首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The secondary structure of a bradykinin B(1)receptor antagonist B-10324 (F5C-Lys-(1)- Lys(0)-Arg(1)-Pro(2)- Hyp(3)-Gly(4)-CpG(5)- Ser(6)-DTic(7)-CpG(8)) was determined by NMR at 800MHz. The conformational data are compared with those obtained previously for two bradykinin B(1) receptor antagonists, namely B-9858 (Lys-(1)- Lys(0)-Arg(1)-Pro(2)- Hyp(3)-Gly(4)-Igl(5)- Ser(6)-DIgl(7)-Oic(8)) and B-10148 (Lys-(1)-Lys(0)-Arg(1)- Pro(2)-Hyp(3)-Gly(4)- Igl(5)-Ser(6)-DF5F(7)- Oic(8)). The abnormal amino acids are: Hyp, trans-4- hydroxyproline; Tic, 1, 2, 3, 4-tetrahydroisoquinoline-3-carboxylic acid; Oic, (2S, 3aS, 7aS)-octahydroindole-2-carboxylic acid; Igl, alpha(2- indanyl)glycine; F5F, 2,3,4,5,6-pentafluorophenylalanine; CpG, alpha- cyclopentylglycine. F5C, pentafluorocinnamoyl, is the N-terminal protecting group and is not involved in the peptide secondary structure. B-10324 contains an N-terminal Pro(2)- CpG(5) distorted type II beta-turn whereas the rest of the peptide is random. A salt bridge is not observed between the carboxylate group at the C-terminal end and the Arg(1) side chain, in contrast to that previously observed for B-9858 and B- 10148. The conformations are correlated with the measured B(1) receptor antagonist activities (J.-F. Larrivée, L. Gera, S. Houle, J. Bouthillier, D. R. Bachvarov, J. M. Stewart and F. Marc au, Br. J. Pharmacol. 131, 885-892 (2000)). The importance of the N-terminal beta-turn is highlighted.  相似文献   

2.
High affinity peptide ligands for the bradykinin (BK) B(2) subtype receptor have been shown to adopt a beta-turn conformation of the C-terminal tetrapeptide (H-Arg(1)-Pro(2)-Pro(3)-Gly(4)-Phe(5)-Ser(6)-Pro(7)-Phe(8)-Arg(9)-OH). We investigated the replacement of the Pro(7)-Phe(8) dipeptide moiety in BK or the D-Tic(7)-Oic(8) subunit in HOE140 (H-D-Arg(0)-Arg(1)-Pro(2)-Hyp(3)-Gly(4)-Thi(5)-Ser(6)-D-Tic(7)-Oic(8)-Arg(9)-OH) by 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one templates (Aba). Binding studies to the human B(2) receptor showed a correlation between the affinities of the BK analogs and the propensity of the templates to adopt a beta-turn conformation. The L-spiro-Aba-Gly containing HOE140 analog BK10 has the best affinity, which correlates with the known turn-inducing property of this template. All the compounds did not modify basal inositolphosphate (IP) output in B(2)-expressing CHO cells up to 10 microM concentration. The antagonist properties were confirmed by the guinea pig ileum smooth muscle contractility assay. The new amino-benzazepinone (Aba) substituted BK analogs were found to be surmountable antagonists.  相似文献   

