首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doris Godde  Heidrun Dannehl 《Planta》1994,195(2):291-300
To test wether chlorosis is induced by photoinhibitory damage to photosystem II (PSII), onset of chlorosis and loss of PSII function were compared in young spinach (Spinaciae oleracea L.) plants suffering under a combined magnesium and sulphur deficiency. Loss of chlorophyll already occurred after the first week of deficiency and preceded any permanent functional inhibition of the photosynthetic apparatus. Permanent disturbancies of photosynthetic electron transport measured in isolated thylakoids and of PSII function, determined via the ratio of variable fluorescence to maximal fluorescence, Fv/Fm, could be detected only after the second week of deficiency. After the third week, the plants had lost about 60% of their chlorophyll; even so, fluorescence data indicated that 85% of the existing PSII was still capable of initiating photosynthetic electron transport. However, quenching analysis of steady-state fluorescence showed an early increase in non-photochemical quenching and in down-regulated PSII centres with low steady-state quantum efficiency. Together with the down-regulation of PSII centres, a 1.4-fold increase in D1-protein synthesis, measured as incorporation of [14C]leucine, could be observed at the end of the first week before any loss of D1 protein, chlorophyll or photosynthetic activity could be detected. Immunological determiation by Western-blotting did not show a change in D1-protein content; thus, at this time, D1 protein was not only faster synthesised but was also faster degraded than before the imposition of mineral deficiency. The increased turnover was high enough to prevent any loss or functional inhibition of PSII. After 3 weeks, D1-protein synthesis on a chlorophyll basis was further stimulated by a factor of 2. However, this was not enough to prevent a net loss of D1 protein of about 70%, showing that the D1-protein was now degraded faster than it was synthesised. Immunological determination and electron-transport measurements showed that together with the loss of D1 protein the other polypetides of PSII were also degraded, resulting in a specific loss of PSII centres. The degradation of PSII centres prevented a large accumulation of damaged PSII centres. We assume that the decrease in PSII centres initiates the breakdown of the other thylakoid proteins.Abbreviations Fo yield of intrinsic fluorescence when all PSII centres are open in the dark - Fm yield of maximal fluorescence when all reaction centres are closed - Fm fluorescence yield when all reaction centres are closed under steady-state conditions - Fv yield of variable fluorescence, (difference between Fo and Fm) - F yield of variable fluorescence under steady-state conditions, difference between Fm and Ft, the fluorescence yield under steady-state conditions - PFD photon flux density - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII - qp photochemical quenching - qn non-photochemical quenching This work was supported by grants from the Bundesminister für Forschung und Technologie and the German Israeli Foundation. The authors thank Prof. I. Ohad (Department of Biological Chemistry, Hebrew University, Jerusalem, Israel) for fruitful discussions.  相似文献   

2.
The aim of the present paper is to aid biologists understand the complex physical problems of intramolecular energy transfer, in particular, between antenna (bacterio) chlorophyll molecules in vivo.The author has attempted, in the first part of the paper, to explain complicated processes of excitation transfer in a language understandable to readers with knowledge in fundamentals of general physics, but not in molecular optics.The second part of this paper is a critical review relevant to the specifics of physical theories and their applicability to the problem of energy transfer in antenna (bacterio) chlorophylls ((B) Chls) to reaction centers (RCs) in the photosynthetic organisms.Abbreviations PSU photosynthetic unit - RC reaction center - Chl chlorophyll - BChl bacteriochlorophyll - r intrinsic radiactive lifetime - fl fluorescence lifetime - fl fluorescence quantum yield - S* singlet excited state of a molecule  相似文献   

