首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A species‐wide phylogeographic study of the narrow‐headed vole Lasiopodomys (Stenocranius) gregalis was performed using the mitochondrial (mt) cytochrome b gene. We examined 164 specimens from 50 localities throughout the species distribution range. Phylogeographic pattern clearly demonstrates the division into four major mtDNA lineages with further subdivision. The level of genetic differentiation between them was found to be extremely high even for the species level: about 6–11%. The most striking result of our study is extremely high mutation rate of cytb in L. gregalis. Our estimates suggested its value of 3.1 × 10?5 that is an order of magnitude higher than previous estimates for Microtus species. The mean estimated time of basal differentiation of the narrow‐headed vole is about 0.8 Mya. This time estimate is congruent with the known paleontological record. The greatest mitochondrial diversity is found in Southern Siberia where all four lineages occur; therewith, three of them are distributed exclusively in that area. The lineage that is distributed in south‐eastern Transbaikalia is the earliest derivate and exhibits the highest genetic divergence from all the others (11%). It is quite probable that with further research, this lineage will turn out to represent a cryptic species. Spatial patterns of genetic variation in populations of the narrow‐headed vole within the largest mt lineage indicate the normal or stepping stone model of dispersal to the north and south‐west from the Altay region in Middle Pleistocene. Both paleontological data and genetic diversity estimates suggest that this species was very successful during most of the Pleistocene, and we propose that climate humidification and wide advance of tree vegetation at the Pleistocene–Holocene boundary promoted range decrease and fragmentation for this typical member of tundra‐steppe faunistic complex. However, we still observe high genetic diversity within isolated fragments of the range.  相似文献   

2.
The goal of this study was to define whether cuticular hydrocarbons (CHs) could be used for taxonomic determination of putative species hidden in the Anastrepha fraterculus cryptic species complex, widespread from Argentina to Mexico. Recently, increasing evidence of phenotypic and genetic variability has resulted in the characterization of eight morphotypes within this complex. The CH profiles of six A. fraterculus populations from Argentina, Brazil, Peru, Colombia and Mexico were analysed in this study by two‐dimensional gas chromatography coupled with mass spectrometry. In parallel, multiple factorial analyses were used to elucidate population structures. Vector populations segregated into four distinct groups. The analysis demonstrated that the studied populations from Peru, Argentina and southern Brazil (Vacaria) might be classified in accordance with the earlier division of the Afraterculus complex into Peruvian, and Brazilian‐1 cryptic species, using the specific CH profiles. Population from south‐eastern Brazil (Piracicaba) formed separated group. Mexican and Andean (Colombian) putative species had similar CH signatures, when compared to each other.  相似文献   

3.
The Balkan Peninsula is a hot spot for European herpetofaunal biodiversity and endemism. The rock climbing lizards Dalmatolacerta oxycephala and Dinarolacerta mosorensis and the ground‐dwelling Dalmatian wall lizard Podarcis melisellensis are endemic to the Western Balkans, and their ranges largely overlap. Here, we present a comparative phylogeographical study of these three species in the area of their codistribution in order to determine the level of concordance in their evolutionary patterns. Phylogenetic analyses were performed based on two mitochondrial genes (cytochrome b and 16S rRNA), and a molecular clock approach was used to date the most important events in their evolutionary histories. We also tested for correlations regarding genetic differentiation among populations and their geographical distances. For all three species, a significant correlation between genetic and geographical distances was found. Within D. oxycephala, two deeply separated clades (‘island’ and ‘mainland clade’), with further subdivision of the ‘mainland clade’ into two subclades (‘south‐eastern’ and ‘north‐western’), were found. High sequence divergences were observed between these groups. From our data, the time of separation of the two main clades of D. oxycephala can be estimated at about 5 mya and at about 0.8 mya for the two subclades of the mainland clade. Within D. mosorensis, coalescence time may be dated at about 1 mya, while D. mosorensis and D. montenegrina separated around 5 mya. The results imply the existence of complex palaeo‐biogeographical and geological factors that probably influenced the observed phylogeographical patterns in these lacertid species, and point to the presence of numerous glacial/interglacial refugia. Furthermore, the observed cryptic genetic diversity within the presently monotypic species D. oxycephala prompts for a revision of its taxonomic and conservation status.  相似文献   