3.
Calculated and experimental (1)H, (13)C and (19)F chemical shifts were compared in BKM-824, a cyclic bradykinin antagonist mimic, c[Ava(1)-Igl(2)-Ser(3)-DF5F(4)-Oic(5)-Arg(6)] (Ava=5-aminovaleric acid, Igl=alpha-(2-indanyl)glycine, DF5F=pentafluorophenylalanine, Oic=(2S,3aS,7aS)-octahydroindole-2-carboxylic acid). The conformation of BKM-824 has been studied earlier by NMR spectroscopy (M. Miskolzie et al., J. Biomolec. Struct. Dyn. 17, 947-955 (2000)). All NMR structures have qualitatively the same backbone structure but there is considerable variation in the side chain conformations. We have carried out quantum mechanical optimization for three representative NMR structures at the B3LYP/6-31G* level, constraining the backbone dihedral angles at their NMR structure values, followed by NMR chemical shift calculations at the optimized structures with the 6-311G** basis set. There is an intramolecular hydrogen bond at Ser(3) in the optimized structures. The experimental (13)C chemical shifts at five C(alpha) positions as well as at the Cbeta, Cgamma and Cdelta position of Ava(1), which forms part of the backbone, are well reproduced by the calculations, confirming the NMR backbone structure. A comparison between the calculated and experimental H(beta) chemical shifts in Igl(2) shows that the dominant conformation at this residue is gauche. Changes of proton chemical shifts with the scan of the chi(1) angle in DF5F(4) suggest that chi(1)180 degrees. The calculated (1)H and (13)C chemical shifts are in good agreement with experiment at the rigid residue Oic(5). None of the models gives accurate results for Arg(6), presumably because of its positive charge. Our study indicates that calculated NMR shifts can be used as additional constraints in conjunction with NMR data to determine protein conformations. However, to be computationally effective, a database of chemical shifts in small peptide fragments should be precalculated.  相似文献   

4.
The solution conformations of two potent antagonists of bradykinin (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9), [Aca(-1),DArg0,Hyp3,Thi5,DPhe7,(N-Bzl)Gly8]BK (1) and [Aaa(-1),DArg0,Hyp3,Thi5,(2-DNal)7,Thi8]BK (2), were studied by using 2D NMR spectroscopy in DMSO-d6 and molecular dynamics simulations. The NMR spectra of peptide 1 reveals the existence of at least two isomers arising from isomerization across the DPhe7-(N-Bzl)Gly8 peptide bond. The more populated isomer possesses the cis peptide bond at this position. The ratio of cis/trans isomers amounted to 7:3. With both antagonists, the NMR data indicate a beta-turn structure for the Hyp3-Gly4 residues. In addition, for peptide 2, position 2,3 is likely to be occupied by turn-like structures. The cis peptide bond between DPhe7 and (N-Bzl)Gly8 in analogue 1 suggests type VI beta-turn at position 7,8. The molecular dynamics runs were performed on both peptides in DMSO solution. The results indicate that the structure of peptide 1 is characterized by type VIb beta-turn comprising residues Ser6-Arg9 and the betaI or betaII-turn involving the Pro2-Thi5 fragment, whereas peptide 2 shows the tendency towards the formation of type I beta-turn at position 2,3. The structures of both antagonists are stabilized by a salt bridge between the guanidine moiety of Arg1 and the carboxyl group of Arg9. Moreover, the side chain of DArg0 is apart of the rest of molecule and is not involved in structural elements except for a few calculated structures.  相似文献   

5.
Nonpeptide antagonists for kinin receptors   总被引:1,自引:0,他引:1  
Kinins are a family of small peptides acting as mediators of inflammation and pain in the peripheral and central nervous system. The two main 'kinins' in mammals are the nonapeptide bradykinin (BK, Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9) and the decapeptide kallidin (KD, [Lys0]-BK, Lys1-Arg2-Pro3-Pro4-Gly5-Phe6-Ser7-Pro8-Phe9- Arg10). Their biological actions are mediated by two distinct receptors, termed B1 and B2. Kinin B and B2 receptor antagonists may be useful drugs endowed with analgesic and anti-inflammatory properties, with potential use in asthma, allergic rhinitis and other diseases. The first nonpeptide kinin B2 receptor antagonist, WIN 64338, was reported in 1993. Despite its low selectivity, the compound provided a reference for pharmacological and modeling studies. Several quinoline and imidazo[1,2-a]pyridine derivatives have been shown by Fujisawa to possess high affinity and selectivity for kinin B2 receptors. Among them, FR 173657 displayed excellent in vitro and in vivo antagonistic activity, while FR 190997 emerged as the first nonpeptide agonist for B2 receptor. Two structurally related Fournier compounds were recently published. Other kinin B2 receptor ligands were obtained by rational design, through library screening or from natural sources. The only example of a nonpeptide kinin B1 receptor ligand has been reported in a patent by Sanofi.  相似文献   

