共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Isolation of a U-insertion/deletion editing complex from Leishmania tarentolae mitochondria 下载免费PDF全文
Aphasizhev R Aphasizheva I Nelson RE Gao G Simpson AM Kang X Falick AM Sbicego S Simpson L 《The EMBO journal》2003,22(4):913-924
A multiprotein, high molecular weight complex active in both U-insertion and U-deletion as judged by a pre-cleaved RNA editing assay was isolated from mitochondrial extracts of Leishmania tarentolae by the tandem affinity purification (TAP) procedure, using three different TAP-tagged proteins of the complex. This editing- or E-complex consists of at least three protein-containing components interacting via RNA: the RNA ligase-containing L-complex, a 3' TUTase (terminal uridylyltransferase) and two RNA-binding proteins, Ltp26 and Ltp28. Thirteen approximately stoichiometric components were identified by mass spectrometric analysis of the core L-complex: two RNA ligases; homologs of the four Trypanosoma brucei editing proteins; and seven novel polypeptides, among which were two with RNase III, one with an AP endo/exonuclease and one with nucleotidyltransferase motifs. Three proteins have no similarities beyond kinetoplastids. 相似文献
3.
《Parasitology today (Personal ed.)》1995,11(7):265-267
Several genes in trypanosomatic mitochondria require RNA editing for their expression. Although the reaction mechanism as well as the editing machinery have not been identified to date, evidence has accumulated suggesting that the process might be catalyzed by a ribonucleoprotein (RNP) complex. Here, H. Ulrich Göringer, Johannes Köller and Hsiao Hsueh Shu summarize what has been learnt in the past years about mitochondrial RNP complexes and discuss the evidence to link the various complexes to the editing process. 相似文献
4.
Aphasizhev R Sbicego S Peris M Jang SH Aphasizheva I Simpson AM Rivlin A Simpson L 《Cell》2002,108(5):637-648
A 3' terminal RNA uridylyltransferase was purified from mitochondria of Leishmania tarentolae and the gene cloned and expressed from this species and from Trypanosoma brucei. The enzyme is specific for 3' U-addition in the presence of Mg(2+). TUTase is present in vivo in at least two stable configurations: one contains a approximately 500 kDa TUTase oligomer and the other a approximately 700 kDa TUTase complex. Anti-TUTase antiserum specifically coprecipitates a small portion of the p45 and p50 RNA ligases and approximately 40% of the guide RNAs. Inhibition of TUTase expression in procyclic T. brucei by RNAi downregulates RNA editing and appears to affect parasite viability. 相似文献
5.
M Peris G C Frech A M Simpson F Bringaud E Byrne A Bakker L Simpson 《The EMBO journal》1994,13(7):1664-1672
The molecular mechanism of RNA editing in trypanosomatid mitochondria is an unsolved problem. We show that two classes of ribonucleoprotein complexes exist in a mitochondrial extract from Leishmania tarentolae and appear to be involved in RNA editing. The 'G' class of RNP complexes consists of 170-300 A particles which contain guide RNAs and proteins, show little terminal uridylyl transferase (TUTase) activity and exhibit an in vitro RNA editing-like activity. The 'T' class consists of approximately six RNP complexes, the endogenous RNA of which can be self-labeled with [alpha-32P]UTP. The most abundant T complex, T-IV, is visualized by electron microscopy as 80-140 A particles. This complex exhibits TUTase activity in the native gel and contains guide RNAs. Both G and T complexes are possibly involved with RNA editing in vivo. These results are a starting point for the analysis of the biochemistry of RNA editing. 相似文献
6.
The Trypanosoma brucei editosome catalyzes the maturation of mitochondrial mRNAs through the insertion and deletion of uridylates and contains at least 16 stably associated proteins. We examined physical and functional associations among these proteins using three different approaches: purification of complexes via tagged editing ligases TbREL1 and TbREL2, comprehensive yeast two-hybrid analysis, and coimmunoprecipitation of recombinant proteins. A purified TbREL1 subcomplex catalyzed precleaved deletion editing in vitro, while a purified TbREL2 subcomplex catalyzed precleaved insertion editing in vitro. The TbREL1 subcomplex contained three to four proteins, including a putative exonuclease, and appeared to be coordinated by the zinc finger protein TbMP63. The TbREL2 subcomplex had a different composition, contained the TbMP57 terminal uridylyl transferase, and appeared to be coordinated by the TbMP81 zinc finger protein. This study provides insight into the molecular architecture of the editosome and supports the existence of separate subcomplexes for deletion and insertion editing. 相似文献
7.
Cruz-Reyes J Zhelonkina AG Huang CE Sollner-Webb B 《Molecular and cellular biology》2002,22(13):4652-4660
Trypanosome RNA editing is a unique U insertion and U deletion process that involves cycles of pre-mRNA cleavage, terminal U addition or U removal, and religation. This editing can occur at massive levels and is directed by base pairing of trans-acting guide RNAs. Both U insertion and U deletion cycles are catalyzed by a single protein complex that contains only seven major proteins, band I through band VII. However, little is known about their catalytic functions, except that band IV and band V are RNA ligases and genetic analysis indicates that the former is important in U deletion. Here we establish biochemical approaches to distinguish the individual roles of these ligases, based on their distinctive ATP and pyrophosphate utilization. These in vitro analyses revealed that both ligases serve in RNA editing. Band V is the RNA editing ligase that functions very selectively to seal in U insertion (IREL), while band IV is the RNA editing ligase needed to seal in U deletion (DREL). In combination with our earlier findings about the cleavage and the U-addition/U-removal steps of U deletion and U insertion, these results show that all three steps of these editing pathways exhibit major differences and suggest that the editing complex could have physically separate regions for U deletion and U insertion. 相似文献
8.
