首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the effect of chronic hypoxia (HPX) on vasodilation of the fetal heart, we exposed pregnant guinea pigs to room air or 12% O(2) for 4, 7, or 10 days. We excised hearts from anesthetized fetuses (60 +/- 3 days; 65-day gestation = term) and measured changes in both the coronary artery pressure of the isolated constant-flow preparation and endothelial nitric oxide synthase (eNOS) mRNA of fetal ventricles. Dilator responses to cumulative addition (10(-9)-10(-5) M) of acetylcholine and sodium nitroprusside in prostaglandin F(2alpha) (5 x 10(-6) M)-constricted hearts were similar among normoxia (NMX), 4-, 7-, and 10-day HPX (control). Nitro-L-arginine (L-NA, 10(-4)M), a NOS inhibitor, inhibited maximal acetylcholine dilation of hearts exposed to 10-day HPX greater than NMX, 4-, and 7-day HPX. Hypoxia (after 7 and 10 days) increased eNOS mRNA of fetal ventricles compared with NMX and 4-day HPX. 4-Aminopyridine (3 mM), a voltage-dependent K(+)-channel inhibitor, inhibited acetylcholine- but not sodium nitroprusside-induced dilation of NMX and 10-day HPX hearts to a similar magnitude. Glibenclamide (10(-5) M), an ATP-sensitive K(+)-channel inhibitor, had no effect on vasodilation. We conclude that chronic HPX increases the contribution of NO but does not alter K(+)-channel activation in response to acetylcholine-stimulated coronary dilation. Thus increases in NO production via upregulation of eNOS gene expression may be an adaptive response to chronic HPX in the fetal coronary circulation.  相似文献   

2.
There is an evidence that mitotic activity of human cardiomyocytes in late fetal and early postnatal ontogenesis is very low. But little is known of the division of human cardiomyocytes at earlier stages of development. In this study mitotic activity of ventricular and atrial human cardiomyocytes of 4-8-week-old embryos and 17-32-week-old fetuses has been studied. On these stages the mitotic index is relatively low to reduce moderately within the 1st to the 3rd trimester of pregnancy from 1.4 to 0.7%. These findings are consistent with the data on cell ploidy demonstrating the presence of relatively small share of myocytes with 3c and 4c DNA in ventricles of 6-8-week-old embryos and 12-22-week-old fetuses. The share of such cells in the 1st and 2nd trimesters of pregnancy varies from 19 to 24% and from 8 to 18%, respectively. Cells with 3c and 4c DNA are most likely to be in mitotic cycle. This assumption is supported by electron microscope pictures showing all phases of typical mitosis. Cyclic changes of myofibrillar ultrastructure during mitosis of prenatal human cardiomyocytes are the same as during mitosis of low differentiated myocytes in mouse and rat hearts. These results suggest that in prenatal human cardiomyogenesis the level of myocyte differentiation and the cell number increase at slow rate.  相似文献   

3.
The anatomy of the cardiac arteries has been studied in 78 and that of the veins--in 74 total preparations of human fetal hearts 3--10-lunar month-old and in newborns. The cardiac vessels are injected with contrast masses, erythrocytes are stained with benzidine, histotopograms are made. In the fetuses all branches of the 1st-3d order of the coronary arteries and cardiac veins have been formed. Topography and main dimentions of large cardiac vessels are defined. During the prenatal period ramification zones of the coronary arteries do not change. In different age groups of the fetuses and newborns right coronary type of the cardiac blood supply predominates considerably (58-60%), in 27-32%--equal, and in 8-13%--left coronary type is observed. A great variability of the venous cardiac bed, vast intervenous anastomoses and a special importance of the cardiac middle vein in blood outflow are noted.  相似文献   