6.
1. Bradykinin (Bk; Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg8) inactivation by bulk isolated neurons from rat brain is described. 2. Bk is rapidly inactivated by neuronal perikarya (4.2 +/- 0.6 fmol/min/cell body). 3. Sites of inactivating cleavages, determined by a kininase bioassay combined with a time-course Bk-product analysis, were the Phe5-Ser6, Pro7-Phe8, Gly4-Phe5, and Pro3-Gly4 peptide bonds. The cleavage of the Phe5-Ser6 bond inactivated Bk at least five fold faster than the other observed cleavages. 4. Inactivating peptidases were identified by the effect of inhibitors on Bk-product formation. The Phe5-Ser6 bond cleavage is attributed mainly to a calcium-activated thiol-endopeptidase, a predominantly soluble enzyme which did not behave as a metalloenzyme upon dialysis and was strongly inhibited by N-[1(R,S)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate and endo-oligopeptidase A antiserum. Thus, neuronal perikarya thiol-endopeptidase seems to differ from endo-oligopeptidase A and endopeptidase 24.15. 5. Endopeptidase 24.11 cleaves Bk at the Gly4-Phe5 and, to a larger extent, at the Pro7-Phe8 bond. The latter bond is also cleaved by angiotensin-converting enzyme (ACE) and prolyl endopeptidase (PE). PE also hydrolyzes Bk at the Pro3-Gly4 bond. 6. Secondary processing of Bk inactivation products occurs by (1) a rapid cleavage of Ser6-Pro7-Phe8-Arg8 at the Pro7-Phe8 bond by endopeptidase 24.11, 3820ACE, and PE; (2) a bestatin-sensitive breakdown of Phe8-Arg9; and (3) conversion of Arg1-Pro7 to Arg1-Phe5, of Gly4-Arg9 to both Gly4-Pro7 and Ser6-Arg9, and of Phe5-Arg9 to Ser6-Arg9, Phe8-Arg9, and Ser6-Pro7, by unidentified peptidases. 7. A model for the enzymatic inactivation of bradykinin by rat brain neuronal perikarya is proposed.  相似文献   

7.
The conformational features of Pam-Lys(0)-Arg(1)-Pro(2)-Pro(3)-Gly(4)-Phe(5)-Ser(6)-Pro(7)-Phe(8)-Arg(9)-OH (PKD) and Pam-Gly(-1)-Lys(0)-Arg(1)-Pro(2)-Pro(3)-Gly(4)-Phe(5)-Ser(6)-Pro(7)-Phe(8)-Arg(9)-OH (PGKD), the Pam-Lys and Pam-Gly-Lys analogues of bradykinin, have been determined by high-resolution NMR in a zwitterionic lipoid environment. Radical-induced relaxation of the (1)H NMR signals was used to probe the topological orientation of the peptides with respect to the zwitterionic lipid interface. The radical-induced relaxation and molecular dynamics (MD) data indicated that the palmitic acid and N-terminal amino acid residues embed into the micelles, while the rest of the polypeptide chain is closely associated with the water-micelle interface. Throughout the entire nuclear Overhauser effect restrained MD simulation, a nonideal type I beta-turn was observed in the C-terminus of PKD between residues 6 and 9, and a gamma-turn was observed in the C-terminus of PGKD between residues 6 and 7. Therefore, the additional glycine has a dramatic effect on the structural preferences of the biologically important C-terminus, an effect brought about by the interaction with the lipid environment. These structural features are correlated to the biological activity at the bradykinin B2 receptor.  相似文献   