3.
The components of non-photochemical chlorophyll fluorescence quenching (qN) in barley leaves have been quantified by a combination of relaxation kinetics analysis and 77 K fluorescence measurements (Walters RG and Horton P 1991). Analysis of the behaviour of chlorophyll fluorescence parameters and oxygen evolution at low light (when only state transitions — measured as qNt — are present) and at high light (when only photoinhibition — measured as qNi — is increasing) showed that the parameter qNt represents quenching processes located in the antenna and that qNi measures quenching processes located in the reaction centre but which operate significantly only when those centres are closed. The theoretical predictions of a variety of models describing possible mechanisms for high-energy-state quenching, measured as the residual quenching, qNe, were then tested against the experimental data for both fluorescence quenching and quantum yield of oxygen evolution. Only one model was found to agree with these data, one in which antennae exist in two states, efficient in either energy transfer or energy dissipation, and in which those photosynthetic units in a dissipative state are unable to exchange energy with non-dissipative units.Abbreviations: Fo, Fm room-temperature chlorophyll fluorescence yield with all centres open, closed - Fv variable fluorescence yield - LHC II light-harvesting chlorophyll-protein complex of PS II - PS I, PS II Photosystem I, II - P700, P680 primary donor in Photosystem I, II - QA primary electron acceptor of PS II - Pmax maximum quantum yield of oxygen evolution - qN coefficient of non-photochemical quenching of variable fluorescence - qNe, qNt, qNi coefficient of non-photochemical quenching due to high-energy-state, state transition, photoinhibition - qO coefficient of quenching of dark level fluorescence - qP coefficient of photochemical quenching of variable fluorescence - P intrinsic quantum yield of open PS II reaction centres = s/qP - PS 2 quantum yield of PS = qP × Fv/Fm - S quantum yield of oxygen evolution = rate of oxygen evolution/light intensity  相似文献   

4.
After seven weeks of a combined magnesium and sulphur deficiency, spinach (Spinacea oleracea L.) plants showed a substantial accumulation of inactivated photosystem II (PSII) centres as indicated by a 40% decrease of the chlorophyll (Chl) fluorescence parameter Fv/Fm (Fv being the yield of variable fluorescence and Fm the yield of maximal fluorescence when all reaction centres are closed) together with a severe loss of leaf Chl content of 75%. The responses of the photosynthetic apparatus were examined when the deficient plants were transferred back to a rich nutrient medium. During the first 24 h of the recovery phase, thylakoid protein synthesis measured as incorporation of [14C]leucine per unit of Chl increased substantially. The synthesis rate of the D1 reaction-centre polypeptide of PSII, which in the deficient plants was reduced to 50% of the non-deficient control, was stimulated eight- to ninefold. D1-protein content, which in the deficient plants was reduced to 40% of the non-deficient control, started to increase 2 d later. Thus, D1-protein degradation was also enhanced. The increased D1-protein turnover led to a rapid repair of the existing PSII centres as indicated by the rise of Fv/Fm. It was completed at day 7 of the recovery phase. At day 2 of the recovery phase, the synthesis of other thylakoid proteins such as the D2 protein, cytochrome b 559, CP 47 and the 33-kDa polypeptide of the water-splitting system, became stimulated. This process resulted in an accumulation of new PSII centres. During the first week, formation of new PSII centres was not associated with an increase in leaf Chl content. The Chl content of the recovering leaves only started to increase when the ratio of PSII polypeptides versus LHCII (light-harvesting complex of PSII), which was substantially diminished in the deficient plants, became comparable to that of the control. The recovery process was accompanied by substantial changes in thylakoid protein phosphorylation. Their relevance to thylakoid protein turnover and stability is discussed.Abbreviations Chl chlorophyll - cyt cytochrome - Fo yield of intrinsic fluorescence when all PSII centres are open in the dark - Fm yield of maximal fluorescence when all reaction centres are closed - Fm fluorescence yield when all reaction centres are closed (after a saturating flash) under steady-state conditions - Fv yield of variable fluorescence, (difference between Foand Fm) - F yield of variable fluorescence under steady state conditions - LHC light-harvesting complex - PQ plastoquinone - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII - qP photochemical quenching - qn non-photochemical quenching The authors like to thank Dipl. Biol. Britta Untereiser for determining the chlorophyll fluorescence quenching factors. This work was supported by grants from the Bundesminister für Forschung und Technologie, the Project Europäisches Forschungszentrum and the German Israeli Foundation in cooperation with Prof. I. Ohad, Hebrew University, Jerusalem, Israel.  相似文献   