4.
Close affinities recognized between taxa in Mexico and the contiguous USA have led to a variety of biogeographical scenarios. One such hypothesis suggests that species that occur in both countries have an origin in central Mexico followed by dispersal into the USA. This study expands upon previous phylogeographical work of the ringneck snake Diadophis punctatus by incorporating new data from previously unsampled areas appropriate to critically assess hypotheses regarding a Mexican origin for this species. Maximum likelihood and maximum parsimony analyses inferred a derived position for the lineage from southern Mexico with constraint tests for alternate evolutionary hypotheses resulting in significantly worse likelihood values. Ancestral area reconstructions inferred an origin for D. punctatus in the south‐eastern USA followed by a south‐east to north‐east then westward directionality of historical migration. The position within the phylogeny and date estimate for the south‐western + Mexico clade suggests a recent invasion into central Mexico with expansion into the Nearctic/Neotropic transition zone. The extensive lineage diversity inferred from the mtDNA suggests that the genus is a complex of cryptic species whose conservational status should be re‐evaluated on both the national and regional levels. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 629–640.  相似文献   

5.
Wu, H.‐C., Lin, R.‐C., Hung, H.‐Y., Yeh, C.‐F., Chu, J.‐H., Yang, X.‐J., Yao, C.‐J., Zou, F.‐S., Yao, C.‐T., Li, S.‐H. & Lei, F.‐M. (2011). Molecular and morphological evidences reveal a cryptic species in the Vinaceous Rosefinch Carpodacus vinaceus (Fringillidae; Aves). —Zoologica Scripta, 40, 468–478. The Vinaceous Rosefinch (Carpodacus vinaceus) is endemic in East Asia with two recognized subspecies –C. v. vinaceus, distributed along the eastern edge of the Tibetan Plateau and the Himalayas, and C. v. formosanus, restricted to Taiwan’s Central Mountain Range. As reflected in a controversial taxonomic history, this vastly disjunctive distribution pattern suggests that the subspecies, having been isolated from each other for a long time, might have diverged, challenging the current taxonomic treatment and calling for possible species delimitation. Sequences of two mitochondrial fragments (mtDNA) and two Z‐linked nuclear loci (zDNA) were used to reconstruct the intraspecific phylogeny of C. vinaceous. The mtDNA tree shows that the two subspecies of the vinaceous rosefinch form two exclusively monophyletic clades. All but one zDNA sequences from the nominate subspecies and C. v. formosanus also formed exclusively monophyletic clades (the exceptional zDNA sequence from C. v. vinaceous formed a weakly supported clade with two outgroup species). Moreover, by conducting quantitative comparisons of morphometric traits and male plumage coloration, we found that the two subspecies exhibit distinguishable morphological differences. All the evidence therefore suggests that C. v. formosanus is a cryptic species and that its taxonomic status should be restored to full species. Molecular dating suggests that the two sibling rosefinches split 1.7 ± 0.2 million years ago, providing a point estimate for the historical connectivity of biota between eastern Tibet‐Himalayas and montane Taiwan.  相似文献   

6.
The Crocidura obscurior or West African pygmy shrew complex is endemic to West African forests from south‐eastern Guinea, eastern Liberia, southern Côte d'Ivoire and south‐western Ghana. We explore the genetic and morphometric diversity of 239 individuals of the C. obscurior complex from 17 localities across its geographical range. Using genetic data from three mitochondrial (16S, cytochrome b and COI) and four nuclear markers (BRCA1, STAT5A, HDAC2 and RIOK3) and skull geometric morphometrics, we show that this complex is composed of two cryptic and sympatric species, C. obscurior and C. eburnea. We then test several hypotheses to infer their evolutionary history. The observed phylogeographical pattern based on cytochrome b and COI sequences fits the forest refuge theory: during arid phases of the Plio‐Pleistocene, around 3.5, 2.1, 1 and 0.5 Mya, a small number of populations survived in isolated forest patches and diverged allopatrically. During wetter climatic periods, forests expanded, leading to secondary contacts between previously isolated populations. Our results also suggest the possible contribution of episodes of isolation in subrefuges. Historical variation of the West African hydrographic network could also have contributed to the observed patterns of genetic differentiation. Rivers such as the Volta and Sassandra may act as past and/or current barriers to gene flow. Although these two species have sympatric distributions, their phylogeographical histories are somewhat dissimilar due to small differences in their dispersal abilities and ecological requirements.  相似文献   

