共查询到20条相似文献,搜索用时 0 毫秒
1.
Presenilin-1 (PS1) protein concentration is linked to neuronal development and to the pathogenesis of Alzheimer's disease, yet little is known about the biological factors and mechanisms that control cellular levels of PS1 protein. As PS1 levels are highest in the developing brain, we tested whether neurotrophin-induced differentiation influences PS1 expression using neuronotypic pheochromocytoma (PC12) cells. Treatment of PC12 cells with nerve growth factor (NGF) caused approximately 60-75% increases in the steady-state levels of endogenous PS1 N- and C-terminal fragments. PS1 protein accumulation was dose-responsive to NGF and required the presence of the TrkA NGF receptor tyrosine kinase. NGF also induced PS1 fragment accumulation in cultured explants of rat dorsal root ganglia. Quantitative northern blot analysis using PC12 cultures indicated that NGF did not increase steady-state PS1 mRNA levels. However, pulse-chase experiments indicated that NGF slowed the degradation rate of endogenous PS1 fragments, increasing the half-life from t(1/2) @22.5 to @25.0 h. This increase in half-life was insufficient to account for the approximately 60-75% increase in PS1 fragment levels measured in NGF-treated cells. Thus, NGF may regulate PS1 protein concentration in NGF-responsive cells by a complex mechanism that increases PS1 fragment production independent of holoprotein synthesis. 相似文献
2.
NGF is a neurotrophic protein that promotes the survival, growth, and differentiation of developing sympathetic neurons. To directly determine the effects of different concentrations of NGF on neuronal gene expression, we examined mRNAs encoding the p75 low-affinity NGF (LNGF) receptor, T alpha 1 alpha-tubulin (T alpha 1), and tyrosine hydroxylase (TH) in pure cultures of rat sympathetic neurons from postnatal day 1 superior cervical ganglia. Studies of the timecourse of gene expression during 2 wk in culture indicated that a 5-d incubation period would be optimal for the concentration-effect studies. Analysis of RNA isolated from neurons cultured in 2-200 ng/ml 2.5S NGF for 5 d revealed that, as the NGF concentration increased, neurons expressed correspondingly increased levels of all three mRNAs. Both LNGF receptor and TH mRNAs increased seven-fold, and T alpha 1 mRNA increased four-fold in neurons cultured in 200 versus 10 ng/ml NGF. In contrast, T26 alpha-tubulin mRNA, which is constitutively expressed, did not alter as a function of NGF concentration. When neurons were initially cultured in 10 ng/ml NGF for 5 d, and then 200 ng/ml NGF was added, LNGF receptor, T alpha 1, and TH mRNAs all increased within 48 h. The timecourse of induction differed: T alpha 1 mRNA was maximal by 5 h, whereas LNGF receptor and TH mRNAs first began to increase at 12 h after the NGF increase. These experiments show that NGF regulates expression of a subset of mRNAs important to neuronal growth and differentiation over a broad concentration range, suggesting that the effects of NGF may be mediated by more than just a single receptor operating at one fixed affinity. These results also suggest a mechanism for coupling neuronal synthesis of axonal proteins to increases in size of the innervated target territory during growth of the organism. 相似文献
3.
Activation of the neurotrophin receptor Trk induces the release of neurotrophins. However, little is known about the ability of released neurotrophins to modulate their own synthesis in an autocrine manner. As a step towards understanding the role of Trk in regulating the synthesis of neurotrophins, we exposed NIH-3T3 cells expressing TrkA or TrkC receptors to their cognate ligands as well as to GM1, a ganglioside that activates TrkA and TrkC by inducing the release of neurotrophin-3. Nerve growth factor and neurotrophin-3 synthesis were then determined by measuring the relative levels of protein and mRNA. TrkA-expressing cells exposed to human recombinant nerve growth factor exhibited higher levels of nerve growth factor mRNA. Human recombinant neurotrophin-3 evoked an increase in nerve growth factor mRNA in both TrkA and TrkC-expressing cells. GM1 elicited a time-dependent increase in nerve growth factor protein and mRNA in NIH-3T3 cells expressing TrkA or TrkC receptor but not in wild-type cells. Surprisingly, GM1 failed to change neurotrophin-3 levels. The ability of GM1 to increase nerve growth factor mRNA levels was blocked by TrkC-IgG but not by TrkB-IgG receptor body. These data suggest that released neurotrophin-3 may activate a positive autocrine loop of nerve growth factor synthesis by Trk activation. 相似文献
4.