5.
Simultaneous fluorescence and photoacoustic measurements have been used to study the effects of metal ions (copper, lead, and mercury) during dark incubation of thylakoid membranes. The values of the chlorophyll fluorescence parameters Fo (initial fluorescence yield with the reaction centers in the open state), Fm (maximal fluorescence yield), Ft (steady state fluorescence yield) and the calculated parameters, o (maximal quantum yield of Photosystem II photochemistry) and t (actual quantum yield of Photosystem II photochemistry), strongly decreased in the presence of the metal ions coinciding with an increase in the non-photochemical deexcitation rate constant k(N). It was observed that photosynthetic energy storage measured by photoacoustic spectroscopy also decreased but a large portion of energy storage remained unaffected even at the highest metal ion concentrations used. A maximal inhibition of photosyntheti c energy storage of 80% and 50% was obtained with Hg2+ and Cu2+-treated thylakoids, respectively, while energy storage was insensitive to Pb2+. The results are consistent with the known predominant inhibition of the donor side of Photosystem II by the metal ions. The insensitive portion of energy storage is attributed to the possible recurrence of cyclic electron transport around Photosystem II that would depend on the extent of inhibition produced on the acceptor side by the metal ion used.  相似文献   

6.
D. H. Greer  W. A. Laing  T. Kipnis 《Planta》1988,174(2):152-158
Photoinhibition of photosynthesis was induced in attached leaves of kiwifruit grown in natural light not exceeding a photon flux density (PFD) of 300 mol·m-2·s-1, by exposing them to a PFD of 1500 mol·m-2·s-1. The temperature was held constant, between 5 and 35° C, during the exposure to high light. The kinetics of photoinhibition were measured by chlorophyll fluorescence at 77K and the photon yield of photosynthetic O2 evolution. Photoinhibition occurred at all temperatures but was greatest at low temperatures. Photoinhibition followed pseudo first-order kinetics, as determined by the variable fluorescence (F v) and photon yield, with the long-term steady-state of photoinhibition strongly dependent on temperature wheareas the observed rate constant was only weakly temperature-dependent. Temperature had little effect on the decrease in the maximum fluorescence (F m) but the increase in the instantaneous fluorescence (F o) was significantly affected by low temperatures in particular. These changes in fluorescence indicate that kiwifruit leaves have some capacity to dissipate excessive excitation energy by increasing the rate constant for non-radiative (thermal) energy dissipation although temperature apparently had little effect on this. Direct photoinhibitory damage to the photosystem II reaction centres was evident by the increases in F o and extreme, irreversible damage occurred at the lower temperatures. This indicates that kiwifruit leaves were most susceptible to photoinhibition at low temperatures because direct damage to the reaction centres was greatest at these temperatures. The results also imply that mechanisms to dissipate excess energy were inadequate to afford any protection from photoinhibition over a wide temperature range in these shade-grown leaves.Abbreviations and symbols fluorescence yield correction coefficient - F o, F m, F v instantaneous, maximum, variable fluorescence - K D, K F, K P, K T rate constants for non-radiative energy dissipation, fluorescence, photochemistry, energy transfer to photosystem I - PFD photon flux density - PSI, II photosystem I, II - i photon yield of photosynthesis (incident light)  相似文献   

