首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relationship between loss of ribulose-1,5-bisphosphate carboxylase (RuBPCase) and the decline in photosynthesis during the senescence of barley primary leaves was assessed. Loss of RuBPCase accounted for about 85% of the decrease in soluble protein. RuBPCase was highly correlated with in vitro RuBPCase activity (r = 0.95) and gross photosynthesis (r = 0.96). However, the rate of photosynthesis per milligram RuBPCase increased during the early stages of leaf senescence. The concentration of nonreducing sugars was negatively correlated (1% level) with photosynthesis. Free α-amino N, in contrast to nonreducing sugars, declined markedly during senescence. A decrease in chlorophyll and an increase in in vitro protease activity was observed, but these changes did not appear to be closely related to the decline in photosynthesis and RuBPCase. Mesophyll resistance increased at the same rate that photosynthesis and RuBPCase declined. Stomatal resistance increased more rapidly than mesophyll resistance and accounted for about 24% of the total increase in resistance to CO2 diffusion. The concentration of CO2 in the intercellular air spaces decreased during the last stage of senescence. Although loss of RuBPCase probably is the primary event responsible for the decline in photosynthesis during leaf senescence, other factors such as in vivo regulation and stomatal aperture must also be considered.  相似文献   

2.
During the senescence of detached first leaves of oat ( Avena sativa L. cv. Victory) seedlings (grown in continuous light) the protein is hydrolyzed and the proteases increase, but the expected simple relation between these two factors is not always realized. The present experiments examine the timing, the influence of light and darkness and the action of the protein synthesis inhibitors cycloheximide (CHI) and cordycepin. Transfer from dark to light delays the breakdown of both chlorophyll (Chl) and protein, but some residual proteolysis is ascribed to the enzyme initially present. Transfer to CHI resembles transfer to light, while the action of cordyceptin is similar but much weaker. Repeated determinations of the acid protease, which is the most active one and the first to appear, show that this enzyme is formed in the light about as rapidly as in the dark, though with different kinetics. In spite of this there is little proteolysis in light in the first 5 days. One possible explanation of that could be that protein is rapidly resynthesized in light, but treatment with [14C]-leucine shows that such resynthesis is no faster in light than in darkness. It is therefore concluded that the protease initially does not have access to its substrates and, as a corollary, that the senescence process must be controlled by the gradual impairment of the vacuolar membrane, allowing protease to enter the cytosol and attack the proteins there and in the organelles. This concept is supported by many observations on the timing and on the known changes in membrane permeability during senescence.  相似文献   

3.
M. Viro  K. Kloppstech 《Planta》1980,150(1):41-45
The expression of genes in particular for light-harvesting chlorophyll a/b protein (LHCP) and ribulose-1,5-bisphosphate carboxylase (RuBPCase) has been studied in the developing barley leaf. This has been done by analysis of the occurrence of both proteins within the different regions (1 to 6, beginning from the base) of the primary 7-day-old leaf. It has been found that LHCP already appears in the base of the leaf, whereas RuBPCase is primarily expressed in the apical expanding part of the leaf. The distribution of the mRNAs for both proteins within this gradient is in accordance with that of the proteins themselves, indicating that gene expression is not regulated at the level of translation in both cases. The poly(A) mRNA for LHCP occurs mainly in the basic sections 2 and 3, whereas that for RuBPCase is found throughout the leaf but primarily in the apical sections of the leaf.Abbreviations LHCP light-harvesting chlorophyll a/b protein - RuBPCase ribulose-1,5-bisphosphate carboxylase - TCA trichloroacetic acid  相似文献   