7.
Madagascar's shrew tenrecs (Mammalia: Tenrecidae; Microgale, Nesogale) represent an excellent system for studying speciation. Most species are endemic to the island's eastern humid forests, a region renowned for high levels of biodiversity and a high rate of in situ diversification. We set out to understand the speciation dynamics in a clade of recently described taxa: Microgale fotsifotsy and M. soricoides, which have nearly identical distributions in the moist evergreen forest, and M. nasoloi, which occurs in the western dry deciduous forest. A phylogenetic analysis using mitochondrial DNA data recovered two distinct clades of M. fotsifotsy: a south clade that is sister to, and broadly sympatric with, M. soricoides, and a north clade that is sister to the dry‐forest and distantly allopatric species M. nasoloi. To better understand this result, we analysed cranioskeletal measurements and performed demographic analyses using nuclear sequence data from ultraconserved elements. Nuclear data did not support a sister relationship between M. soricoides and the south clade of M. fotsifotsy but did demonstrate introgression between these clades, which probably explains the discordance between nuclear and mitochondrial phylogenies. Demographic analyses also revealed the absence of gene flow between the north and south clades of M. fotsifotsy. Morphometric data revealed several major differences between M. soricoides and M. fotsifotsy, as well as more subtle differences between the two clades of M. fotsifotsy. In light of these results, we treat the south clade of M. fotsifotsy as a new candidate species. Our findings demonstrate the utility of integrating multiple data types to understand complex speciation histories, and contribute to a growing body of evidence that species diversity on Madagascar is underestimated.  相似文献   

8.
Gammarus leopoliensis (Crustacea: Amphipoda) is considered a north‐eastern Carpathian endemic species and therefore can be regarded as an appropriate model for testing the hypothesis of Quaternary glacial survival in northern microrefugia. However, 250 km south, the south‐western Carpathians harbour populations that resemble phenotypically both G. leopoliensis and Gammarus kischineffensis, a similar species distributed east of the Carpathians. We used maximum‐likelihood and Bayesian methods to evaluate the phylogenetic relationships of these three taxa based on mitochondrial and nuclear markers, and quantitatively compared diversity patterns, phylogeography and divergence times among north‐eastern and south‐western Carpathian taxa. Results indicate that G. leopoliensis and the south‐western populations form together a strongly supported group (G. leopoliensis s.l.) which, along with G. kischineffensis, belongs to the Gammarus balcanicus clade. This group contains 12 lineages mainly of Pliocene age. G. leopoliensis consists of two widely distributed and recently expanded allopatric sister lineages that diverged from the southern ones ca. 4 Ma, indicating long‐term survival in northern microrefugia. The southern lineages are micro‐endemic and display a scattered distribution, suggesting a more ancient, relict pattern. We conclude that the contrasting diversity patterns between the disjunct distributional areas of G. leopoliensis s.l. reflect differential survival of lineages across the latitudinal gradient, offering a promising system for comparing the evolutionary ecology of lineages persisting in latitudinally disconnected microrefugia. These results fill an important gap in the knowledge of European gammarid biogeography and reveal that all Carpathian Gammarus taxa are ancient and diverse species complexes.  相似文献   

9.
The white‐bellied rat, Niviventer, is a genus endemic to Southeast Asia and China. However, the interspecific phylogenetic relationships and species diversity of this genus remain poorly understood. In the present study, single and multi‐locus analyses were performed. Phylogenetic reconstruction on Cytochrome b (512 individuals, including data from Genbank) revealed five major clades with approximately 35 operational taxonomic units (OTUs), a number twice the existing taxonomy. The first clade (Nlangbianis species group) was the earliest diverged. The second clade (N. fulvescens species group) diverged in Southeast Asia, the south and lower altitude regions of the Hengduan Mountains, and Southeast China. The third clade (the N. eha species group) is endemic to high altitudes in Northwest Yunnan and the central region of Himalaya. The fourth clade (the N. andersoni species group), is mainly confined to alpine regions of the Hengduan Mountains. The fifth clade (Nconfucianus species group) is mainly distributed in the north and higher altitude regions of eastern Himalaya, the Hengduan Mountains and Taiwan, with the complex also invading central and northern China. Results from the combined dataset of four genes (Cytochrome b, Cytochrome oxidase subunit I, the D‐loop sequence of the mitochondrial genome and the first exon of the nuclear interphotoreceptor retinoid binding protein) for 82 representative individuals from China generally coincide with the result of the single gene, with 12 OTUs identified. These results provide a preliminary framework for the existing classification of this highly diversified genus. The divergence time of Niviventer based on the four gene topology was dated to the late Miocene ~6.41 Ma. Significant differences were detected in the general body form changes among these units based on voucher specimens. Moreover, geometric morphometric analysis of the cranium shape of voucher specimens indicated significant differences among five major species groups. Shape divergence of the cranium among several OTUs within the N. confucinaus complex is also significant. Our results provide further evidence for rapid and highly underestimated diversification of Niviventer both in genetics and morphology.  相似文献   

