in ecomorphological relationships between these clades. Our results demonstrate that sister clades in different global regions can undergo very different patterns of evolutionary radiation over similar time frames. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ●● , ●●–●●.  相似文献   

11.
Evolutionary radiations are responsible for much of Earth's diversity, yet the causes of these radiations are often elusive. Determining the relative roles of adaptation and geographic isolation in diversification is vital to understanding the causes of any radiation, and whether a radiation may be labeled as “adaptive” or not. Across many groups of plants, trait–climate relationships suggest that traits are an important indicator of how plants adapt to different climates. In particular, analyses of plant functional traits in global databases suggest that there is an “economics spectrum” along which combinations of functional traits covary along a fast–slow continuum. We examine evolutionary associations among traits and between trait and climate variables on a strongly supported phylogeny in the iconic plant genus Protea to identify correlated evolution of functional traits and the climatic‐niches that species occupy. Results indicate that trait diversification in Protea has climate associations along two axes of variation: correlated evolution of plant size with temperature and leaf investment with rainfall. Evidence suggests that traits and climatic‐niches evolve in similar ways, although some of these associations are inconsistent with global patterns on a broader phylogenetic scale. When combined with previous experimental work suggesting that trait–climate associations are adaptive in Protea, the results presented here suggest that trait diversification in this radiation is adaptive.  相似文献   

12.
Ecological opportunity is often proposed as a driver of accelerated diversification, but evidence has been largely derived from either contemporary island radiations or the fossil record. Here, we investigate the potential influence of ecological opportunity on a transcontinental radiation of South American freshwater fishes. We generate a species‐dense, time‐calibrated molecular phylogeny for the suckermouth armored catfish subfamily Hypostominae, with a focus on the species‐rich and geographically widespread genus Hypostomus. We use the resulting chronogram to estimate ancestral geographical ranges, infer historical rates of cladogenesis and diversification in habitat and body size and shape, and test the hypothesis that invasions of previously unoccupied river drainages accelerated evolution and contributed to adaptive radiation. Both the subfamily Hypostominae and the included genus Hypostomus originated in the Amazon/Orinoco ecoregion. Hypostomus subsequently dispersed throughout tropical South America east of the Andes Mountains. Consequent to invasion of the peripheral, low‐diversity Paraná River basin in southeastern Brazil approximately 12.5 Mya, Paraná lineages of Hypostomus, experienced increased rates of cladogenesis and ecological and morphological diversification. Contemporary lineages of Paraná Hypostomus are less species rich but more phenotypically diverse than their congeners elsewhere. Accelerated speciation and morphological diversification rates within Paraná basin Hypostomus are consistent with adaptive radiation. The geographical remoteness of the Paraná River basin, its recent history of marine incursion, and its continuing exclusion of many species that are widespread in other tropical South American rivers suggest that ecological opportunity played an important role in facilitating the observed accelerations in diversification.  相似文献   

13.
The process of adaptive radiation involves multiple events of speciation in short succession, associated with ecological diversification. Understanding this process requires identifying the origins of heritable phenotypic variation that allows adaptive radiation to progress. Hybridization is one source of genetic and morphological variation that may spur adaptive radiation. We experimentally explored the potential role of hybridization in facilitating the onset of adaptive radiation. We generated first‐ and second‐generation hybrids of four species of African cichlid fish, extant relatives of the putative ancestors of the adaptive radiations of Lakes Victoria and Malawi. We compared patterns in hybrid morphological variation with the variation in the lake radiations. We show that significant fractions of the interspecific morphological variation and the major trajectories in morphospace that characterize whole radiations can be generated in second‐generation hybrids. Furthermore, we show that covariation between traits is relaxed in second‐generation hybrids, which may facilitate adaptive diversification. These results support the idea that hybridization can provide the heritable phenotypic diversity necessary to initiate adaptive radiation.  相似文献   