4.
Age-induced changes in 1) nocturnal and diurnal acidity fluctuations that coincide with the ongoing environmental conditions, 2) the build up of abscisic acid (ABA) in plant roots and leaves during sunrise, midday, and sunset in all growing stages, 3) the changes in phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activities as key enzymes of the photosynthetic pathways of C3 and CAM, 4) leaf water potential (ψ1), and 5) Km and Vmax for PEPC to express its activity and affinity, were studied in Mesembryanthemum nodiflorum during transition from C3 to CAM mode of CO2 fixation. The acidity during sunset in mature stage was higher than in earlier stages and reflected the impact of environmental conditions on physiological and metabolic changes. Moreover, the higher acidity during sunrise and sunset was observed during the senescence than the mature stage; this might be due to CO2 release and oxygen intake during senescence induced ethylene formation that lead to increased malic acid formation. The ABA concentration was high in M. nodiflorum leaves, but stomatal closure was insensitive to elevated ABA concentrations recorded. Vmax of PEPC, Km, and the affinity of PEPC during later stages indicated the ability of PEPC to fix CO2 taking up at night in CAM cycle of M. nodiflorum. Less affinity during sunrise indicated inhibitory effect of malate on PEPC during the release of CO2. The second peak of PEPC activity before sunset caused CO2 fixation. The RuBPCO was inactive at night. Slight increase in ABA during sunset, and night drop in air temperature and increase in relative humidity reduced markedly transpiration rate without decreasing ψ1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The effects of senescence and drought on the levels and activities of chlorophyllase (EC 3.1.1.14), phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) and ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39) in the intact primary leaves of soybean ( Glycine max L. cv. Jackson) were monitored. Plants were grown either (1) for 2 to 8 weeks and the primary leaves harvested every week or (2) for 2 weeks and the plants subjected to drought stress and compared to control plants that were watered daily. In the senescence experiment, chlorophyllase activity changed in parallel with water content, leaf chlorophyll and total protein per unit dry weight of leaf tissue, with all factors increasing in concert during expansion of the primary leaves in the first 4 to 5 weeks of seedling development. Thereafter, all factors, including chlorophyllase activity, declined reaching markedly reduced values at weeks 7 and 8 when the primary leaves were yellow and ready to abscise. PEPC and Rubisco activities peaked in the third week, i.e. well before full leaf expansion, and then declined. In contrast to its response during senescence, chlorophyllase activity per unit leaf dry weight did not change during drought stress, but the specific activity of the enzyme rose and showed an inverse relationship to total leaf chlorophyll and protein content. Rubisco activity was highly sensitive to drought, with decrements observed in the activity and in levels of the large subunit within 2 days of withholding water and before significant changes in leaf water content were detected.  相似文献   

6.
In some soybean (Glycine max (L.) Merr.) cultivars, fruit removal does not delay the apparent loss of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) activity and abundance or the decline in photosynthesis. Analysis of leaf extracts from defruited plants indicated a time-dependent increase in both Rubisco activity and abundance in a 30000 · g pellet fraction in cultivars which had been reported to lose all Rubisco protein from the supernatant fraction. Attempts to solubilize the pelleted Rubisco by increasing the buffer volume/tissue ratio or by adding alkylphenoxypolyethoxyethanol (Triton X-100), ethylenediaminetetraacetic acid (EDTA), or NaCl were unsuccessful. However, treatment of the pellets with denaturants such as 8 M urea or 5% (w/v) sodium dodecyl sulfate (SDS) did release Rubisco from the pellet. Redistribution of protein to the pellet fraction appeared to be specific for Rubisco since the amount of ribulose-5-phosphate kinase (EC 2.7.1.19) found in the pellet fraction of leaf extracts of control and defruited plants was small and constant over time. The loss of soluble Rubisco, and the concomitant increase in insoluble Rubisco, in response to fruit removal varied with genotype and was reproducible in both field and greenhouse environments. In addition, the effect was influenced by node position and light; lower and-or shaded leaves exhibited less Rubisco in the pellet fraction than leaves from the top of the plant that was fully exposed to sunlight. When isolated by sucrose-density-gradient centrifugation, the insoluble Rubisco was found to co-purify with a 30-kDa (kilodalton) polypeptide. These results indicate that alteration of the source/sink ratio by removing fruits results in the formation of an insoluble form of Rubisco in leaf extracts of soybean. Whether or not Rubisco exists as an insoluble complex with the 30-kDa polypeptide in intact leaves of defruited plants remains to be determined.Abbreviations kDa kilodalton - PGA kinase 3-phosphoglyceric acid kinase (EC 2.7.2.3) - Rubisco ribulose-1,5-bisphosphate car-boxylase/oxygenase (EC 4.1.1.39) - Ru5P kinase ribulose-5-phosphate kinase (EC 2.7.1.19) - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis  相似文献   