4.
Development of proximal coronary arterial segments and coronary arterial orifices was studied by scanning electron microscopy in 20 rat embryos and by light microscopy in serial sections of 20 human and another 18 rat embryos. Neither by scanning electron microscopy nor by light microscopy did we observe more than two coronary arterial orifices. These coronary orifices were always situated in the sinuses of the aorta that faced the pulmonary artery. In the human embryos the coronary orifices emerged between 37-39 days of gestation (16-19 mm crown-rump length, Streeter horizon XVIII-XIX) and were invariably present beyond 39 days (19 mm crown-rump length, Streeter horizon XIX). In rat embryos, the coronary orifices emerged in both scanning electron microscopy and light microscopy at 15-17 days of gestation (13-17 mm crown-rump length) and were invariably present beyond 17 days (17 mm crown-rump length). In both human and rat embryos, either by scanning electron microscopy and light microscopy, the left coronary orifice was observed significantly earlier. In all the investigated embryos, human as well as rat, septation at arterial orifice level was complete, including the earliest stages studied. Light microscopy showed that at the emerging stages of the coronary orifices, the proximal epicardial segments of the left and right coronary arteries could already be identified in a peritruncal ring of epicardial vasculature, before the coronary orifice was observed. This was the case in human as well as in rat embryos. Thus, a coronary orifice was never seen in the absence of a proximal coronary artery. The present theories on development of the proximal coronary arteries and coronary orifices do not offer an adequate explanation for either these data or the known possible congenital abnormalities of the coronary arteries. Our study supports dual proximal coronary arterial development. These two proximal coronary arteries develop out of a peritruncal ring of vascular structures on to the aorta. The process by which the coronary orifices actually develop remains to be explained.  相似文献   

5.
OBJECTIVE--To examine the significance of fetal nuchal translucency at 10-14 weeks'' gestation in the prediction of abnormal fetal karyotype. DESIGN--Prospective screening study. SETTING--The Harris Birthright Research Centre for Fetal Medicine, King''s College Hospital, London. SUBJECTS--827 fetuses undergoing first trimester karyotyping by amniocentesis or chorionic villus sampling. MAIN OUTCOME MEASURE--Incidence of chromosomal defects. RESULTS--The incidence of chromosomal defects was 3% (28 of 827 cases). In the 51 (6%) fetuses with nuchal translucency 3-8 mm thick the incidence of chromosomal defects was 35% (18 cases). In contrast, only 10 of the remaining 776 (1%) fetuses were chromosomally abnormal. CONCLUSION--Fetal nuchal translucency > or = 3 mm is a useful first trimester marker for fetal chromosomal abnormalities.  相似文献   

6.
We had shown previously that paraoxonase 3 (PON3), a putative circulating antioxidant, was systemically upregulated in late-gestation rat, sheep, and human fetuses. Our overarching hypothesis is that preterm human infants are delivered with low levels of PON3 and that this contributes to a state of oxidative stress. We sought to determine whether absence of Pon3 was associated with reduced neonatal viability in mice and studied the offspring from crosses between Pon3(+/-) mice. The number of Pon3(-/-) animals at E10.5 and E17.5 was significantly lower than the expected 25% (9.3 and 7.9% respectively, P < 0.001). On the first day of postnatal life, this was reduced further (2.4%, significantly less than the proportion in fetal life, P = 0.04). Pon3(+/-) animals had lower body and placental weights than wild-type littermates at E17.5, an effect that was independent of the parent of origin of the mutant allele. We then studied the effect of PON3 knockdown in a human cell line, A549. Stable knockdown of PON3 using short-hairpin RNA reduced cell proliferation in 21% oxygen. We then studied the effect of transient knockdown of PON3 using short interfering RNA (siRNA) in the same cell line in low (2%) or ambient (21%) oxygen. Knockdown of PON3 using siRNA reduced total antioxidant capacity in 21% (P = 0.008) but not 2% oxygen. We conclude that the absence of Pon3 in mice resulted in increased rates of early fetal and neonatal death. Knockdown of PON3 in human cells reduced cell proliferation and total antioxidant capacity.  相似文献   