10.
Detection of genetic and behavioural diversity within morphologically similar species has led to the discovery of cryptic species complexes. We tested the hypothesis that US populations of the canyon treefrog (Hyla arenicolor) may consist of cryptic species by examining mate‐attraction signals among three divergent clades defined by mtDNA. Using a multi‐locus approach, we re‐analysed phylogenetic relationships among the three clades and a closely related, but morphologically and behaviourally dissimilar species, the Arizona treefrog (H. wrightorum). We found evidence for introgression of H. wrightorum’s mitochondrial genome into H. arenicolor. Additionally, the two‐clade topology based on nuclear data is more congruent with patterns of call variation than the three‐clade topology from the mitochondrial dataset. The magnitude of the call divergence is probably insufficient to promote isolation of the nuclear DNA‐defined clades should they become sympatric, but further divergence in call properties significant in species identification could promote speciation in the future.  相似文献   

11.
Aim Kangaroo mice, genus Microdipodops Merriam, are endemic to the Great Basin and include two species: M. pallidus Merriam and M. megacephalus Merriam. The pallid kangaroo mouse, M. pallidus, is a sand‐obligate desert rodent. Our principal intent is to identify its current geographical distribution and to formulate a phylogeographical hypothesis for this taxon. In addition, we test for orientation patterns in haplotype sharing for evidence of past episodes of movement and gene flow. Location The Great Basin Desert region of western North America, especially the sandy habitats of the Lahontan Trough and those in south‐central Nevada. Methods Mitochondrial DNA sequence data from portions of three genes (16S ribosomal RNA, cytochrome b, and transfer RNA for glutamic acid) were obtained from 98 individuals of M. pallidus representing 27 general localities sampled throughout its geographical range. Molecular sequence data were analysed using neighbour‐joining, maximum‐parsimony, maximum‐likelihood and Bayesian methods of phylogenetic inference. Directional analysis of phylogeographical patterns, a novel method, was used to examine angular measurements of haplotype sharing between pairs of localities to detect and quantify historical events pertaining to movement patterns and gene flow. Results Collecting activities showed that M. pallidus is a rather rare rodent (mean trapping success was 2.88%), and its distribution has changed little from that determined three‐quarters of a century ago. Two principal phylogroups, distributed as eastern and western moieties, are evident from the phylogenetic analyses (mean sequence divergence for cytochrome b is c. 8%). The western clade shows little phylogenetic structure and seems to represent a large polytomy. In the eastern clade, however, three subgroups are recognized. Nine of the 42 unique composite haplotypes are present at two or more localities and are used for the orientation analyses. Axial data from haplotype sharing between pairwise localities show significant, non‐random angular patterns: a north‐west to south‐east orientation in the western clade, and a north‐east to south‐west directional pattern in the eastern clade. Main conclusions The geographical range of M. pallidus seems to be remarkably stable in historical times and does not show a northward (or elevationally upward) movement trend, as has been reported for some other kinds of organism in response to global climate change. The eastern and western clades are likely to represent morphologically cryptic species. Estimated times of divergence of the principal clades of M. pallidus (4.38 Ma) and between M. pallidus and M. megacephalus (8.1 Ma; data from a related study) indicate that kangaroo mice diverged much earlier than thought previously. The phylogeographical patterns described here may serve as a model for other sand‐obligate members of the Great Basin Desert biota.  相似文献   