7.
Leaf senescence and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBP carboxylase, EC 4.1.1.39) degradation in orange [ Citrus sinensis (L.) Osbeck cv. Washington Navel] explants have been investigated. Explants consisted of a segment of stem (ca 15 cm) and 5 mature leaves. In vitro RuBP carboxylase degradation was determined by culturing the explants in water for different periods of time (3 days usually) and quantifying the two RuBP carboxylase subunits in the extracts following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In vitro RuBP carboxylase degradation was estimated by autodigestion of leaf extracts and SDS-PAGE. The extent of in vivo RuBP carboxylase degradation in explants cultured under 16 h light/8 h dark photoperiod varied throughout the year and showed a cyclic behaviour correlated with the growth cycle of Citrus. The highest proteolytic activity both in vivo and in vitro was found in explants made from April to August coinciding with the maximum vegetative growth period of the tree.
Leaf senescence and abscission could be retarded significantly at any time of the year by maintaining the explants continuously in the dark. Treatment of the explants in the dark with a continuous flow of ethylene enhanced both leaf abscission and rate of RuBP carboxylase degradation, proportionally to ethylene concentration (0.1-0.6 ppm). Ethylene-induced senescence of Citrus leaf explants in the dark appears to be a convenient model system to study the regulation of the proteolytic degradation of RuBP carboxylase.  相似文献   

8.
Limited proteolysis of barley ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) was effected by treatments with trypsin and Staphylococcus aureus strain V8 protease. Treatment of native RuBPCO with proteases resulted in the degradation of the large subunit (LS) of the enzyme. Trypsin cleaved three fragments from the LS but the S. aureus strain V8 protease cleaved only one. The small subunit (SS) was not affected. In the presence of 0.5 % sodium dodecyl sulfate, RuBPCO degraded into several fragments; some of them were fairly stable. Monoclonal antibodies (Mabs) against barley RuBPCO were applied in immunoblotting analysis to distinguish which of the fragments were recognized. All the Mabs recognized the fragments with molecular masses close to those of the LS. Differences among Mabs were observed in the fragments with low molecular mass. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
When photoheterotrophic Euglena gracilis Z Pringsheim was subjected to nitrogen (N)-deprivation, the abundant photosynthetic enzyme ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) was rapidly and selectively degraded. The breakdown began after a 4-h lag period and continued for a further 8 h at a steady rate. After 12 h of starvation, when the amount of Rubisco was reduced to 40%, the proteolysis of this enzyme slowed down while degradation of other proteins started at a similar pace. This resulted in a decline of culture growth, chloroplast disassembly — as witnessed by chlorophyll (Chl) loss — and cell bleaching. Experiments with spectinomycin, an inhibitor of chloroplastic translation, indicated that there was an absolute increase in the rate of Rubisco degradation in the N-deprived culture as compared with control conditions, where no significant carboxylase breakdown was detected. Oxidative aggregation of Rubisco (as detected by non-reductive electrophoresis) and association of the enzyme to membranes increased with time of N-starvation. Fluorescent labeling of oxidized cysteine (Cys) residues with monobromobimane indicated a progressive oxidation of Cys throughout the first hours of N-deprivation. It is concluded that Rubisco acts as an N store in Euglena, being first oxidized, and then degraded, during N-starvation. The mobilization of Rubisco allows sustained cell growth and division, at almost the same rate as the control (non-starved) culture, during 12 h of N-deprivation. Afterwards, breakdown is extended to other photosynthetic structures and the whole chloroplast is dismantled while cell growth is greatly reduced.Abbreviations Chl chlorophyll - Cys cysteine - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate We thank Drs. Pablo Vera and Ismael Rodrigo (Univ. Politécnica, Valencia, Spain) for advice and facilities in raising and collecting the anti-Rubisco serum. This work was supported by grants PB87-0353 and PB92-0821 of DGICYT and by a fellowship of the Spanish Ministerio de Educación y Ciencia (awarded to C.G.-F.).  相似文献   