7.
Pulmonary hypoplasia is increasing as a cause of neonatal death. To understand the pathophysiology of pulmonary hypoplasia, the physiology of fetal lung growth must first be understood. Lung fluid production and fetal breathing are primary factors regulating lung growth. Interruption of pulmonary arterial flow also decreases fetal lung growth. To define the relationship of pulmonary arterial flow to other factors known to be important for fetal lung growth, breathing and lung fluid production were measured after postductal main pulmonary artery (MPA) ligation in fetal sheep. Surgical preparation at 107-116 d gestation included placement of vascular catheters and a tracheal catheter connected to an intrauterine collection bag for lung fluid. Five fetuses served as monitored controls (catheters only), 3 as sham operated controls (catheters and thoracotomy), and 7 had MPA ligation. MPA ligation significantly decreased lung weights at 131-140 d; mean dry weight (g): MPA ligation--6.7, sham--23.4, monitored--22.3. Mean rates of lung fluid production (mL/h) were also decreased (d gestation): 116-122 d: MPA ligation--2.2, sham--9.1, monitored--6.8; 123-129 d: MPA ligation--2.1, sham--9.1, monitored--6.2; 130-136 d: MPA ligation--1.5, sham--12.4, monitored--7.7. There were no differences between MPA ligated, sham, and monitored fetuses in the incidence or intensity of fetal breathing movements. Decreased lung fluid production after main pulmonary artery ligation is most likely due to decreased secretion of lung fluid. Pulmonary arterial flow in other models of pulmonary hypoplasia which decrease lung fluid production (i.e., oligohydramnios) should also be examined.  相似文献   

8.
9.
The effects of right ventricular (RV) systolic pressure (RVSP) load on fetal myocyte size and maturation were studied. Pulmonary artery (PA) pressure was increased by PA occlusion from mean 47.4 +/- 5.0 (+/-SD) to 71 +/- 13.6 mmHg (P < 0.0001) in eight RVSP-loaded near-term fetal sheep for 10 days. The maximal pressure generated by the RV with acute PA occlusion increased after RVSP load: 78 +/- 7 to 101 +/- 15 mmHg (P < 0.005). RVSP-load hearts were heavier (44.7 +/- 8.4 g) than five nonloaded hearts (31.8 +/- 0.2 g; P < 0.03); heart-to-body weight ratio (10.9 +/- 1.1 and 6.5 +/- 0.9 g/kg, respectively; P < 0.0001). RVSP-RV myocytes were longer (101.3 +/- 10.2 microm) than nonloaded RV myocytes (88.2 +/- 8.1 microm; P < 0. 02) and were more often binucleated (82 +/- 13%) than nonloaded myocytes (63 +/- 7%; P < 0.02). RVSP-loaded myocytes had less myofibrillar volume than did nonloaded hearts (44.1 +/- 4.4% and 56. 1 +/- 2.6%; P < 0.002). We conclude that RV systolic load 1) leads to RV myocyte enlargement, 2) has minor effects on left ventricular myocyte size, and 3) stimulates maturation (increased RV myocyte binucleation). Myocyte volume data suggest that RV systolic loading stimulates both hyperplastic and hypertrophic growth.  相似文献   

10.
Antenatal glucocorticoids are used to promote the maturation of fetuses at risk for preterm delivery. While perinatal glucocorticoid exposure has clear immediate benefits to cardiorespiratory function, there is emerging evidence of adverse long-term effects. To determine if antenatal betamethasone alters vascular reactivity, we examined isometric contraction of endothelium-intact coronary and mesenteric arteries isolated from twin fetal sheep at 121-124 days gestation (term being 145 days). One twin received betamethasone (10 microg/h iv) while the second twin received vehicle (0.9% NaCl) for 48 h immediately before the final physiological measurements and tissue harvesting. Fetuses that received betamethasone had higher mean arterial blood pressures than the saline-treated twin controls (53 +/- 1 vs. 48 +/- 1 mmHg, P < 0.05). Coronary vessels from betamethasone-treated fetuses exhibited enhanced peak responses to ANG II (72 +/- 17 vs. 23 +/- 6% of the maximal response to 120 mM KCl, P < 0.05). There was no significant difference in response of the coronary arteries to other vasoactive compounds [KCl, U-46619, sodium nitroprusside, 8-bromo-cGMP (8-BrcGMP), isoproterenol, and forskolin]. Contractile responses to ANG II were similar in betamethasone and control mesenteric arteries (48 +/- 17 vs. 36 +/- 12% of the maximal response to 10-6 M U-46619). Western blot analysis revealed AT1 receptor protein expression was increased by betamethasone in coronary but not in mesenteric arteries. These findings demonstrate that antenatal betamethasone exposure enhances coronary but not mesenteric artery vasoconstriction to ANG II by selectively upregulating coronary artery AT1 receptor protein expression.  相似文献   