Panigrahi AK Schnaufer A Carmean N Igo RP Gygi SP Ernst NL Palazzo SS Weston DS Aebersold R Salavati R Stuart KD 《Molecular and cellular biology》2001,21(20):6833-6840
RNA editing in kinetoplastid mitochondria occurs by a series of enzymatic steps that is catalyzed by a macromolecular complex. Four novel proteins and their corresponding genes were identified by mass spectrometric analysis of purified editing complexes from Trypanosoma brucei. These four proteins, TbMP81, TbMP63, TbMP42, and TbMP18, contain conserved sequences to various degrees. All four proteins have sequence similarity in the C terminus; TbMP18 has considerable sequence similarity to the C-terminal region of TbMP42, and TbMP81, TbMP63, and TbMP42 contain zinc finger motif(s). Monoclonal antibodies that are specific for TbMP63 and TbMP42 immunoprecipitate in vitro RNA editing activities. The proteins are present in the immunoprecipitates and sediment at 20S along with the in vitro editing, and RNA editing ligases TbMP52 and TbMP48. Recombinant TbMP63 and TbMP52 coimmunoprecipitate. These results indicate that these four proteins are components of the RNA editing complex and that TbMP63 and TbMP52 can interact. 相似文献
9.
L Simpson S H Wang O H Thiemann J D Alfonzo D A Maslov H A Avila 《Nucleic acids research》1998,26(1):170-176
10.
11.
12.
RNA editing in Trypanosoma brucei inserts and deletes uridines in mitochondrial mRNAs by a series of enzymatic steps that are catalyzed by a multiprotein complex, the editosome. KREPB1 and two related editosome proteins KREPB2 and KREPB3 contain motifs that suggest endonuclease and RNA/protein interaction functions. Repression of KREPB1 expression in procyclic forms by RNAi inhibited growth, in vivo editing, and in vitro endoribonucleolytic cleavage of deletion substrates. However, cleavage of insertion substrates and the exoUase, TUTase, and ligase catalytic activities of editing were retained by 20S editosomes. Repression of expression of an ectopic KREPB1 allele in bloodstream forms lacking both endogenous alleles or exclusive expression of KREPB1 with point mutations in the putative RNase III catalytic domain also blocked growth, in vivo editing, and abolished cleavage of deletion substrates, without affecting the other editing steps. These data indicate that KREPB1 is an endoribonuclease that is specific for RNA editing deletion sites. 相似文献
13.
Moshiri H Acoca S Kala S Najafabadi HS Hogues H Purisima E Salavati R 《The Journal of biological chemistry》2011,286(16):14178-14189
RNA editing, catalyzed by the multiprotein editosome complex, is an essential step for the expression of most mitochondrial genes in trypanosomatid pathogens. It has been shown previously that Trypanosoma brucei RNA editing ligase 1 (TbREL1), a core catalytic component of the editosome, is essential in the mammalian life stage of these parasitic pathogens. Because of the availability of its crystal structure and absence from human, the adenylylation domain of TbREL1 has recently become the focus of several studies for designing inhibitors that target its adenylylation pocket. Here, we have studied new and existing inhibitors of TbREL1 to better understand their mechanism of action. We found that these compounds are moderate to weak inhibitors of adenylylation of TbREL1 and in fact enhance adenylylation at higher concentrations of protein. Nevertheless, they can efficiently block deadenylylation of TbREL1 in the editosome and, consequently, result in inhibition of the ligation step of RNA editing. Further experiments directly showed that the studied compounds inhibit the interaction of the editosome with substrate RNA. This was supported by the observation that not only the ligation activity of TbREL1 but also the activities of other editosome proteins such as endoribonuclease, terminal RNA uridylyltransferase, and uridylate-specific exoribonuclease, all of which require the interaction of the editosome with the substrate RNA, are efficiently inhibited by these compounds. In addition, we found that these compounds can interfere with the integrity and/or assembly of the editosome complex, opening the exciting possibility of using them to study the mechanism of assembly of the editosome components. 相似文献
14.
15.
《Seminars in cell biology》1993,4(4):251-260
Twelve mitochondrial mRNAs are edited in Trypanosoma brucei, nine extensively, by addition and removal of uridines. The accumulation of the edited RNAs is regulated during the life cycle. Hundreds of different gRNAs, encoded three or four per minicircle, specify the editing and minicircle content accounts for variation in editing among species and in mutants. The current understanding of the process of gRNA utilization, the editing mechanism and the editing machinery is discussed. 相似文献
16.
17.
18.
19.
20.
Trypanosoma brucei has three distinct ~20S editosomes that catalyze RNA editing by the insertion and deletion of uridylates. Editosomes with the KREN1 or KREN2 RNase III type endonucleases specifically cleave deletion and insertion editing site substrates, respectively. We report here that editosomes with KREPB2, which also has an RNase III motif, specifically cleave cytochrome oxidase II (COII) pre-mRNA insertion editing site substrates in vitro. Conditional repression and mutation studies also show that KREPB2 is an editing endonuclease specifically required for COII mRNA editing in vivo. Furthermore, KREPB2 expression is essential for the growth and survival of bloodstream forms. Thus, editing in T. brucei requires at least three compositionally and functionally distinct ~20S editosomes, two of which distinguish between different insertion editing sites. This unexpected finding reveals an additional level of complexity in the RNA editing process and suggests a mechanism for how the selection of sites for editing in vivo is controlled. 相似文献