7.
To understand the origins of the different lifetime components of photosystem 2 (PS2) chlorophyll (Chl) fluorescence we have studied their susceptibility to potassium iridic chloride (K2IrCl6) which has been shown to bleach antenna pigments of photosynthetic bacteria (Loach et al. 1963). The addition of K2IrCl6 to PS2 particles gives rise to a preferential quenching of the variable Chl fluorescence (Fv). At concentrations lower than 20 M, this is brought about mainly by a decrease in the yield, but not in the lifetime, of the slowest component when all the PS2 reaction centres are closed (FM). The yield of the middle and fast decays are not significantly altered. This type of quenching is not seen with DNB. The iridate-induced quenching of the initial fluorescence level (F0) is due to a proportional decrease in the yield and lifetime of the three components and correlates with the observed modification in the relative quantum yield of oxygen evolution. In this concentration range a bleaching of Chl a is seen. At higher iridate levels, greater than 20 M, a proportional decrease in the lifetimes and yields of the three kinetic components is seen at FM. These changes are associated with a carotenoid bleaching. In isolated light harvesting Chl a/b complexes of PS2 (LHC2), iridate addition converts a 4 ns decay into a 200 ps emission and both types of bleaching are observed. By also measuring the rate of PS2 trap closure versus iridate concentration, we have discussed the results in terms of excitation energy transfer.Abbreviations DNB m-dinitrobenzene - FM maximum Chl fluorescence - F0 initial fluorescence - Fv variable fluorescence - I pheophytin a primary electron acceptor of PS2 - P680 chlorophyll a of photochemical centre - PS2 photosystem 2 - QA primary stable electron acceptor of PS2 - Chl chlorophyll - LHC2 light harvesting Chl a/b complex of PS2 - MES 2(N-morpholino) ethanesulfonic acid - DCMU 3-(3-4-dichlorophenyl) 1-1 dimethylurea - PPBQ phenyl-p-benzo-quinone - BBY PS2-enriched membranes prepared as in Berthold et al. (1981) - Q400 PS2 electron acceptor with a midpoint potential of 400 mV  相似文献   

8.
The yield of photosynthetic O2 evolution was measured in cultures of Dunaliella C9AA over a range of light intensities, and a range of low temperatures at constant light intensity. Changes in the rate of charge separation at Photosystem I (PS I) and Photosystem II (PS II) were estimated by the parameters PS I and PS II . PS I is calculated on the basis of the proportion of centres in the correct redox state for charge separation to occur, as measured spectrophotometrically. PS II is calculated using chlorophyll fluorescence to estimate the proportion of centres in the correct redox state, and also to estimate limitations in excitation delivery to reaction centres. With both increasing light intensity and decreasing temperature it was found that O2 evolution decreased more than predicted by either PS I or PS II. The results are interpreted as evidence of non-assimilatory electron flow; either linear whole chain, or cyclic around each photosystem.Abbreviations F0 dark level of chlorophyll fluorescence yield (PS II centres open) - Fm maximum level of chlorophyll fluorescence yield (PS II centres closed) - Fv variable fluorescence (Fm-F0) - PS I Photosystem I - PS II Photosystem II - P700 reaction centre chlorophyll(s) of PS I - qN coefficient of non-photochemical quenching of chlorophyll fluorescence - qP coefficient of photochemical quenching of fluorescence yield - qE high-energy-state quenching coefficient - PS I yield of PS I - PS II yield of PS II - S yield of photosynthetic O2 evolution - P intrinsic yield of open PS II centres  相似文献   

9.
From a combined study of (1) bacteriochlorophyll fluorescence lifetimes, (2) relative yields and (3) differential absorption changes corresponding to the reaction centres photooxidation, the absolute values of fluorescence lifetimes and quantum yields for two bacteriochlorophyll fractions have been calculated. The main bacteriochlorophyll fraction (80–90%) serving as a light-gathering antenna for reaction centresP 890 is characterized by dark values of fluorescence lifetimes of the order of 10–11 sec and fluorescence yields of 10–3. The remaining part of the bulk pigment, not associated withP 890 as far as excitation energy transfer is concerned, has an approximately constant fluorescence yield of about 5–8% and lifetime of about 10–9 sec. Basing on these results, excitation jump times and intermolecular coupling energies were estimated to be 10–13 sec and 10–2 ev respectively. The conclusion is made that excitation energy transfer in the main part of bacteriochlorophyll occurs by the exciton mechanism at moderate intermolecular energies.  相似文献   

10.
Efficient energy transfer has been reconstituted between an antenna pigment-protein and reaction centres isolated from the photosynthetic membrane of Rhodopseudomonas sphaeroides. The reconstituted system has fluorescence induction kinetics and fluorescence yields similar to those obtained from antenna bacteriochlorophyll in chromatophores. The results indicated that closed reaction centres quench fluorescence from the antenna pigment-protein, although not as strongly as photochemically active reaction centres. The measurement of fluorescence yields from chromatophores of the reaction centreless mutant PM-8 and of the parent strain Ga confirmed these observations. The fluorescence yield from the reconstituted system was approximately the same whether the reaction centres had been closed by photo-oxidation of the bacteriochlorophyll electron donor or chemical reduction of the primary acceptor, indicating a similar lifetime for the excited singlet state in both states of the reaction centres.  相似文献   