11.
In the present study, we investigated whether an established method of cryostorage at -75 degrees C in the presence of dimethyl sulfoxide (Me2SO) and fetal calf serum (FCS) could preserve the vascular and endothelial responses of isolated human coronary arteries. A total of 123 ring segments (4-5 mm in length) of epicardial coronary arteries were isolated within 1 to 2 h from hearts of four patients receiving a cardiac transplant. Thirty-nine coronary ring segments were studied immediately upon cleaning of surrounding tissues, while 84 similarly cleaned segments were stored at -75 degrees C for 7 to 10 days prior to in vitro reactivity studies. In the freshly isolated coronary arteries, addition of prostaglandin F2 alpha, endothelin (ET-1), or acetylcholine consistently produced a dose-dependent contraction, reaching a maximum contractile force of 9.6 +/- 0.7, 4.5 +/- 0.5, and 3.1 +/- 0.5 g (M +/- SEM), respectively, while histamine, thrombin and substance P consistently produced an endothelium-dependent relaxation (EDR) with a maximum of -89 +/- 2.8, -85 +/- 5.0, and -72 +/- 3.5%, respectively. Isoproterenol produced an endothelium-independent relaxation (-82 +/- 4.5%). Cryostorage of human coronary arteries at -75 degrees C without cryoprotectant resulted in a complete loss of the contractile response. In contrast, addition of Me2SO and FCS in the cryostorage medium significantly preserved the contractile responses, although they were decreased (1.9 +/- 0.3, 1.5 +/- 0.3, and 0.6 +/- 0.1 g to PGF2 alpha, ET-1, and acetylcholine, respectively) when compared to the fresh controls. The maximum EDR to histamine, thrombin, and substance P in the cryostored coronaries were also reduced to -40 +/- 5.6, -21 +/- 3.3, and -47 +/- 4.7%, respectively, and the isoproterenol-induced relaxation was reduced to -62 +/- 4.1%. These results suggest that although the cryostorage method described in the present report provided only limited preservation of human coronary arteries, significant vascular smooth muscle and endothelial-dependent functions were retained. Thus, it is possible that further refinement of the present cryostorage methodology may provide better preservation of functionally viable human blood vessels.  相似文献   

12.
Hypoxia is necessary for fetal development; however, excess hypoxia is detrimental. Hypoxia has been extensively studied in the near-term fetus, but less is known about earlier fetal effects. The purpose of this study was to determine the window of vulnerability to severe hypoxia, what organ system(s) is most sensitive, and why hypoxic fetuses die. We induced hypoxia by reducing maternal-inspired O2 from 21% to 8%, which decreased fetal tissue oxygenation assessed by pimonidazole binding. The mouse fetus was most vulnerable in midgestation: 24 h of hypoxia killed 89% of embryonic day 13.5 (E13.5) fetuses, but only 5% of E11.5 and 51% of E17.5 fetuses. Sublethal hypoxia at E12.5 caused growth restriction, reducing fetal weight by 26% and protein by 45%. Hypoxia induced HIF-1 target genes, including vascular endothelial growth factor (Vegf), erythropoietin, glucose transporter-1 and insulin-like growth factor binding protein-1 (Igfbp-1), which has been implicated in human intrauterine growth restriction (IUGR). Hypoxia severely compromised the cardiovascular system. Signs of heart failure, including loss of yolk sac circulation, hemorrhage, and edema, were caused by 18-24 h of hypoxia. Hypoxia induced ventricular dilation and myocardial hypoplasia, decreasing ventricular tissue by 50% and proliferation by 21% in vivo and by 40% in isolated cultured hearts. Epicardial detachment was the first sign of hypoxic damage in the heart, although expression of epicardially derived mitogens, such as FGF2, FGF9, and Wnt9b was not reduced. We propose that hypoxia compromises the fetus through myocardial hypoplasia and reduced heart rate.  相似文献   