8.
A detailed NMR study is carried out in acetonitrile/water solutions on three novel cyclic bradykinin antagonist analogues, BKM-824, BKM-870, and BKM-872, to examine their solution structures, and to correlate the structures with bradykinin antagonist and anti-cancer activities. The solution structures of the cyclic peptides are correlated with the structural data for known linear bradykinin antagonists. The sequences are: BKM-824 c[Ava-Ig1-Ser-DF5F-Oic-Arg] where Ava is 5-aminovaleric acid, Ig1 is alpha-(2-indanyl)glycine, F5F is pentafluorophenylalanine, and Oic is (2S,3aS,7aS)-octahydroindole-2-carboxylic acid; BKM-870; c[DArg-Arg-Add-DF5F-Oic-Arg] where Add is 12-aminododecanoic acid; and BKM-872; c[DArg-Arg-Eac-Ser-DF5F-Oic-Arg] where Eac is 6-aminocaproic acid. BKM-824 was the only peptide within this series that possessed a discernable solution structure. The NMR data indicate the presence of a type I beta-turn between residues F5F4 and Ava1, a C-terminal-like end. Molecular dynamics calculations show that a type I beta-turn from DF5F4 to Ava1 does exist although the turn was somewhat distorted. This result differs from the structures seen in linear bradykinin antagonists, which usually possess a type II'beta-turn at the C-terminal end and the presence of a defined turn is correlated with bradykinin antagonist activity. There is no solution structure for BKM-870 and BKM-872 but a correlation between the primary sequence Arg(terminal)-DArg1-Arg2-long chain aliphatic amino acid and anti-cancer activity is evident.  相似文献   

9.
The ability of (S)-alpha-methylproline (alpha-MePro) to stabilise reverse-turn conformations in the peptide hormone bradykinin (BK = Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9) has been investigated. Two BK analogues containing alpha-MePro at position 3 or position 7 were synthesised and their conformations in aqueous solution investigated by NMR spectroscopy. Whereas BK is largely disordered on the NMR time scale both analogues showed ROE connectivities in 2D-ROESY spectra indicative of reverse-turn conformations at both Pro2-Phe5 and Ser6-Arg9, whose formation appears to be cooperative. Some potential applications of alpha-MePro as a reverse-turn mimetic in the construction of synthetic peptide libraries is discussed.  相似文献   

10.
The objective of this study was to explain the increased propensity for the conversion of cyclo-(1,7)-Gly-Arg-Gly-Asp-Ser-Pro-Asp-Gly-OH (1), a vitronectin-selective inhibitor, to its cyclic imide counterpart cyclo-(1,7)-Gly-Arg-Gly-Asu-Ser-Pro-Asp-Gly-OH (2). Therefore, we present the conformational analysis of peptides 1 and 2 by NMR and molecular dynamic simulations (MD). Several different NMR experiments, including COSY, COSY-Relay, HOHAHA, NOESY, ROESY, DQF-COSY and HMQC, were used to: (a) identify each proton in the peptides; (b) determine the sequential assignments; (c) determine the cis-trans isomerization of X-Pro peptide bond; and (d) measure the NH-HCalpha coupling constants. NOE- or ROE-constraints were used in the MD simulations and energy minimizations to determine the preferred conformations of cyclic peptides 1 and 2. Both cyclic peptides 1 and 2 have a stable solution conformation; MD simulations suggest that cyclic peptide 1 has a distorted type I beta-turn at Arg2-Gly3-Asp4-Ser5 and cyclic peptide 2 has a pseudo-type I beta-turn at Ser5-Pro6-Asp7-Gly1. A shift in position of the type I beta-turn at Arg2-Gly3-Asp4-Ser5 in peptide 1 to Ser5-Pro6-Asp7-Gly1 in peptide 2 occurs upon formation of the cyclic imide at the Asp4 residue. Although the secondary structure of cyclic peptide 1 is not conducive to succinimide formation, the reaction proceeds via neighbouring group catalysis by the Ser5 side chain. This mechanism is also supported by the intramolecular hydrogen bond network between the hydroxyl side chain and the backbone nitrogen of Ser5. Based on these results, the stability of Asp-containing peptides cannot be predicted by conformational analysis alone; the influence of anchimeric assistance by surrounding residues must also be considered.  相似文献   