11.
The diadinoxanthin cycle (DD-cycle) in chromophyte algae involves the interconversion of two carotenoids, diadinoxanthin (DD) and diatoxanthin (DT). We investigated the kinetics of light-induced DD-cycling in the marine diatom Phaeodactylum tricornutum and its role in dissipating excess excitation energy in PS II. Within 15 min following an increase in irradiance, DT increased and was accompanied by a stoichiometric decrease in DD. This reaction was completely blocked by dithiothreitol (DTT). A second, time-dependent, increase in DT was detected 20 min after the light shift without a concomitant decrease in DD. DT accumulation from both processes was correlated with increases in non-photochemical quenching of chlorophyll fluorescence. Stern-Volmer analyses suggests that changes in non-photochemical quenching resulted from changes in thermal dissipation in the PS II antenna and in the reaction center. The increase in non-photochemical quenching was correlated with a small decrease in the effective absorption cross section of PS II. Model calculations suggest however that the changes in cross section are not sufficiently large to significantly reduce multiple excitation of the reaction center within the turnover time of steady-state photosynthetic electron transport at light saturation. In DTT poisoned cells, the change in non-photochemical quenching appears to result from energy dissipation in the reaction center and was associated with decreased photochemical efficiency. D1 protein degradation was slightly higher in samples poisoned with DTT than in control samples. These results suggest that while DD-cycling may dynamically alter the photosynthesis-irradiance response curve, it offers limited protection against photodamage of PS II reaction centers at irradiance levels sufficient to saturate steady-state photosynthesis.Abbreviations CAP chloramphenicol - D1 PS II reaction center protein - DD diadinoxanthin - DD cycle-diadinoxanthin cycle - DT diatoxanthin - DTT dithiothreitol - FCP fucoxanthin chlorophyll a-c protein - Fm maximum fluorescence yield in the dark-adapted state - Fo minimum fluorescence yield in the dark-adapted state - Fm and Fo maximum and minimum fluorescence yields respectively in some light adapted state - Fv maximum variable fluorescence yield in the dark-adapted state - Ik Irradiance at the intercept of the initial slope of the photosynthesis-irradiance curve and the maximum photosynthetic rate - kD first order rate constant for nonradiative de-excitation of excitions in the PS II antenna - kd first order rate constant for non-radiative de-excitation of excitons in the PS II reaction center - kF first order rate constant for fluorescence - kT first order rate constant for exciton transfer to the reaction center - kt first order rate constant for exciton transfer from the reaction center to the antenna - Rubisco ribulose bisphosphate carboxylase - SVm Stern-Volmer quenching coefficient of the maximum fluorescence yield - SVo Stern-Volmer quenching coefficient of the miniximum fluorescence yield - PS II apparent absorption cross-section of PS II - arr average interval between exciton arrival to the PS II reaction center (ms) - rem average interval between electron turnover during photosynthesis in the PS II reaction center (ms) - d the probability that an exciton is non-radiatively dissipated in the reaction center - T the probability that an exciton in the antenna is transferred to the reaction center - t the probability that an exciton is transferred back from the reaction center to the antenna  相似文献   