13.
We utilized a vitamin D receptor (VDR) gene knockout model to study the effects of maternal and fetal absence of VDR on maternal fertility, fetal-placental calcium transfer, and fetal mineral homoeostasis. Vdr null mice were profoundly hypocalcemic, conceived infrequently, and had significantly fewer viable fetuses in utero that were also of lower body weight. Supplementation of a calcium-enriched diet increased the rate of conception in Vdr nulls but did not normalize the number or weight of viable fetuses. Among offspring of heterozygous (Vdr(+/-)) mothers (wild type, Vdr(+/-), and Vdr null fetuses), there was no alteration in serum Ca, P, or Mg, parathyroid hormone, placental (45)Ca transfer, Ca and Mg content of the fetal skeleton, and morphology and gene expression in the fetal growth plates. Vdr null fetuses did have threefold increased 1,25-dihydroxyvitamin D levels accompanied by increased 1alpha-hydroxylase mRNA in kidney but not placenta; a small increase was also noted in placental expression of parathyroid hormone-related protein (PTHrP). Among offspring of Vdr null mothers, Vdr(+/-) and Vdr null fetuses had normal ionized calcium levels and a skeletal ash weight that was appropriate to the lower body weight. Thus our findings indicate that VDR is not required by fetal mice to regulate placental calcium transfer, circulating mineral levels, and skeletal mineralization. Absence of maternal VDR has global effects on fetal growth that were partly dependent on maternal calcium intake, but absence of maternal VDR did not specifically affect fetal mineral homeostasis.  相似文献   

14.
Hypoxia inhibits fetal breathing movements but after birth it stimulates breathing. These differences have long been thought to involve central nervous inhibitory mechanisms. Such mechanisms might exert a tonic inhibition of fetal breathing movements at normal fetal PaO2 and the rise in PaO2 at birth might lift this inhibitory effect. To test this hypothesis 7 fetal sheep were chronically instrumented at 125-130 days for recording electrocortical activity (ECoG), and the electromyograph (EMG) activity of the diaphragm and neck muscles. Catheters were placed in a fetal carotid and a brachial artery and in the fetal trachea. For an extracorporeal membrane oxygenation system a 12 F gauge silastic catheter was placed in the right atrium for draining fetal blood and a 9.6 F gauge catheter was placed in a carotid artery to return oxygenated blood. Three days after operation the fetuses were connected to the extracorporeal membrane oxygenation system and fetal PaO2 was raised to 65.2 +/- 4.4 mmHg (SEM) for 6 to 19 h without changing pH or PaCO2. Neither the incidence of high voltage ECoG (48.5 +/- SEM 2.0% vs 52.8 +/- 3.3%) nor of fetal breathing movements (37.3 +/- 2.6% vs 23.8 +/- 5.9%) changed during the periods of hyperoxia. Since fetal breathing movements did not become continuous, we conclude that the lower PaO2 in the fetus compared to the neonate does not exert a tonic inhibitory influence on fetal breathing movements.  相似文献   

15.
To investigate the role of high concentrations of dl-3-hydroxybutyrate (DL-3-HB) in preventing heart damage after prolonged fasting, infarct size and the incidence of apoptosis caused by ischemia-reperfusion were determined in four groups of Wistar rats. Fed rats (+/-DL-3-HB group) and fasted rats (+/-DL-3-HB group) were subjected to 30 min of left coronary artery occlusion and 120 min of reperfusion. DL-3-HB was administered intravenously 60 min before the coronary artery occlusion. Infarct size, defined by triphenylyetrazolium chloride (TTC) staining, was reduced from 72 +/- 3% (fed group), 75 +/- 5% (fed + DL-3-HB group), and 70 +/- 5% (fasting group), respectively, to 26 +/- 4% (P < 0.01 vs. fasting + DL-3-HB group). Apoptosis, as defined by single-stranded DNA staining, was significantly reduced in the subendocardial region in the fasting + DL-3-HB group (9 +/- 2%) compared with the other groups (39 +/- 6% in the fed group, 37 +/- 5% in the fed + DL-3-HB group, and 34 +/- 3% in the fasting group; P < 0.01). In addition, levels of ATP in the fasting + DL-3-HB group were significantly higher compared with other groups after 30 min of ischemia and 120 min of reperfusion (P < 0.01). In conclusion, the present study demonstrates that high concentrations of DL-3-HB reduces myocardial infarction size and apoptosis induced by ischemia-reperfusion, possibly by providing increased energy substrate to the fasted rat myocardium.  相似文献   