Scanning electron microscopy was used to study regulation of growth cone shape and surface morphology by nerve growth factor (NGF). The growth cones of cultured rat sympathetic neurons and neuronally-differentiated PC12 cells were observed under conditions of continuous NGF exposure, NGF withdrawal, and NGF readdition. Growth cones of cells cultured in the continuous presence of NGF were mostly spread in shape and about 60% possessed surface ruffles. Ruffles appeared to be largely restricted to growth cones in that few were observed on cell bodies and neurites. Withdrawal of NGF for 4–5 hr caused most of the growth cones to take on a non-spread or contracted appearance and to lose their ruffles. Readdition of NGF promoted rapid changes in growth cone properties. Within 30 sec, ruffling was again evident on the growth cones and remained prominent there throughout the course of treatment (up to 5 hr). This was in contrast to cell bodies on which, as previously reported, ruffling also occurred following NGF readdition, but only transiently (for less than 15 min). Respreading of growth cones also occurred under these conditions. This was evident within 1 min of NGF readdition and reached the levels observed in continuously-treated cultures within 1–2 hr. Neurites were also examined. Ruffles were only rarely present in the continuous presence of NGF and were absent after NGF withdrawal. NGF readdition elicited ruffling along neurites within 30 sec; the prevalence of such ruffles diminished to that seen in continuously-treated cultures within about an hour. As evidence of the specificity of these NGF effects, epidermal growth factor and dibutyryl cAMP, agents that elicit responses in PC12 cells, but do not promote their neuronal differentiation, had no observable effect on NGF-deprived growth cones. These findings demonstrate that NGF exerts very rapid effects on growth cone shape and surface morphology. Such actions may play roles in regulation of growth cone movement and guidance by NGF.Special Issue dedicated to Dr. E. M. Shooter and Dr. S. Varon. 相似文献
5.
6.
Pheochromocytoma (PC12) cells have been found to differ from dorsal root ganglionic cells with respect to the modulation of the beta nerve growth factor (beta NGF) binding properties elicited by alpha NGF and gamma NGF. In contrast to our previous results with intact dorsal root ganglionic cells in which only high-affinity binding was blocked, alpha NGF and gamma NGF were found to block competitively all steady-state binding of iodinated beta NGF to PC12 cells at both 37 and 0.5 degrees C. The EC50 that was found for the alpha NGF displacement was 9-10 microM, and the gamma NGF effect had an EC50 of 200 nM, in the predicted range based upon the apparent Kd for dissociation of the alpha beta or the beta gamma complex in solution. The concurrence of the binding EC50 and the Kd for each complex indicates that the formation of alpha beta or beta gamma complexes in solution competes with the process of PC12 receptor binding with 125I-beta NGF. Experiments were carried out examining the dissociation kinetics following the addition of excess unlabeled beta NGF or alpha NGF at both 37 and 0.5 degrees C. Three dissociation components were observed with alpha NGF, in contrast to the two normally found with beta NGF. Lowering the chase temperature to 0.5 degrees C changed the relative contributions made by each component without dramatically changing any of the rate constants. The "slow" receptor was further examined by the dependence on 125I-beta NGF concentration of the slowest component with a chase of either excess alpha NGF or excess gamma NGF at 0.5 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
8.
Vasoactive intestinal peptide regulation of nerve growth factor in the embryonic mouse 总被引:2,自引:0,他引:2
Vasoactive intestinal peptide (VIP), a regulator of embryonic growth, increased the concentration of nerve growth factor (NGF)-like immunoreactivity in the conditioned medium of cultured explanted embryonic day (E) 9.5 neural tube preparations compared to control preparations. VIP treatment also induced an increase of NGF-like immunoreactivity (NGF-IR) within the neural tube preparation tissue. A 60 kDa isoform was the primary form of NGF detected. VIP is shown to be a regulator of NGF in the E9.5 embryonic mouse and stimulates the release of a high molecular weight isoform of NGF. 相似文献
9.