12.
We performed a phylogenetic analysis using nuclear (RAG‐1, RAG‐2) and mitochondrial (16S) markers, a statistical Bayesian reconstruction of ancestral distribution areas and a karyological analysis on most Malagasy species of the gekkonid genus Lygodactylus. The phylogenetic analysis largely confirms major basal branching pattern of previous molecular studies, but highlights significant differences concerning both the relationships between different species groups as well as those within groups. The biogeographic analysis supports a Malagasy origin of Lygodactylus, an oversea dispersal to continental Africa and a return to Madagascar. The L. madagascariensis group (also including a new candidate species identified herein) is the most basal clade in Lygodactylus, and the sister group of a clade with all the remaining species. The second most basal clade is the L. verticillatus group, placed as the sister group of a clade comprising African and Malagasy species. The sister lineage of the L. verticillatus group originated the African radiation through an oversea dispersal out of Madagascar. Eventually, the sister lineage of the L. capensis group originated secondary dispersals from Africa to Madagascar. In Madagascar, lineage diversification in different species groups mainly occurred from southern to northern and eastern regions. Dispersal, vicariance and paleoclimatic refugia probably played a relevant role in the evolutionary history of closely related taxa and in speciation mechanisms. The cytogenetic analysis evidenced a high karyotypic variability in Lygodactylus (from 2n = 34 to 2n = 40), which is at least partly consistent with the phylogenetic relationships and the composition of the various species group. Chromosome evolution occurred independently in different lineages, mainly through a reduction in the chromosome number and starting from a putative primitive karyotype of 2n = 40 with all telocentric elements.  相似文献   

13.
Previous phylogenetic studies of the grape downy mildew pathogen, Plasmopara viticola, revealed five cryptic species in eastern North America that differed in their host range and geographic distribution. Preliminary comparative studies also documented differences in temperature responses during infection between certain cryptic species, indicating the biological relevance of knowing which cryptic species of the pathogen are present in a given region. However, limited information is available regarding the presence, prevalence and dynamics of cryptic species of P. viticola in the southeastern United States. Here, 301 P. viticola isolates obtained from cultivated grape species in five distinct grape‐growing regions of Georgia and Florida were subjected to cleaved amplified polymorphic sequence analysis and multilocus sequencing (internal transcribed spacer region of the rDNA, actin and β‐tubulin) to identify cryptic species and infer phylogenetic relationships. Three cryptic species, P. viticola clade aestivalis (Pva), clade vinifera (Pvv) and clade vulpina (Pvu), were identified in Georgia, whereas two, Pva and Pvv, were found in Florida; all three cryptic species are reported here for the first time in Georgia, whereas Pva is reported for the first time in Florida. Pva was the most prevalent cryptic species (72.1% of isolates) and was distributed widely from the North Georgia Mountains to Mid‐Florida, whereas Pvv (27.2%) and Pvu (0.7%) were found only in the Coastal Plain region of the two states. Interestingly, Pvu was obtained from French American hybrid Blanc du Bois and could be subcultured on Vitis vinifera Chardonnay, suggesting a broader host range than only the wild species Vitis vulpina reported previously.  相似文献   

14.
The present molecular systematic and phylogeographic analysis is based on sequences of cytochrome c oxidase subunit 1 (cox1) (mtDNA) and 28S ribosomal DNA and includes 59 isolates of cestodes of the genus Anoplocephaloides Baer, 1923 s. s. (Cyclophyllidea, Anoplocephalidae) from arvicoline rodents (lemmings and voles) in the Holarctic region. The emphasis is on Anoplocephaloides lemmi (Rausch 1952) parasitizing Lemmus trimucronatus and Lemmus sibiricus in the northern parts of North America and Arctic coast of Siberia, and Anoplocephaloides kontrimavichusi (Rausch 1976) parasitizing Synaptomys borealis in Alaska and British Columbia. The cox1 data, 28S data and their concatenated data all suggest that A. lemmi and A. kontrimavichusi are both non‐monophyletic, each consisting of two separate, well‐defined clades, that is independent species. As an example, the sister group of the clade 1 of A. lemmi, evidently representing the ‘type clade’ of this species, is the clade 1 of A. kontrimavichusi. For A. kontrimavichusi, it is not known which one is the type clade. There is also fairly strong evidence for the non‐monophyly of Anoplocephaloides dentata (Galli‐Valerio, 1905)‐like species, although an earlier phylogeny suggested that this multispecies assemblage may be monophyletic. The results suggest a deep phylogenetic codivergence of Lemmus spp. and A. lemmi, primarily separating the two largely allopatric host and parasite species at the Kolyma River in east Siberia. There are also two allopatric sublineages within each main clade/species of A. lemmi and Lemmus, but the present distributions of the sublineages within the eastern L. trimucronatus and clade 1 of A. lemmi are not concordant. This discrepancy may be most parsimoniously explained by an extensive westward distributional shift of the easternmost parasite subclade. The results further suggest that the clade 1 of A. kontrimavichusi has diverged through a host shift from the precursor of L. trimucronatus to S. borealis.  相似文献   