10.
In leaf segments of barley ( Hordeum vulgare L. cv. Mozoncillo), the cytokinin specificity for retarding the loss of phosphate is different from that of retarding the loss of chlorophyll. Some cytokinins require the simultaneous application of gibberellins to delay the loss of phosphate. Although both chlorophyll and phosphate losses occur in senescence, they are apparently controlled by cytokinins through different mechanisms.  相似文献   

11.
In intact chloroplasts isolated from mature pea leaves (Pisum sativum L.), the large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) was rapidly fragmented into several products upon illumination in the presence of 1 mM dithiothreitol (DTT). Very similar effects on LSU stability could be observed when illuminated chloroplasts were poisoned with cyanide which, like DTT, inhibits important plastid antioxidant enzymes, or when a light-dependent hydroxyl radical-producing system was added to the incubation medium. Moreover, DTT-stimulated light degradation of LSU was markedly delayed in the presence of scavengers of active oxygen species (AOS). It is therefore suggested that light degradation of LSU in the presence of DTT is mainly due to inhibition of the chloroplast antioxidant defense system and the subsequent accumulation of AOS in intact organelles. When chloroplasts were isolated from nonsenescent or senescent leaves, LSU remained very stable upon incubation without DTT, indicating that the antioxidant system was still functional in the isolated chloroplasts during leaf ageing. Our data support the notion that AOS might be important for the degradation of Rubisco in vivo under oxidative stress.  相似文献   

12.
Endoproteinase activity was analyzed in chloroplasts isolated from barley leaf segments incubated in the dark with various hormonal senescence effectors. As a control, the endoproteinase activity of the supernatant fraction obtained during chloroplast preparation was also analyzed. Measured against azocaseine as substrate, the endoproteinase activity in chloroplasts increased 18 fold during the induction of senescence. This rise in activity was inhibited by kinetin (the activity increased only 10 fold) and very strongly stimulated by abscisic acid (ABA) (117 fold) and methyl jasmonate (Me-JA) (57 fold). Although less so, the endoproteinase activity of the supernatant fraction, mainly vacuolar and with acid pH optimum, was affected in the same way by all three effectors. Among the five endoproteinases (EC) found in chloroplasts, EC2 and EC4 were induced after incubation in water. ABA increased the levels of EC2 and EC4 (5 fold), and induced the development of EC3 and EC5, while Me-JA totally inhibited EC2 and EC4, and induced the development of EC1. At least one of the endoproteinases, EC2, is synthesized in chloroplasts. Among the six endoproteinases found in the supernatant fraction (E), E1, E2, E3 and E5, which are very probably extrachloroplastic endoproteinases, are stimulated by ABA to varying degrees. However, Me-JA stimulates E1 to a greater extent and totally inhibits E3. The differential effects of ABA and Me-JA on chloroplast and supernatant fraction endoproteinases suggest different action mechanisms for both senescence promotors.Abbreviations ABA abscisic acid - DTT dithiothreitol - E supernatant fraction endoproteinase - EC chloroplast endoproteinase - Me-JA methyl jasmonate - PNP p-nitrophenol - SDS-PAGE polyacrylamide gel electrophoresis containing sodium dodecyl sulphate - TCA trichloroacetic acid  相似文献   