14.
The adaptive radiation of flowering plants as manifested by the floral diversity has long been considered associated with the diversity of plant–pollinator interactions, because changes in plant–pollinator interactions are hypothesized as one of the major mechanisms driving plant ecological speciation. To understand the relative contributions of various mechanisms for plant radiation, including pollinator changes, it is useful to study a plant group for which comparative study of the species life history across the whole lineage is feasible. To this end, we will focus on the plant lineages that have presumably radiated in the Japanese archipelago, namely, the genera Asimitellaria, Asarum, and Arisaema. By comparing these three genera, we will comment on the possible modes of adaptive radiation and diversification among the endemic flora of Japan.  相似文献   

15.
Rapid increases in taxonomic diversity are generally described as adaptive or evolutionary radiations. Such radiations differ widely in the rate and extent of morphologic innovation, taxonomic diversification and phylogenetic breadth, suggesting that several patterns, and likely processes, are involved. At least four distinct patterns of evolutionary radiation can be identified: novelty events, which generate new morphological complexity (altering the body plan of the group under consideration) but not necessarily with the associated production of many lower taxa; broad diversification events involving many independent lineages that undergo diversification, generate many new species and are driven by new ecological opportunities; economic radiations of a limited group of ecologically (but not necessarily phylogenetically) related clades exploiting a limited new ecologic opportunity; and adaptive radiations that may occur at any taxonomic level, but involve a rapid increase in diversity within a single clade, including “true”; adaptive radiations. Many events produce simple diversity increases with no corresponding increase in genetic/developmental/morphological/behavioral sophistication, but the most evolutionarily interesting events add new levels of complexity.  相似文献   

16.
Competitors are known to be important in governing the outcome of evolutionary diversification during an adaptive radiation, but the precise mechanisms by which they exert their effects remain elusive. Using the model adaptive radiation of Pseudomonas fluorescens, we show experimentally that the effect of competition on diversification of a focal lineage depends on both the strength of competition and the ability of the competitors to diversify. We provide evidence that the extent of diversification in the absence of interspecific competitors depends on the strength of resource competition. We also show that the presence of competitors can actually increase diversity by increasing interspecific resource competition. Competitors that themselves are able to diversify prevent diversification of the focal lineage by removing otherwise available ecological opportunities. These results suggest that the progress of an adaptive radiation depends ultimately on the strength of resource competition, an effect that can be exaggerated or impeded by the presence of competitors.  相似文献   

17.
Bursts in species diversification are well documented among animals and plants, yet few studies have assessed recent adaptive radiations of eukaryotic microbes. Consequently, we examined the radiation of the most ecologically dominant group of endosymbiotic dinoflagellates found in reef‐building corals, Symbiodinium Clade C, using nuclear ribosomal (ITS2), chloroplast (psbAncr), and multilocus microsatellite genotyping. Through a hierarchical analysis of high‐resolution genetic data, we assessed whether ecologically distinct Symbiodinium, differentiated by seemingly equivocal rDNA sequence differences, are independent species lineages. We also considered the role of host specificity in Symbiodinium speciation and the correspondence between endosymbiont diversification and Caribbean paleo‐history. According to phylogenetic, biological, and ecological species concepts, Symbiodinium Clade C comprises many distinct species. Although regional factors contributed to population‐genetic structuring of these lineages, Symbiodinium diversification was mainly driven by host specialization. By combining patterns of the endosymbiont's host specificity, water depth distribution, and phylogeography with paleo‐historical signals of climate change, we inferred that present‐day species diversity on Atlantic coral reefs stemmed mostly from a post‐Miocene adaptive radiation. Host‐generalist progenitors spread, specialized, and diversified during the ensuing epochs of prolonged global cooling and change in reef‐faunal assemblages. Our evolutionary reconstruction thus suggests that Symbiodinium undergoes “boom and bust” phases in diversification and extinction during major climate shifts.  相似文献   