11.
Two thiol-activated endopeptidases with pH optima near pH 7.5 were isolated from the supernatant fraction of rabbit brain homogenates by DEAE-cellulose chromatography, gel filtration and isoelectrofocusing. Peptide bond hydrolysis was measured quantitatively by ion-exchange chromatography with an amino acid analyzer. Brain kininase A hydrolyzes the Phe5-Ser6 peptide bond in bradykinin (Bk), Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9. It is isoelectric near pH 5.2 and has a molecular weight of approximately 71 000. The enzyme also hydrolyzes the Phe-Ser peptide bond in Lys-Bk, Met-Lys-Bk, des-Arg1-Bk, Lys9-Bk, Pro-Gly-Phe-Ser-Pro-Phe-Arg, and Gly-Pro-Phe-Ser-Pro-Phe-Arg, but does not hydrolyze (0.1%) this bond in des-Phe8-Arg9-Bk. Brain kininase B hydrolyzes the Pro7-Phe8 peptide bond in Bk. It is isoelectric at pH 4.9 and has a molecular weight of approximately 68 000. Brain kininase B also hydrolyzes the Pro-Phe bond in Lys-Bk, Met-Lys-Bk, Lys9-Bk, Ser-Pro-Phe-Arg, and Phe-Ser-Pro-Arg. Pretreatment of denatured kininogen with brain kininase A or B did not reduce the amount of trypsin-releasable Bk from this precursor protein, indicating that the Bk sequence, when part of a large protein, is not a substrate for either enzyme. However, kininase A and B hydrolyze the octadecapeptide Gly-Leu-Met-Lys-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-Ser-Val-Gin-Val. The data show that a large part of the C-terminal portion of bradykinin is important for the brain kininase A activity and, for both enzymes, the size of the peptide and presumably the residues adjacent to the scissle bond are important in determining the rate of peptide bond hydrolysis by these endopeptidases.  相似文献   

12.
The purpose of this study is to elucidate the solution conformation of cyclic peptide 1 (cIBR), cyclo (1, 12)-Pen1-Pro2-Arg3-Gly4-Gly5-Ser6-Val7-Leu8-V al9-Thr10-Gly11-Cys12-OH, using NMR, circular dichroism (CD) and molecular dynamics (MD) simulation experiments. cIBR peptide (1), which is derived from the sequence of intercellular adhesion molecule-1 (ICAM-1, CD54), inhibits homotypic T-cell adhesion in vitro. The peptide hinders T-cell adhesion by inhibiting the leukocyte function-associated antigen-1 (LFA-1, CD11a/CD18) interaction with ICAM-1. Furthermore, Molt-3 T cells bind and internalize this peptide via cell surface receptors such as LFA-1. Peptide internalization by the LFA-1 receptor is one possible mechanism of inhibition of T-cell adhesion. The recognition of the peptide by LFA-1 is due to its sequence and conformation; therefore, this study can provide a better understanding for the conformational requirement of peptide-receptor interactions. The solution structure of 1 was determined using NMR, CD and MD simulation in aqueous solution. NMR showed a major and a minor conformer due to the presence of cis/trans isomerization at the X-Pro peptide bond. Because the contribution of the minor conformer is very small, this work is focused only on the major conformer. In solution, the major conformer shows a trans-configuration at the Pen1-Pro2 peptide bond as determined by HMQC NMR. The major conformer shows possible beta-turns at Pro2-Arg3-Gly4-Gly5, Gly5-Ser6-Val7-Leu8, and Val9-Thr10-Gly11-Cys12. The first beta-turn is supported by the ROE connectivities between the NH of Gly4 and the NH of Gly5. The connectivities between the NH of Ser6 and the NH of Val7, followed by the interaction between the amide protons of Val7 and Leu8, support the presence of the second beta-turn. Furthermore, the presence of a beta-turn at Val9-Thr10-Gly11-Cys12 is supported by the NH-NH connectivities between Thr10 and Gly11 and between Gly11 and Cys12. The propensity to form a type I beta-turn structure is also supported by CD spectral analysis. The cIBR peptide (1) shows structural similarity at residues Pro2 to Val7 with the same sequence in the X-ray structure of D1-domain of ICAM-1. The conformation of Pro2 to Val7 in this peptide may be important for its binding selectivity to the LFA-1 receptor.  相似文献   