13.
The photosynthetic rates under saturating CO2 conditions per unit of leaf‐N content were higher in wheat than in rice. This suggested that ribulose‐1,5‐bisphosphate (RuBP) regeneration capacity is greater in wheat. Therefore, the biochemical factor(s) for this difference were examined between rice and wheat. Soluble protein‐N, insoluble‐N, and trichloroacetic acid (TCA) soluble‐N contents were found not to differ between the two species. The activities of several Calvin cycle enzymes such as RuBP carboxylase, NADP‐glyceraldehyde‐3‐phosphate dehydrogenase, phosphoglycerate kinase and chloroplastic fructose‐1,6‐bisphosphatase (cpFBPase) activities per unit of leaf‐N content were all higher in wheat than in rice. Among them, cpFBPase activity was most highly correlated with CO2‐saturated photosynthesis. The Vmax activity of sucrose‐phosphate synthase (SPS) for UDP‐glucose was almost the same between the two species and its Km value was a little lower in rice. Chlorophyll content and its a/b ratio did not differ. Cytochrome (Cyt) f content was greater in wheat, whereas coupling factor 1 content was greater in rice. Cyt f content was highly correlated with CO2‐saturated photosynthesis, irrespective of the two species. The results thus suggested that higher RuBP regeneration capacity in wheat leaves is most closely related to a greater Cyt f content and that another candidate is cpFBPase.  相似文献   

14.
15.
Ribulose-1,5-bisphosphate carboxylase (RuBPCase) has been quantified by immunological methods in Thiobacillus neapolitanus cultivated under various growth conditions in the chemostat at a fixed dilution rate of 0.07 h-1. RuBPCase was a major protein in T. neapolitanus accounting for a maximum of 17% of the total protein during CO2 limitation and for a minimum of 4% during either ammonium- or thiosulfate limitation in the presence of 5% CO2 (v/v) in the gasphase. The soluble RuBPCase (i.e. in the cytosol) and the particulate RuBPCase (i.e. in the carboxysomes) were shown to be immunologically identical. The intracellular distribution of RuBPCase protein between carboxysomes and cytosol was quantified by rocket immunoelectrophoresis. The particulate RuBPCase content, which correlated with the volume density of carboxysomes, was minimal during ammonium limitation (1.3% of the total protein) and maximal during CO2 limitation (6.8% of the total protein). A protein storage function of carboxysomes is doubtful since nitrogen starvation did not result in degradation of particulate RuBPCase within 24 h. Proteolysis of RuBPCase was not detected. Carboxysomes, on the other hand, were degraded rapidly (50% within 1 h) after change-over from CO2 limitation to thiosulfate limitation with excess CO2. Particulate RuBPCase protein became soluble during this degradation of carboxysomes, but this did not result in an increase in soluble RuBPCase activity. Modification of RuBPCase resulting in a lower true specific activity was suggested to explain this phenomenon. The true specific activity was very similar for soluble and particulate RuBPCase during various steady state growth conditions (about 700 nmol/min·mg RuBPCase protein), with the exception of CO2-limited growth when the true specific activity of the soluble RuBPCase was extremely low (260 nmol/min ·mg protein). When chemostat cultures of T. neapolitanus were exposed to different oxygen tensions, neither the intracellular distribution of RuBPCase nor the content of RuBPCase were affected. Short-term labelling experiments showed that during CO2 limitation, when carboxysomes were most abundant, CO2 is fixed via the Calvin cycle. The data are assessed in terms of possible functions of carboxysomes.Abbreviations RuBPCase ribulose-1,5-bisphosphate carboxylase - PEP phosphoenolpyruvate - RIE rocket immunoelectrophoresis - CIE crossed immunoelectrophoresis  相似文献   