Olney RC Wang J Sylvester JE Mougey EB 《Biochemical and biophysical research communications》2004,317(4):1171-1182
Linear growth occurs as the result of growth plate chondrocytes undergoing proliferative and hypertrophic phases. Paracrine feedback loops that regulate the entry of chondrocytes into the hypertrophic phase have been shown and similar pathways likely exist for the proliferative phase. Human long-bone growth plate chondrocytes were cultured in vitro. The proliferative effects of a variety of factors were determined by [3H]thymidine uptake and the gene expression profile of these cells was determined by DNA microarray analysis. Serum, insulin-like growth factor (IGF)-I and -II, transforming growth factor-beta (TGF-beta, fibroblast growth factor (FGF)-1, -2, and -18, and platelet-derived growth factor (PDGF)-BB were potent stimulators of proliferation. FGF-10, testosterone, and bone morphogenetic proteins (BMP)-2, -4, and -6 inhibited proliferation. Microarray analysis showed that the genes for multiple members of the IGF-I, TGF-beta, FGF, and BMP pathways were expressed, suggesting the presence of autocrine/paracrine pathways that regulate the proliferative phase of growth plate-mediated growth. 相似文献
10.
11.
Regulation of ovarian cancer growth is poorly understood. In this study, the effects of EGT, TGFα and TGFβ1 on two ovarian cancer cell lines (OVCAR-3 and CAOV-3) were investigated. The results showed that EGF/TGFα stimulated cell growth and DNA synthesis in OVCAR-3 cell, but inhibited cell proliferation and DNA synthesis in CAOV-3 cells. TGFβ1 invariably inhibited cell proliferation and DNA synthesis in both cell lines. These efefects on growth factors are dose dependent. The interaction of TGFβ1 and EGF/TGFα was antagonistic in OVCAR-3 cells. In contrast, EGF/TGFα and TGFβ1 had an additive inhibitory effect on CAOV-3 cells. Our results demonstrated that mature and functional EGF receptors are present in both cell lines and that they are capable of ligand binding, internalization, processing and ligand-enhanced autophosphorylation. Both high- and low-affinity binding are present in these cell lines, with CAOV-3 cells having about 2–3 fold higher total receptors than OVCAR-3 cells. These results together with those from our previous studies show that these cells express TGFα, TGFβ1 and EGF receptors and that cell growth may be modulated by these growth factors in an autocrine can paracrine manner. This report presents evidence supporting the important roles of growth factors in ovarian cancer growth and provides a foundation for futher study into the mechanism of growth regulation by growth factors in these cell lines. 相似文献
12.
Growth inhibition by vaccinia virus growth factor 总被引:1,自引:0,他引:1
Vaccinia virus growth factor (VGF), a highly glycosylated 77-residue epidermal growth factor (EGF)-like polypeptide encoded in vaccinia poxvirus, is reported to play an important role in stimulating growth of uninfected cells to facilitate virus infection. We have chemically synthesized the unglycosylated forms of VGF and VGF19-69, a shortened VGF analog consisting of 51 residues and comprising the EGF-homologous region (position 19-69) of VGF. Both synthetic forms of VGFs were purified to homogeneity and vigorously characterized by various criteria, including the Cf-252 ion fission fragment mass spectrometry, amino acid sequencing, and enzymatic digestion to confirm the disulfide linkages. Synthetic VGFs exhibited high affinity binding to the EGF receptors in A431, NRK 49F, NRK clone 3, and NIH 3T3 cells, but, unlike the glycosylated form, showed contrasting mitogenic activities in various cells in vitro. Synthetic VGFs showed low levels of mitogenic and colonogenic activities in NRK clone 49F cells and NIH 3T3 cells, full agonist activities in human keratinocytes and Swiss 3T3 cells, and partial agonist activities in NRK clone 3 cells. Our results suggest that the unglycosylated form of VGF is an EGF antagonist to selected cells and that the production of unglycosylated form of VGF by the cytolytic vaccinia virus may serve as a mechanism whereby inhibition of growth and metabolism of selected host cells may be used to facilitate the propagation of the virus infection. 相似文献
13.
Growth regulation by insulin-like growth factor-I in fish 总被引:21,自引:0,他引:21
Insulin-like growth factor-I (IGF-I) is a mitogenic polypeptide that plays an essential role in the regulation of development and somatic growth of vertebrates, mainly by mediating growth hormone actions. It has clearly been established that the structure of IGF-I and its biological function has been highly conserved among vertebrates. In this paper, we review the recent developments in the molecular, biochemical, and physiological properties of IGF-I in fish. 相似文献
14.