15.
Phylogenetic and phylogeographic patterns of amphisbaenians are poorly known. Molecular data from mitochondrial and nuclear loci are particularly needed for amphisbaenian phylogeny and taxonomy because their specializations to subterranean habits make morphology poorly informative and the occurrence of cryptic species probable. The Mediterranean genus Blanus includes five species – three of them have been recently studied mainly at the mitochondrial level. In this study, we collected mitochondrial (16S and nd4) and nuclear (mc1r and pomc) sequences from 49 specimens, including multiple individuals for each of the five species. We used multilocus coalescent‐based species‐tree inference and single‐gene analyses to estimate phylogenetic relationships among Blanus and to assess patterns of intraspecific differentiation within all the five species. Species‐tree and single‐gene phylogenies provided strong support for the Anatolian worm lizard B. strauchi lying outside a clade comprising all other congeners, with a sister relationship between the Iberian clade (B. cinereus and B. mariae) and the North African clade (B. tingitanus and B. mettetali). Mitochondrial and nuclear data supported the genetic distinctiveness of the recently described B. mariae and also indicated that the distribution of this species is wider than previously known and overlaps with B. cinereus in central Portugal. Blanus tingitanus showed two phylogeographic groups, from the northern and the southern portion of the range, respectively, having high mitochondrial and nuclear divergence and a possible contact zone in northwestern Morrocco. Finally, high genetic variation was found within B. mettetali and B. strauchi, suggesting in the latter case, the occurrence of cryptic taxa to be tested by further research.  相似文献   

16.
The Mediterranean area, from southern Balkans to western Maghreb, is inhabited by the Potamon subgenus Euthelphusa, with three currently recognised species. The Maghrebian species P. (E.) algeriense is isolated from other Potamon species by the Mediterranean Sea and the Sahara Desert, and nearly no molecular data are currently available for this taxon. Present study investigated the mtDNA and nuDNA diversity in Potamon algeriense s.l. with the aims of exploring its molecular diversity pattern throughout its known distribution range, and testing the possible presence of cryptic taxa currently lumped under this binomen. The phylogenetic and DNA taxonomy analyses showed the presence of two well-supported clades of species rank within P. algeriense s.l, with an eastern clade including the populations from Tunisia and Numidia, and a western, highly structured clade including the populations from central Algeria and Morocco. In agreement with a typical Maghrebian biogeographic pattern, the distribution of these two species shows a clear east–west divide, with a disjunction zone located in Kabylia, and a strong link between molecular diversity and segregation within different hydrographical basins is evident. The Maghreb thus proved to host an unexpectedly high genetic diversity of, and to constitute a biodiversity hot-spot for, the Potamon subgenus Euthelphusa. In the light of the existence of two well-characterised species currently lumped under P. algeriense s.l., and of their noteworthy molecular structuring, the status of Maghrebian Potamon populations should be re-assessed for both the species present in the area, which are to be considered as independent management units.  相似文献   

17.
The Mediterranean Basin harbors a remarkable amount of biodiversity, a high proportion of which is endemic to this region. Here, we present an in‐depth study of an angiosperm species complex, in which cryptic taxonomic diversity has been hypothesized. Specifically, we focus on four currently recognized species in the Roucela complex, a well‐supported clade in the Campanulaceae/Campanuloideae: Campanula creutzburgii, C. drabifolia, C. erinus, and C. simulans. This study takes a phylogenomic approach, utilizing near‐complete plastomes and 130 nuclear loci, to uncover cryptic diversity and test hypotheses regarding hybridization and polyploidy within this clade. Genome size estimates recovered tetraploid and octoploid lineages within the currently recognized, widespread species C. erinus, showing an east‐west geographic pattern. Though genomic data clearly differentiate these two cytotypes, we failed to discern morphological differences. The formation of a cryptic octoploid lineage, distributed across the eastern Mediterranean, is hypothesized to be the result of an allopolyploid event in which one parental morphology is retained. The tetraploid C. erinus and C. creutzburgii (also a tetraploid) are implicated as parental lineages. Our results highlight the utility of target‐enrichment approaches for obtaining genomic datasets for thorough assessments of species diversity and the importance of carefully considering gene‐tree discordance within such datasets.  相似文献   