12.
Koblížek  M.  Ciscato  M.  Komenda  J.  Kopencký  J.  Šiffel  P.  Masojídek  J. 《Photosynthetica》1999,37(2):307-323
The dark-adapted cells of the green alga Spongiochloris sp. were exposed to "white light" of 1000 μmol(photon) m−2 s−1 for 2 h and then dark adapted for 1.5 h. Changes of photochemical activities during photoadaptation were followed by measurement of chlorophyll (Chl) fluorescence kinetics, 77 K emission spectra, photosynthetic oxygen evolution, and pigment composition. We observed a build-up of slowly-relaxing non-photochemical quenching which led to a decrease of the Fv/Fm parameter and the connectivity. In contrast to the depression of Fv/Fm (35 %) and the rise of non-photochemical quenching (∼ 1.6), we observed an increase in effective absorption cross-section (20 %), Hill reaction (30 %), photosynthetic oxygen evolution (80 %), and electron transport rate estimated from the Chl fluorescence analysis (80 %). We showed an inconsistency in the presently used interpretation schemes, and ascribe the discrepancy between the increase of effective absorption cross-section and the photosynthetic activities on one side and the effective non-photochemical quenching on the other side to the build-up of a quenching mechanism which dissipates energy in closed reaction centres. Such a type of quenching changes the ratio between thermal dissipation and fluorescence without any effect on photochemical yield. In this case the Fv/Fm ratio cannot be used as a measure of the maximum photochemical yield of PS2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The inhibition of photosynthetic electron transport and the activity of photosynthetic carbon reduction cycle (PCR) enzymes under long-term water stress after slow dehydration was studied in non-nodulated Casuarina equisetifolia Forst. & Forst. plants. Initially, drought increased the fraction of closed Photosystem II (PS II) reaction centres (lowered qP) and decreased the quantum yield of PS II electron transport (PSII) with no enhancement of non-radiative dissipation of light energy (qN) because it increased the efficiency of electron capture by open PS II centres (Fv/Fm). As drought progressed, Fv/Fm fell and the decrease in PSII was associated with an increased qN. The kinetics of dark relaxation of fluorescence quenching pointed to an increase in a slowly-relaxing component under drought, in association with increased contents of zeaxanthin and antheraxanthin. Total NADP-dependent malate dehydrogenase activity increased and total stromal fructose-1,6-bisphosphatase activity decreased under drought, while the activation state of these enzymes remained unchanged. Water stress did not alter the activity and the activation state of ribulose bisphosphate carboxylase oxygenase.  相似文献   

14.
G. Laskay  E. Lehoczki  A. L. Dobi  L. Szalay 《Planta》1986,169(1):123-129
The effects of the pyridazinone compound SAN 9785 on the photosynthetic competence of leaves, on the photochemical activity of isolated thylakoids and on the formation and spectral properties of chlorophyll-protein complexes were studied during a 72-h greening period of detached etiolated leaves of barley (Hordeum vulgare L. cv. Horpácsi kétsoros). It was established that i) the photosynthetic capacity of the leaves decreased considerably (by 80 and 90%, as determined by14CO2 fixation and fast fluorescence induction measurements, respectively); ii) the photochemical activity of isolated thylakoids from water to potassium ferricyanide and from dichlorophenol indophenol/ascorbate to methylviologen exhibited only slight reductions when expressed on a chlorophyll basis compared with the control; iii) the slow fluorescence induction curves of the treated leaves demonstrated the presence of a peculiar fluorescence component interrupting the quenching of fluorescence at around 1 min illumination; iv) a shortage of the chlorophyll-protein complex of photosystem I (CPI) occurred with a higher content of the monomer of the light harvesting complex in the thylakoids of treated leaves; and v) the fluorescence spectrum of the CPI band present in treated leaves indicates the destruction of the structural integrity of this complex during isolation from the membrane.Abbreviations Chl chlorophyll - CPI, CPII chlorophyll-protein complexes of the reaction centres of PSI and PSII - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DPIP 2,6-dichlorophenol indophenol - DPIPH2 chemically reduced form of DPIP - F o fluorescence of constant yield - F v fluorescence of variable yield - F i ,F m mitial and maximum yield of fluorescence - LHCP3 monomer of the light-harvesting complex - LHCP2 and LHCP1 oligomers of the light-harvesting complex LHCP3 - PSI, PSII photosystems I, II - SAN 9785 4-chloro-5-(dimethylamino)-2-phenyl-3(2H)-pyridazinone, also known as BASF 13-338 - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

15.
Efficient energy transfer has been reconstituted between an antenna pigment-protein and reaction centres isolated from the photosynthetic membrane of Rhodopseudomonas sphaeroides. The reconstituted system has fluorescence induction kinetics and fluorescence yields similar to those obtained from antenna bacteriochlorophyll in chromatophores. The results indicated that closed reaction centres quench fluorescence from the antenna pigment-protein, although not as strongly as photochemically active reaction centres. The measurement of fluorescence yields from chromatophores of the reaction centreless mutant PM-8 and of the parent strain Ga confirmed these observations.The fluorescence yield from the reconstituted system was approximately the same whether the reaction centres had been closed by photo-oxidation of the bacteriochlorophyll electron donor or chemical reduction of the primary acceptor, indicating a similar lifetime for the excited singlet state in both states of the reaction centres.  相似文献   