Human β-nerve growth factor (hNGF) was purified from term human placenta. The biological potency of hNGF in the chick dorsal root ganglion assay did not differ significantly from that of mouse NGF (mNGF). Molecular weight determinations of mNGF and hMGF were also similar. No immunological crossreactivity was noted between hNGF, at a concentration of 100 μg/ml, and mNGF in a radioimmunoassay for mNGF using 6 different antisera to mNGF. hNGF shares several properties with mNGF but is immunological distinct. The results of studies in man using antisera to mNGF should be interpreted with caution. 相似文献
15.
Autocrine growth factors produced by epithelial cells mediate the development and proliferation of neoplastic human prostate tissue. Various approaches have been used to down-regulate neoplastic growth of prostate cancer using natural flavonoids, soluble receptors, pseudo-ligands, monoclonal antibodies and tyrosine kinase inhibitors (tyrphostins). Selected growth factor/growth factor receptor loops (mainly TGFα/EGFR and IGFs/IGFIR) have been proposed as regulators of prostate cancer cell growth. We have previously determined that blockade of IGFIR or VEGF2R signaling pathways by tyrphostin AG1024 and SU1498 inhibits autocrine growth and viability of DU145 cells in vitro. Recently, we compared the activity of AG1024 and SU1498 with the inhibiting effect of tyrphostin A23 (a selective inhibitor of EGFR). The results described in this paper confirm that DU145 cells do not produce IGFI or EGF. In contrast, DU145 cells produce a great amount of VEGF, much more than TGFα (about 60-fold), and VEGF may be the real autocrine growth factor of the investigated cells. The results indicate that the growth of DU145 may be regulated by at least three autocrine loops: TGFα/EGFR, IGFII/IGFIR and VEGF/VEGFR2. Neither AG1024 nor SU1498 affected the production of TGFα substantially, which excludes the possibility that IGFRs or VEGFR2 inhibitors arrest the growth of these cells by inhibition of synthesis and/or secretion of TGFα. The obtained data indicate that all tree investigated tyrphostins (AG1024, SU1498 and A23) inhibit signal transmission by Akt (PKB), ERK(1/2), Src and STAT in a similar manner. A comparison of the effects of the investigated tyrphostins indicates that TGFα, IGFII and VEGF stimulate cell growth by affecting the same signaling pathway. The hypothesis was confirmed by the effect of the investigated tyrphostins on activation of EGFR. All these inhibitors decreased phosphorylation of EGFR to the same extent, and after the same time of incubation with cell culture. These results strongly suggest that stimulation of EGFR kinase is the main step in the initiation of mitogen signaling in DU145 cells, regardless of the type of ligand (TGFα, IGFs or VEGF) and their specific receptors. 相似文献
16.
Developmental regulation of nerve growth factor and its receptor in the rat caudate-putamen 总被引:7,自引:0,他引:7
W C Mobley J E Woo R H Edwards R J Riopelle F M Longo G Weskamp U Otten J S Valletta M V Johnston 《Neuron》1989,3(5):655-664
In prior studies, nerve growth factor (NGF) administration induced a robust, selective increase in the neurochemical differentiation of caudate-putamen cholinergic neurons. In this study, expression of NGF and its receptor was examined to determine whether endogenous NGF might serve as a neurotrophic factor for these neurons. The temporal pattern of NGF gene expression and the levels of NGF mRNA and protein were distinct from those found in other brain regions. NGF and high-affinity NGF binding were present during cholinergic neurochemical differentiation and persisted into adult-hood. An increase in NGF binding during the third postnatal week was correlated with increasing choline acetyltransferase activity. The data are consistent with a role for endogenous NGF in the development and, possibly, the maintenance of caudate-putamen cholinergic neurons. 相似文献
17.
Density-dependent nerve growth factor regulation of Gs-alpha RNA in pheochromocytoma 12 cells. 下载免费PDF全文
G Tjaden A Aguanno R Kumar D Benincasa R M Gubits H Yu K P Dolan 《Molecular and cellular biology》1990,10(6):3277-3279
Nerve growth factor (NGF) affects levels of the alpha subunit of the stimulatory G protein (Gs-alpha) in pheochromocytoma 12 cells in a bidirectional, density-dependent manner. Cells grown at high density responded to NGF treatment with increased levels of Gs-alpha mRNA and protein. Conversely, in cells grown in low-density cultures, levels of this mRNA were lowered by NGF treatment. 相似文献
18.