18.
Modern whales are frequently described as an adaptive radiation spurred by either the evolution of various key innovations (such as baleen or echolocation) or ecological opportunity following the demise of archaic whales. Recent analyses of diversification rate shifts on molecular phylogenies raise doubts about this interpretation since they find no evidence of increased speciation rates during the early evolution of modern taxa. However, one of the central predictions of ecological adaptive radiation is rapid phenotypic diversification, and the tempo of phenotypic evolution has yet to be quantified in cetaceans. Using a time-calibrated molecular phylogeny of extant cetaceans and a morphological dataset on size, we find evidence that cetacean lineages partitioned size niches early in the evolutionary history of neocetes and that changes in cetacean size are consistent with shifts in dietary strategy. We conclude that the signature of adaptive radiations may be retained within morphological traits even after equilibrium diversity has been reached and high extinction or fluctuations in net diversification have erased any signature of an early burst of diversification in the structure of the phylogeny.  相似文献   

19.
Reconstructing the evolutionary history of island biotas is complicated by unusual morphological evolution in insular environments. However, past human-caused extinctions limit the use of molecular analyses to determine origins and affinities of enigmatic island taxa. The Caribbean formerly contained a morphologically diverse assemblage of caviomorph rodents (33 species in 19 genera), ranging from ∼0.1 to 200 kg and traditionally classified into three higher-order taxa (Capromyidae/Capromyinae, Heteropsomyinae, and Heptaxodontidae). Few species survive today, and the evolutionary affinities of living and extinct Caribbean caviomorphs to each other and to mainland taxa are unclear: Are they monophyletic, polyphyletic, or paraphyletic? We use ancient DNA techniques to present the first genetic data for extinct heteropsomyines and heptaxodontids, as well as for several extinct capromyids, and demonstrate through analysis of mitogenomic and nuclear data sets that all sampled Caribbean caviomorphs represent a well-supported monophyletic group. The remarkable morphological and ecological variation observed across living and extinct caviomorphs from Cuba, Hispaniola, Jamaica, Puerto Rico, and other islands was generated through within-archipelago evolutionary radiation following a single Early Miocene overwater colonization. This evolutionary pattern contrasts with the origination of diversity in many other Caribbean groups. All living and extinct Caribbean caviomorphs comprise a single biologically remarkable subfamily (Capromyinae) within the morphologically conservative living Neotropical family Echimyidae. Caribbean caviomorphs represent an important new example of insular mammalian adaptive radiation, where taxa retaining “ancestral-type” characteristics coexisted alongside taxa occupying novel island niches. Diversification was associated with the greatest insular body mass increase recorded in rodents and possibly the greatest for any mammal lineage.  相似文献   

20.
Ecological opportunity is frequently proposed as the sole ingredient for adaptive radiation into novel niches. An additional trigger may be genome‐wide hybridization resulting from “hybrid swarm.” However, these hypotheses have been difficult to test due to the rarity of comparable control environments lacking adaptive radiations. Here I exploit such a pattern in microendemic radiations of Caribbean pupfishes. I show that a sympatric three species radiation on San Salvador Island, Bahamas diversified 1445 times faster than neighboring islands in jaw length due to the evolution of a novel scale‐eating adaptive zone from a generalist ancestral niche. I then sampled 22 generalist populations on seven neighboring islands and measured morphological diversity, stomach content diversity, dietary isotopic diversity, genetic diversity, lake/island areas, macroalgae richness, and Caribbean‐wide patterns of gene flow. None of these standard metrics of ecological opportunity or gene flow were associated with adaptive radiation, except for slight increases in macroalgae richness. Thus, exceptional trophic diversification is highly localized despite myriad generalist populations in comparable environmental and genetic backgrounds. This study provides a strong counterexample to the ecological and hybrid swarm theories of adaptive radiation and suggests that diversification of novel specialists on a sparse fitness landscape is constrained by more than ecological opportunity and gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号