16.
The variable fluorescence quenching found in the presence of DCMU with isolated chloroplasts which have been exposed previously to a prolonged low light intensity (Sinclair and Spence 1988), is accompanied by a loss of the sigmoidal appearance of the fluorescence induction transient. About 80% of the fluorescence decrease is due to the PS II units and 50% of the centres are inactivated by light exposure. Light incubation slows the PS II partial reaction while the PS I partial reaction is unaffected. We propose that in the light, normal PS II centres change into quenching centres which degrade excitation energy to thermal energy. This change can be reversed by 30 min of darkness. A higher flash intensity is needed to saturate the steady state O2 flash yield from light-incubated chloroplasts indicating a light-induced decrease of the average photosynthetic unit size as would happen if PS II units were preferentially inactivated. These light-induced changes may relate to an adaptation in leaves to increasing light intensity.Abbreviations Chl Chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCPIP 2,6-Dichlorophenol-Indophenol - EDTA ethylaminediaminetetraacetic acid - Fv Level of variable fluorescence emission - Fo Initial level of fluorescence - Hepes buffer N-[2-Hydroxyethyl]piperazine-N-[2-ethanesulfonic acid]  相似文献   

17.
Pulse amplitude modulation fluorimetry was used to assess chlorophyll fluorescence parameters in Chlamydomonas reinhardtii cells during sulfur deprivation. A significant (fourfold) increase in the chlorophyll fluorescence yield (parameters F 0 and F m) normalized to the chlorophyll concentration was shown for deprived cells. The chlorophyll content did not change during the deprivation experiments. An analysis of nonphotochemical quenching of chlorophyll fluorescence indicated a considerable modification of the energy deactivation pathways in photosystem II (PSII) of sulfur-deprived cells. For example, starved cells exhibited a less pronounced pH-dependent quenching of excited states and a higher thermal dissipation of excess light energy in the reaction centers of PSII. It was also shown that the photosynthetic apparatus of starved cells is primarily in state 2 and that back transition to state 1 is suppressed. However, these changes cannot cause the discovered elevation of chlorophyll fluorescence intensity (F 0 and F m) in the cells under sulfur limitation. The observed increase in the chlorophyll fluorescence intensity under sulfur deprivation may be due to partial dissociation of peripheral light-harvesting complexes from the reaction centers of PSII or a malfunction of the dissipative cycle in PSII, involving cytochrome b 559.  相似文献   

18.
The effects of a 60 min exposure to photosynthetic photon flux densities ranging from 300 to 2200 mol m–2s–1 on the photosynthetic light response curve and on PS II heterogeneity as reflected in chlorophyll a fluorescence were investigated using the unicellular green alga Chlamydomonas reinhardtii. It was established that exposure to high light acts at three different regulatory or inhibitory levels; 1) regulation occurs from 300 to 780 mol m–2s–1 where total amount of PS II centers and the shape of the light response curve is not significantly changed, 2) a first photoinhibitory range above 780 up to 1600 mol m–2s–1 where a progressive inhibition of the quantum yield and the rate of bending (convexity) of the light response curve can be related to the loss of QB-reducing centers and 3) a second photoinhibitory range above 1600 mol m–2s–1 where the rate of light saturated photosynthesis also decreases and convexity reaches zero. This was related to a particularly large decrease in PS II centers and a large increase in spill-over in energy to PS I.Abbreviations Chl chlorophyll - DCMU 3,(3,4-dichlorophenyl)-1,1-dimethylurea - FM maximal fluorescence yield - Fpl intermediate fluorescence yield plateau level - F0 non-variable fluorescence yield - Fv total variable fluorescence yield (FM-F0) - initial slope to the light response curve, used as an estimate of initial quantum yield - convexity (rate of bending) of the light response curve of photosynthesis - LHC light-harvesting complex - Pmax maximum rate of photosynthesis - PQ plastoquinone - Q photosynthetically active photon flux density (400–700 nm, mol m–2s–1) - PS photosystem - QA and QB primary and secondary quinone electron acceptor of PS II  相似文献   