16.
Prenatal lung development requires fetal breathing movements (FBM). To investigate the dependence of FBM on feedback originating from the lung, we hypothesized that pneumonectomy stimulates FBM. Time-dated fetal sheep underwent bilateral pneumonectomy, unilateral pneumonectomy, or sham surgery at 125-130 days gestation. The incidence of FBM decreased in sham-operated fetuses at 142 days versus 130 days (p = 0.013), but was unchanged across all gestational ages in bilaterally pneumonectomized fetuses (p > or = 0.52). In unilaterally pneumonectomized fetuses, the incidence of FBM remained unchanged until 139 days and was higher than that of the bilaterally pneumonectomized fetuses at 130-136 days gestation (p < or = 0.03). The amplitude of integrated diaphragmatic electromyographic activity (integralEMG(di)) and total respiratory output (frequency of breathing x integralEMG(di)) were lower in pneumonectomized fetuses versus sham-operated fetuses at later gestational ages (p < 0.05). These decreases in integralEMG(di) and total respiratory output were most pronounced at 142 days in bilaterally pneumonectomized fetuses versus sham-operated fetuses (p = 0.006 and 0.016, respectively). Low-voltage electrocortical activity (ECoG) increased, and high-voltage ECoG decreased, in unilaterally pneumonectomized fetuses compared with sham-operated fetuses (p = 0.04). In conclusion, we provide new evidence that feedback from the fetal lung modulates the incidence and various components of phrenic nerve output, suggesting a positive feedback mechanism between FBM and lung development.  相似文献   

17.
Excessive exposure of the fetus to maternally derived corticosteroids has been linked to the development of adult-onset diseases. To determine if early gestation corticosteroid exposure alters subsequent coronary artery reactivity, we administered dexamethasone (0.28 mg.kg(-1).day(-1)) to pregnant ewes at 27-28 days gestation (term being 145 days). Vascular responsiveness was assessed in endothelium-intact coronary and mesenteric arteries isolated from steroid-exposed and age-matched control fetal sheep at 123-126 days gestation and lambs at 4 mo of age. Lambs exposed to maternal dexamethasone had higher mean arterial blood pressures than the age-matched controls (93 +/- 3 vs. 83 +/- 5 mmHg, P < 0.05). Mesenteric arteries from the steroid-exposed fetuses displayed diminished responses to ANG II, relative to controls. In 4-mo-old lambs, prenatal dexamethasone exposure significantly increased coronary artery vasoconstriction to ANG II, ACh, and U-46619, but not KCl. In contrast, postnatal mesenteric artery reactivity was unaltered by steroid exposure. Compared with fetal mesenteric reactivity, postnatal mesenteric reactivity to ANG II, phenylephrine, and U-46619 was diminished, whereas the response to 120 mmol/l KCl was heightened. Coronary artery ANG II receptor protein expression was not significantly altered by steroid exposure in either age group. These findings demonstrate that early-gestation glucocorticoid exposure programs postnatal elevations in blood pressure and selectively enhances coronary artery responsiveness to second messenger-dependent vasoconstrictors. Glucocorticoid-induced alterations in coronary vascular smooth muscle structure or function may provide a mechanistic link between an adverse intrauterine environment and later cardiovascular disease.  相似文献   