13.
A T Orawski  W H Simmons 《Peptides》1989,10(5):1063-1073
Bradykinin (BK) (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9) was degraded by rat brain synaptic membranes at a rate comparable to that found for Met-enkephalin, but approximately 40 times the rate for vasopressin and oxytocin. The catabolic pathway for BK and its metabolites was elucidated through the use of high performance liquid chromatography for metabolite identification and peptidase inhibitors for blocking specific cleavage sites. BK was hydrolyzed at three sites: at the -Phe5-Ser6- bond by metalloendopeptidase 24.15, at the -Pro7-Phe8- bond by an apparently novel peptidyl dipeptidase, and at the -Phe8-Arg9 bond by a carboxypeptidase B-like enzyme. Each enzyme contributed about equally to BK degradation under the assay conditions used. Some of the resulting metabolites were further hydrolyzed: BK(1-8) to BK(1-7) + Phe by a DFP inhibitable prolyl carboxypeptidase-like enzyme, BK(1-8) to BK(1-5) + BK(6-8) by metalloendopeptidase 24.15, BK(1-7) slowly to BK(1-5) by a second peptidyl dipeptidase which was captopril inhibited, and Phe-Arg to Phe + Arg by a bestatin-inhibited dipeptidase. A number of properties of the individual enzymes were determined including sensitivity to a variety of peptidase inhibitors. These results provide a starting point for investigating the potential physiological role of each enzyme in BK function in the brain.  相似文献   

14.
The conformation of bradykinin (BK), Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9, was investigated by Nuclear Magnetic Resonance (NMR) spectroscopy and Monte Carlo simulation in two different media, i.e. in pure aqueous solution and in the presence of phospholipid vesicles. Monolamellar liposomes are a good model for biological membranes and mimic the environment experienced by bradykinin when interacting with G-protein coupled receptors (GPCRs). The NMR spectra showed that lipid bilayers induced a secondary structure in the otherwise inherently flexible peptide. The results of ensemble calculations revealed conformational changes occurring rapidly on the NMR time scale and allowed for the identification of different families of conformations that were averaged to reproduce the NMR observables. These structural results supported the hypothesis of the central role played by the peptide C-terminal domain in biological environments, and provided an explanation for the different biological behaviours observed for bradykinin.  相似文献   

15.
Mouse Neuro-2a neuroblastoma and rat C6 glioma cloned cells were screened for neuropeptide-metabolizing peptidases using a kininase bioassay combined with a time-course bradykinin-product analysis, and a fluorimetric assay for prolyl endopeptidase. The complementary peptide products Arg1----Phe5/Ser6----Arg9 and Arg1----Pro7/Phe8-Arg9 were released during bradykinin (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9) inactivation by homogenates of Neuro-2a and C6 cells. The 1:1 stoichiometry of the complementary fragments and their high yields, at 10% bradykinin inactivation, demonstrated the sites of hydrolysis. The initial rate of Phe5-Ser6 bond cleavage was six-fold higher than that of the Pro7-Phe8 bond. These sites of cleavage can be attributed to enzymes similar to endopeptidase A (Phe5-Ser6) and prolyl endopeptidase (Pro7-Phe8) on the basis of the specificity and sensitivity to inhibitors of the kininase activity in Neuro-2a and C6 cell homogenates. Kininase and prolyl endopeptidase specific activities (fmol/min/cell) were 10.5 and 12.4 for Neuro-2a, and 1.5 and 2 for C6 homogenate, respectively. The recovery of kininase activity was 2.2-fold higher in the particulate than in the soluble (105,000 g for 1 h) neuronal fraction, whereas the amount of prolyl endopeptidase activity was about the same in both fractions. Kininase and prolyl endopeptidase activities in C6 cells were recovered mostly in the soluble fraction. Prolyl endopeptidase specific activity decreased 10-fold in serum-starved Neuro-2a cultured cells, with no change in activity in similarly treated C6 cells. In contrast, kininase specific activity in both cell types was essentially unaffected on serum-deprivation-induced differentiation.  相似文献   