19.
Zhao  Hui Jie  Zou  Qi 《Photosynthetica》2002,40(4):523-527
Infiltration of methyl viologen (MV, source of O2 ) and Na-diethyldithiocarbamate (DDC, inhibitor of SOD) into wheat leaves resulted in the accumulation of active oxygen species and photo-oxidative damage to photosynthetic apparatus under both moderate and high irradiance. Exogenous antioxidants, ascorbate (ASA) and mannitol, scavenged active oxygen efficiently, protected the photosynthetic system from MV and DDC induced oxidative damage, and maintained high Fv/Fm [maximal photochemical efficiency of photosystem 2 (PS2) while all PS2 reaction centres are open], Fm/F0 (another expression for the maximal photochemical efficiency of PS2), PS2 (actual quantum yield of PS2 under actinic irradiation), qP (photochemical quenching coefficient), P N (net photosynthetic rate), and lowered qNP (non-photochemical quenching coefficient) of the leaves kept under high irradiance and oxidative stress. Phenolic compounds used in these experiments, catechol (Cat), resorcinol (Res), and tannic acid (Tan), had similar anti-oxidative activity and protective effect on photosynthetic apparatus as ASA and mannitol. The anti-oxidative activity and the protective effect of phenolic compounds increased with increase in their concentration from 100 to 300 g m–3. The number and the position of hydroxyl group in phenolic molecules seemed to influence their antioxidative activity.  相似文献   

20.
We investigated to what extent south-exposed leaves (E-leaves) of the evergreen ivy (Hedera helix L.) growing in the shadow of two deciduous trees suffered from photoinhibition of photosynthesis when leaf-shedding started in autumn. Since air temperatures drop concomitantly with increase in light levels, changes in photosynthetic parameters (apparent quantum yield, i and maximal photosynthetic capacity of O2 evolution, Pmax; chlorophyll-a fluorescence at room temperature) as well as pigment composition were compared with those in north-exposed leaves of the same clone (N-leaves; photosynthetic photon flux density PPFD< 100 mol · m–2 · s–2) and phenotypic sun leaves (S-leaves; PPFD up to 2000 mol · m–2 · s–1).In leaves exposed to drastic light changes during winter (E-leaves) strong photoinhibition of photosynthesis could be observed as soon as the incident PPFD increased in autumn. In contrast, in N-leaves the ratio of variable fluorescence to maximum fluorescence (FV/FMm) and i did not decline appreciably prior to severe frosts (up to -12° C) in January. At this time, i was reduced to a similar extent in all leaves, from about 0.073 mol O2 · mol–1 photons before stress to about 0.020. Changes in i were linearly correlated with changes in fv/fm (r = 0.955). The strong reduction in FV/FM on exposure to stress was caused by quenching in FM. The initial fluorescence (F0), however, was also quenched in all leaves. The diminished fluorescence yield was accompanied by an increase in zeaxanthin content. These effects indicate that winter stress in ivy primarily induces an increase in non-radiative energy-dissipation followed by photoinhibitory damage of PSII. Although a pronounced photooxidative bleaching of chloroplast pigments occurred in January (especially in E-leaves), photosynthetic parameters recovered completely in spring. Thus, the reduction in potential photosynthetic yield in winter may be up to three times greater in leaves subjected to increasing light levels than in leaves not exposed to a changing light environment.Abbreviations and Symbols F0, FM initial and maximal fluorescence yield when all PSII centres are open and closed - FV variable fluorescence (FM-F0) - Pmax maximal photosynthetic capacity at 1000 umol · m–2 · s–1 PPFD and CO2 saturation - PPFD photosynthetic photon flux density - i apparent quantum yield of photosynthetic O2 evolution - E-leaves, N-leaves shade leaves exposed, not exposed to drastic light changes during winter - S-leaves sun leaves from an open ivy stand Dedicated to Professor Otto Härtel on the occasion of his 80th birthdayThis work was supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号