M. K. Stachowiak J. Moffett P. Maher J. Tucholski E. K. Stachowiak 《Molecular neurobiology》1997,15(3):257-283
This article discusses a novel intracrine mechanism of growth-factor action in the nervous system whereby fibroblast growth
factor-2 (FGF-2) and its receptor accumulate in the cell nucleus and act as mediators in the control of cell growth and proliferation.
In human and rat brain the levels and subcellular localization of FGF-2 differ between quiescent and reactive astrocytes.
Quiescent cells express a low level of FGF-2, which is located predominantly within the cytoplasm. In reactive astrocytes,
the expression of FGF-2 increases and the proteins are found in both the cytoplasm and nucleus. In glioma tumors, FGF-2 is
overexpressed in the nuclei of neoplastic cells. Similar changes in FGF-2 expression and localization are found in vitro.
The nuclear accumulation of FGF-2 reflects a transient activation of the FGF-2 gene by potentially novel transactivating factors
interacting with an upstream regulatory promoter region. In parallel with FGF-2, the nuclei of astrocytes contain the high-affinity
FGF-2 receptor, FGFR1. Nuclear FGFR1 is full length, retains kinase activity, and is localized within the nuclear interior
in association with the nuclear matrix. Transfection of either FGF-2 or FGFR1 into cells that do not normally express these
proteins results in their nuclear accumulation and concomitant increases in cell proliferation. A similar regulation of nuclear
FGF-2 and FGFR1 is observed in neural crest-derived adrenal medullary cells and of FGF-2 in the nuclei of cerebellar neurons.
Thus, the regulation of the nuclear content of FGF-2 and FGFR1 could serve as a novel mechanism controlling growth and proliferation
of glial and neuronal cells. 相似文献
19.
Growth regulation of human breast carcinoma occurs through regulated growth factor secretion 总被引:3,自引:0,他引:3
M E Lippman R B Dickson E P Gelmann N Rosen C Knabbe S Bates D Bronzert K Huff A Kasid 《Journal of cellular biochemistry》1987,35(1):1-16
We describe studies on human breast cancer in which it is shown that specific growth factors (IGF-I, TGF alpha, PDGF) are secreted by human breast cancer cells and likely to be involved in tumor growth and progression. These activities are regulated by estradiol in hormone-dependent breast cancer and secreted constitutively by hormone-independent cells. These growth factor activities can induce the growth of hormone-dependent cells in vivo in athymic nude mice. Hormone-dependent breast cancer cells also secrete TGF beta, a growth-inhibitory substance, when treated with antiestrogens. TGF beta functions as a negative autocrine growth regulator and is responsible for some of the growth-inhibitory effects of antiestrogens. 相似文献
20.
Regulation of ovarian cancer growth is poorly understood. In this study, the effects of EGF, TGF alpha and TGF beta 1 on two ovarian cancer cell lines (OVCAR-3 and CAOV-3) were investigated. The results showed that EGF/TGF alpha stimulated cell growth and DNA synthesis in OVCAR-3 cells, but inhibited cell proliferation and DNA synthesis in CAOV-3 cells. TGF beta 1 invariably inhibited cell proliferation and DNA synthesis in both cell lines. These effects on growth factors are dose dependent. The interaction of TGF beta 1 and EGF/TGF alpha was antagonistic in OVCAR-3 cells. In contrast, EGF/TGF alpha and TGF beta 1 had an additive inhibitory effect on CAOV-3 cells. Our results demonstrated that mature and functional EGF receptors are present in both cell lines and that they are capable of ligand binding, internalization, processing and ligand-enhanced autophosphorylation. Both high- and low-affinity binding are present in these cell lines, with CAOV-3 cells having about 2-3-fold higher total receptors than OVCAR-3 cells. These results together with those from our previous studies show that these cells express TGF alpha, TGF beta 1 and EGF receptors and that cell growth may be modulated by these growth factors in an autocrine and paracrine manner. This report presents evidence supporting the important roles of growth factors in ovarian cancer growth and provides a foundation for further study into the mechanism of growth regulation by growth factors in these cell lines. 相似文献