16.
The conformation in aqueous solution of several alpha-aminoisobutyric acid (AIB)-containing analogs of bradykinin (BK) has been probed by complementary CD and 1H n.m.r. measurements. The conclusion reached is that substitution of AIB for Pro2 and/or Pro3 in BK stabilizes a degree of beta-turn conformation in the N-terminal tetrapeptide moiety of the resulting analogs. Changing the solvent from water to DMSO or TFE further enhances the contribution of particular hydrogen bonded structures to the time-averaged conformation of these peptides. Bradykinin and [AIB7]-BK adopt similar hydrogen bonded conformations in TFE, apparently with a contribution from a beta-turn involving their common Arg1-Pro2-Pro3-Gly4 moiety. The contrasting biological activities of BK and its AIB-analogs are considered in terms of the conformational analogy between the AIB-residue and cis' Pro and the propensity for a beta-turn at the N-terminus of the peptide.  相似文献   

17.
B-9430 (d-Arg-[Hyp(3), Igl(5), D-Igl(7), Oic(8)]-bradykinin), where Hyp is trans-4-hydroxyproline, Igl is alpha-(2-indanyl)glycine and Oic is (3as, 7as)-octahydroindol-2-yl-carbonyl is a high affinity bradykinin B(2) receptor antagonist with effects extended to the B(1) receptors at high concentrations. The N-terminus of B-9430 has been extended with d-biotinyl (B-10330) or 5(6)-carboxyfluorescein-varepsilon-aminocaproyl (B-10380) to derive fluorescent receptor probes. The pharmacological profile of B-10380 was similar to that of B-9430 with a minor loss of potency (a competitive antagonist of bradykinin at the B(2) receptors of the human isolated umbilical vein, pA(2) 6.83; an insurmountable antagonist at the B(2) receptors in the rabbit jugular vein; a weak competitive antagonist of the B(1) receptors in the rabbit aorta, pA(2) 5.95). B-10330 and B-10380 displaced the binding of [(3)H]bradykinin from rabbit B(2) receptors with a potency slightly inferior to that of B-9430 (larger gap at the rat B(2) receptor). Treatment with B-10330 and fluorescent streptavidin did not support imaging of recombinant B(2) receptors. However, the plasma membrane of HEK 293a cells that transiently expressed recombinant rabbit B(2) receptors, but not B(1) receptors, was labeled with 5-50nM B-10380 (epifluorescence microscopy). B-10380 staining was not observed in nontransfected cells and was abolished by co-treating receptor-expressing cells with a nonpeptide antagonist. The N-terminal extension of a potent peptide antagonist of the bradykinin B(2) receptor with a fluorophore produced a fluorescent probe suitable for live cell imaging and other applications at the expense of a minor loss of affinity.  相似文献   

18.
The peptide hormone bradykinin (BK) (Arg(1)-Pro(2)-Pro(3)-Gly(4)-Phe(5)-Ser(6)-Pro(7)-Phe(8)-Arg(9)) and its shorter homolog BK(1-5) (Arg(1)-Pro(2)-Pro(3)-Gly(4)-Phe(5)) were labeled with the extrinsic fluorescent probe ortho-aminobenzoic acid (Abz) bound to the N-terminal and amidated in the C-terminal carboxyl group (Abz-BK-NH(2) and Abz-BK(1-5)-NH(2)). The fragment des-Arg(9)-BK was synthesized with the Abz fluorescent probe attached to the 3-amino group of 2,3-amino propionic acid (DAP), which positioned the Abz group at the C-terminal side of BK sequence, constituting the peptide des-Arg(9)-BK-DAP(Abz)-NH(2). The spectral characteristics of the probe were similar in the three peptides, and their fluorescent properties were monitored to study the interaction of the peptides with anionic vesicles of dimyristoylphosphatidylglycerol (DMPG). Time-resolved fluorescence experiments showed that the fluorescence decay of the peptides was best described by double-exponential kinetics, with mean lifetimes values around 8.0 ns in buffer pH 7.4 that increased about 10% in the presence of DMPG vesicles. About a 10-fold increase, compared with the values in aqueous solution, was observed in the steady-state anisotropy in the presence of vesicles. A similar increase was also observed for the rotational correlation times obtained from time-resolved anisotropy decay profiles, and related to the overall tumbling of the peptides. Equilibrium binding constants for the peptide-lipid interaction were examined monitoring anisotropy values in titration experiments and the electrostatic effects were evaluated through Gouy-Chapman potential calculations. Without corrections for electrostatic effects, the labeled fragment Abz-BK(1-5)-NH(2) presented the major affinity for DMPG vesicles. Corrections for the changes in peptide concentration due to electrostatic interactions suggested higher affinity of the BK fragments to the hydrophobic phase of the bilayer.  相似文献   