18.
Ceratopteris thalictroides (L.) Brongn. (Parkeriaceae) is a difficult fern species to taxonomically classify. Three cryptic species were revealed in the previous studies, referred to as the north type, the south type, and the third type. Because much of the distribution range of C. thalictroides in China was not included in the sampling of the previous studies, the taxonomic complexity of C. thalictroides in China remained uncertain. In order to identify the uncharacterized cryptic species, we examined four chloroplast DNA (cpDNA) non-coding regions and compared sequence variation within this species complex. Sequence data were obtained from 143 individuals in 24 populations throughout the natural distribution of the species in China. Nineteen haplotypes were identified. Molecular systematic and phylogeographical analyses revealed two genetically distinct clusters of cpDNA haplotypes in China. One cluster included haplotypes associated with the north type, and another with the south type cryptic species. The N ST value was significantly higher than the G ST value (N ST = 0.768 > G ST = 0.434, P < 0.05), indicating the presence of a significant phylogeographical structure of C. thalictroides in China. The results of AMOVA analysis showed a significant inter-group differentiation (F ST = 0.918; P < 0.001). Analyses based on different, but complementary methods suggest that in China, C. thalictroides contains only two of the cryptic species (the north and south types). Two haplotypes, H8 and H17, of the interior node in the minimum-spanning network (MSN) of cpDNA haplotypes are widespread. The origin of the widespread haplotypes in China may have resulted from long-distance dispersal to China.  相似文献   

19.
The genus Sorex is one of the most diverse and ecologically successful lineages of the family Soricidae. We present the first multilocus nuclear phylogeny focusing on the nominal subgenus Sorex s.str., which is distributed mainly in the northern Palearctic. The nuclear tree (six exons) provides more resolution than the mitochondrial data (cytb) and supports subdivision into eight species groups within Sorex s.str., most of which correspond to those recognized from chromosome data. The European species S. alpinus is consistently placed as the basal lineage in the Palearctic clade, while the next split separates the east‐Tibetan group of striped shrews (S. aff. cylindricauda, S. bedfordiae, S. excelsus). Within the remaining species, the following well‐supported clades are identified at the supra‐group level: “araneus” species group+S. samniticus; the “caecutiens” group+the “minutus” group, the latter also including S. minutissimus, S. gracillimus and S. thibetanus. S. raddei and S. roboratus represent separate lineages with no close relatives. The fossil‐calibrated molecular clock placed the divergence between Sorex s.str. and Otisorex at the Early/Middle Miocene boundary. Basal radiation of the crown Sorex s.str. was estimated to have occurred in the middle of the Late Miocene. A more than threefold increase in the diversification rate is inferred for the Early Pliocene. Taxonomic implications including potential genus ranks for Sorex s.str. and Otisorex are discussed. S. alpinus is placed in the monotypic subgenus Homalurus. The full species status of S. buchariensis and S. thibetanus and close relationships between S. cf. cansulus and S. caecutiens are confirmed.  相似文献   

20.
The Persian dwarf snake Eirenis (Pseudocyclophis) persicus (Anderson, 1872) has a wide distribution range in south‐western Asia. This species group was comprehensively studied here using traditional biometry, geometric morphometrics, ecological niche modelling, and genetics. Our analyses revealed that E. persicus is split into two clades. A western clade, bearing at least two different species: E. persicus, distributed in south‐western Iran, and an undescribed species from south‐eastern Turkey and western Iran. The eastern clade consists of at least three species: Eirenis nigrofasciatus, distributed across north‐eastern Iraq, and western and southern Iran; Eirenis walteri, distributed across eastern Iran, southern Turkmenistan, and western and southern Pakistan, and Eirenis angusticeps, distributed in north‐eastern Pakistan. Ecological niche modelling revealed that the distribution of the species in the western clade are mainly affected by winter precipitation, and those in the eastern clade are mainly affected by the minimum temperature of the coldest month. A molecular clock analysis revealed that the divergence and diversification of the E. persicus species group mainly correspond to Eocene to Pliocene orogeny events subsequent to the Arabia–Eurasia collision. This study confirms that specimens with the unique morphology of having 13 dorsal scale rows on the anterior dorsum, occurring in the Suleiman Mountains in central Pakistan, can be referred to Eirenis mcmahoni (Wall, 1911). However, at this moment we have insufficient data to evaluate the taxonomy of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号