18.
While the fetal heart grows by myocyte enlargement and proliferation, myocytes lose their capacity for proliferation in the perinatal period after terminal differentiation. The relationship between myocyte enlargement, proliferation, and terminal differentiation has not been studied under conditions of combined arterial and venous hypertension, as occurs in some clinical conditions. We hypothesize that fetal arterial and venous hypertension initially leads to cardiomyocyte proliferation, followed by myocyte enlargement. Two groups of fetal sheep received intravascular plasma infusions for 4 or 8 days (from 130 days gestation) to increase vascular pressures. Fetal hearts were arrested in diastole and dissociated. Myocyte size, terminal differentiation (%binucleation), and cell cycle activity (Ki-67[+] cells as a % of mononucleated myocytes) were measured. We found that chronic plasma infusion greatly increased venous and arterial pressures. Heart (but not body) weights were approximately 30% greater in hypertensive fetuses than controls. The incidence of cell cycle activity doubled in hypertensive fetuses compared with controls. After 4 days of hypertension, myocytes were (approximately 11%) longer, but only after 8 days were they wider (approximately 12%). After 8 days, %binucleation was approximately 50% greater in hypertensive fetuses. We observed two phases of cardiomyocyte growth and maturation in response to fetal arterial and venous hypertension. In the early phase, the incidence of cell cycle activity increased and myocytes elongated. In the later phase, the incidence of cell cycle activity remained elevated, %binucleation increased, and cross sections were greater. This study highlights unique fetal adaptations of the myocardium and the importance of experimental duration when interpreting fetal cardiac growth data.  相似文献   

19.
T-wave alternans, an important arrhythmogenic factor, has recently been described in human fetuses. Here we sought to determine whether alternans can be induced in the embryonic mouse hearts, despite its underdeveloped sarcoplasmic reticulum (SR) and, if so, to analyze the response to pharmacological and autonomic interventions. Immunohistochemistry confirmed minimal sarcoplasmic-endoplasmic reticulum Ca-ATPase 2a expression in embryonic mouse hearts at embryonic day (E) 10.5 to E12.5, compared with neonatal or adult mouse hearts. We optically mapped voltage and/or intracellular Ca (Ca(i)) in 99 embryonic mouse hearts (dual mapping in 64 hearts) at these ages. Under control conditions, ventricular action potential duration (APD) and Ca(i) transient alternans occurred during rapid pacing at an average cycle length of 212 +/- 34 ms in 57% (n = 15/26) of E10.5-E12.5 hearts. Maximum APD restitution slope was steeper in hearts developing alternans than those that did not (2.2 +/- 0.6 vs. 0.8 +/- 0.4; P < 0.001). Disabling SR Ca(i) cycling with thapsigargin plus ryanodine did not significantly reduce alternans incidence (44%, n = 8/18, P = 0.5), whereas isoproterenol (n = 14) increased the incidence to 100% (P < 0.05), coincident with steepening APD restitution slope. Verapamil abolished Ca(i) transients (n = 9). Thapsigargin plus ryanodine had no major effects on Ca(i)-transient amplitude or its half time of recovery in E10.5 hearts, but significantly depressed Ca(i)-transient amplitude (by 47 +/- 8%) and prolonged its half time of recovery (by 18 +/- 3%) in E11.5 and older hearts. Embryonic mouse ventricles can develop cardiac alternans, which generally is well correlated with APD restitution slope and does not depend on fully functional SR Ca(i) cycling.  相似文献   

20.
Mild hypothermia reduces myocardial infarct size in small animals; however, the extent of myocardial protection in large animals with greater thermal mass remains unknown. We evaluated the effects of mild endovascular cooling on myocardial temperature, infarct size, and cardiac output in 60- to 80-kg isoflurane-anesthetized pigs. We occluded the left anterior descending coronary artery for 60 min, followed by reperfusion for 3 h. An endovascular heat-exchange catheter was used to either lower core body temperature to 34 degrees C (n = 11) or maintain temperature at 38 degrees C (n = 11). Additional studies assessed myocardial viability and microvascular perfusion with (99m)Tc-sestamibi autoradiography. Endovascular cooling reduced infarct size compared with normothermia (9 +/- 6% vs. 45 +/- 8% of the area at risk; P < 0.001), whereas the area at risk was comparable (19 +/- 3% vs. 20 +/- 7%; P = 0.65). Salvaged myocardium showed normal sestamibi uptake, confirming intact microvascular flow and myocyte viability. Cardiac output was maintained in hypothermic hearts because of an increase in stroke volume, despite a decrease in heart rate. Mild endovascular cooling to 34 degrees C lowers myocardial temperature sufficiently in human-sized hearts to cause a substantial cardioprotective effect, preserve microvascular flow, and maintain cardiac output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号