19.
Bovine pulmonary artery endothelial cells, in serum-free culture medium, release small quantities of prostacyclin and thromboxane A2 (3-10 and 0.1-0.3 ng/ml; measured as immunoreactive 6-ketoprostaglandin F1 alpha and thromboxane B2, respectively). The release of these substances is stimulated by up to 20-fold during a 3 min incubation with the vasodilator, bradykinin (Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9). Endothelial cells incubated with [3H]arachidonic acid for 24 h and then exposed to bradykinin for 3 min release 3H into the medium, approximately 65% of which co-chromatographs with 6-ketoprostaglandin F1 alpha and 3% with thromboxane B2. The effects of bradykinin are dose-related and are often discernible when the hormone is used at concentrations believed to occur physiologically (10 pg/ml; approximately 10 pM). Furthermore, the bradykinin molecule must be intact: none of its lower homologs affects the release of prostacyclin, thromboxane A2, or 3H unless used at concentrations (1 microM or higher) unlikely to be achieved in vivo. The release appears to involve calcium uptake and calmodulin: it is abolished by EGTA (5 mM) and inhibited by the 'slow channel' calcium antagonists, verapamil and nifedipine (10-100 microM), and by the calmodulin inhibitor, trifluoperazine (3-30 microM). Our findings suggest that bradykinin exerts some of its hormonal effects by acting on specific receptors possessed by vascular endothelial cells; receptor activation is associated with calcium transport, arachidonate mobilization, and a selective synthesis of prostacyclin, a vasodilator in its own right.  相似文献   

20.
An efficient synthesis of the cyclic decapeptide MEN 11270 [H-DArg1-Arg2 Pro3-Hyp4-Gly5-Thi6-Dab7-DTic8-Oic9-Arg10 c(7gamma - 10alpha)] was developed. Two three-dimensional orthogonal strategies were applied and compared: Fmoc/Tos/Boc (procedure A) and Fmoc/Pmc/Dde (procedure B). Both resulted in a 23-step strategy comprising the stepwise solid-phase chain assembly of the linear protected peptide, partial deprotection, solution-phase cyclization and final full deprotection. The stepwise assembly of the linear peptide was optimized by double coupling and acylation time prolongation for critical residues (Tic, Dab, Thi, Pro). O-(7-azabenzotriazol-1-yl)-N,N,N',N' tetramethyluronium (HATU) was preferred as coupling reagent for Dab. In the cyclization step, the partial racemization of Arg10 (31% using 1-ethyl-3-(3'-dimethyl-aminopropyl) carbodiimide/1-hydroxybenzotriazole (EDC/HOBt) as activation system) was reduced to 3% with HATU. The final deprotection was performed in the presence of dimethylsulfide (procedure A) and thiocresol (procedure B) as scavengers, to avoid the sulfation of Hyp side chain. The final compound and the main by-products were characterized by mass spectroscopy (MS), nuclear magnetic resonance (NMR) and racemization test. Procedure B produced operationally simpler and more efficient results than A (28% overall yield versus 4%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号