16.
17.
Plastids bear their own genome, organized into DNA–protein complexes (nucleoids). Recently, we identified a DNA-binding protease (CND41) in the chloroplast nucleoids of cultured tobacco (Nicotiana tabacum L.) cells. In this study, we examine the biochemical function of this novel DNA-binding protease, particularly in senescent leaves, because antisense tobacco with a reduced amount of CND41 showed retarded senescence. Nitrogen-depletion experiments clearly showed that CND41 antisense tobacco maintained green leaves and constant protein levels, especially ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), throughout the whole plant, whereas wild-type tobacco showed marked senescence and the reduction of protein levels in the lower leaves. In vitro analyses confirmed that CND41 showed proteolytic activity at physiological pH when denatured Rubisco was used as the substrate. These results suggest that CND41 is involved in Rubisco degradation and the translocation of nitrogen during senescence. The possible regulation of protease activity of CND41 through DNA-binding is discussed.Abbreviations CABP 2-Carboxyarabinitol-1,5-bisphosphate - CBB Coomassie Brilliant Blue - GS Glutamine synthetase - OEC33 The extrinsic 33-kDa protein in the oxygen-evolving complex - Rubisco Ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

18.
The kinetic parameters of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (EC 4.1.1.39) in wheat (Triticum aestivum L.) and rice (Oryza sativa L.) were determined by rapidly assaying the leaf extracts. The respective K m and V max values for carboxylase and oxygenase activities were significantly higher for wheat than for rice. In particular, the differences in the V max values between the two species were greater. When the net activity of CO2 exchange was calculated at the physiological CO2-O2 concentration from these kinetic parameters, it was 22% greater in wheat than in rice. This difference in the in-vitro RuBP-carboxylase/oxygenase activity between the two species reflected a difference in the CO2-assimilation rate per unit of RuBP-carboxylase protein. However, there was no apparent difference in the CO2-assimilation rate for a given leaf-nitrogen content between the two species. When the RuBP-carboxylase/oxygenase activity was estimated at the intercellular CO2 pressure from the enzyme content and kinetic parameters, these estimated enzyme activities in wheat and rice were similar to each other for the same rate of CO2 assimilation. These results indicate that the difference in the kinetic parameters of RuBP carboxylase between the two species was offset by the differences in RuBP-carboxylase content and conductance for a given leaf-nitrogen content.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic - PAR photosynthetically active radiation - RuBP ribulose-1,5-bisphosphate  相似文献   

19.
Net photosynthetic rate (P N) was high in genotypes with ‘C’ genome both in the nucleus and cytoplasm. This may be attributed to the co-ordinated manner of acting of both genome sources. Leaf mass per area (LMA) and chlorophyll content increased with leaf nitrogen (N) content but did not show any correlation with P N. The factors which affected P N had the same effect on photosynthetic nitrogen use efficiency (pNUE). Thus, differential allocation of N to the various components influences plant pNUE which is not significantly affected by genome constitution.  相似文献   

20.
Supplemental far-red (FR) illumination of light-grown grass seedlings inhibits tiller production while enhancing leaf elongation. Although much is known about FR enhancement of internode elongation in dicots, relatively little research has been conducted to determine the effects of FR on monocot development. In growth chamber experiments, fibre optics were used to direct supplemental FR to elongating leaf blades, main stem bases and mature leaf blades of light-grown barley (Hordeum vulgare L.) seedlings. Our objective was to identify specific sites of perception for FR enhancement of leaf elongation and inhibition of tiller production, and to assess potential FR effects on tiller senescence. Far-red illumination of elongating leaves or of the main stem base reduced the total number of tillers per plant, primarily by reducing secondary and tertiary tiller production, and enhanced leaf elongation. However, leaf elongation was less sensitive to stem base treatments than to illumination of the elongating blade. Increased leaf length resulted from increased leaf elongation rate, while the duration of leaf elongation was unaffected. Exposure of mature leaf blades to FR had no effect on tillering or leaf elongation. None of the FR treatments led to tiller senescence. Localization of FR perception in vertically oriented tissues such as elongating blades and stem bases permits early detection of reflected light from neighbouring plants, allowing rapid response to impending competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号