首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A family 19 chitinase gene from Aeromonas sp. No.10S-24 was cloned, sequenced, and expressed in Escherichia coli. From the deduced amino acid sequence, the enzyme was found to possess two repeated N-terminal chitin-binding domains, which are separated by two proline-threonine rich linkers. The calculated molecular mass was 70 391 Da. The catalytic domain is homologous to those of plant family 19 chitinases by about 47%. The enzyme produced alpha-anomer by hydrolyzing beta-1,4-glycosidic linkage of the substrate, indicating that the enzyme catalyzes the hydrolysis through an inverting mechanism. When N-acetylglucosamine hexasaccharide [(GlcNAc)6] was hydrolyzed by the chitinase, the second glycosidic linkage from the nonreducing end was predominantly split producing (GlcNAc)2 and (GlcNAc)4. The evidence from this work suggested that the subsite structure of the enzyme was (-2)(-1)(+1)(+2)(+3)(+4), whereas most of plant family 19 chitinases have a subsite structure (-3)(-2)(-1)(+1)(+2)(+3). Thus, the Aeromonas enzyme was found to be a novel type of family 19 chitinase in its structural and functional properties.  相似文献   

2.
Finely powdered alpha- and beta-chitin can be completely hydrolyzed with chitinase (EC 3.2.1.14) and beta-N-acetylhexosaminidase (EC 3.2.1.52) for the production of 2-acetamido-2-deoxy-D-glucose (GlcNAc). Crude chitinase from Burkholderia cepacia TU09 and Bacillus licheniformis SK-1 were used to digest alpha- and beta-chitin powder. Chitinase from B. cepacia TU09 produced GlcNAc in greater than 85% yield from beta- and alpha-chitin within 1 and 7 days, respectively. B. licheniformis SK-1 chitinase completely hydrolyzed beta-chitin within 6 days, giving a final GlcNAc yield of 75%, along with 20% of chitobiose. However, only a 41% yield of GlcNAc was achieved from digesting alpha-chitin with B. licheniformis SK-1 chitinase.  相似文献   

3.
The presence of N-acetyl-beta-D-glucosaminyltransferases in microsome preparations from human ovarian tissues was investigated with UDP-GlcNAc and several synthetic oligosaccharides as acceptors. The products were identified by paper chromatography and the linkage of the 2-acetamido-2-deoxy-beta-D-glucopyranosyl group incorporated into oligosaccharides was determined by exoglycosidase digestions, 1H-n.m.r. spectroscopy, and methylation analysis. These results showed that ovarian microsome preparations contain both beta-(1----3)- and beta-(1----6)-N-acetyl-D-glucosaminyltransferase activities which might be involved in the synthesis of mucin-type glycoproteins. Substrate competition tests suggested that both UDP-GlcNAc:-Bn glycoside of beta-D-GlcpNAc-(1----6)-alpha-D-GalpNAc [GlcNAc to GalNAc] and -Bn glycoside of beta-D-Galp-(1----3)-[beta-D-GlcNAc-(1----6)]-alpha-D-GalpNAc [GlcNAc to Gal] beta-(1----3)-N-acetyl-D-glucosaminyltransferase activities reside in a single enzyme species.  相似文献   

4.
Divalent glycosides carrying N-acetyl-d-glucosamine (GlcNAc) and N-acetyllactosamine (LacNAc) were designed and prepared as glycomimetics. First, hexan-1,6-diyl bis-(2-acetamido-2-deoxy-beta-d-glucopyranoside) (GlcNAc-Hx-GlcNAc) and 3,6-dioxaoct-1,8-diyl bis-(2-acetamido-2-deoxy-beta-d-glucopyranoside) (GlcNAc-Doo-GlcNAc) were enzymatically synthesized by transglycosylation of an N,N'N',N'-tetraacetylchitotetraose [(GlcNAc)(4)] donor with a primary diol acceptor, utilizing a chitinolytic enzyme from Amycolatopsis orientalis. The resulting divalent glycosides were further converted to the respective hexan-1,6-diyl bis-[beta-d-galactopyranosyl-(1-->4)-2-acetamido-2-deoxy-beta-d-glucopyranoside] (LacNAc-Hx-LacNAc) and 6-(2-acetamido-2-deoxy-beta-d-glucopyranosyl)-hexyl beta-d-galactopyranosyl-(1-->4)-2-acetamido-2-deoxy-beta-d-glucopyranoside (LacNAc-Hx-GlcNAc), and respective 3,6-dioxaoct-1,8-diyl bis-[beta-d-galactopyranosyl-(1-->4)-2-acetamido-2-deoxy-beta-d-glucopyranoside] (LacNAc-Doo-LacNAc) and 8-(2-acetamido-2-deoxy-beta-d-glucopyranosyl)-3,6-dioxaoctyl beta-d-galactopyranosyl-(1-->4)-2-acetamido-2-deoxy-beta-d-glucopyranoside (LacNAc-Doo-GlcNAc) by galactosyltransferase. The interaction of wheat germ agglutinin (WGA) with a series of divalent glycosides and related compounds were studied using a biosensor based on surface plasmon resonance (SPR) and by precipitation analysis. Our results demonstrated that divalent glycosides carrying GlcNAc on both sides and GlcNAc and LacNAc on each side are capable of precipitating WGA as divalent ligands, but that the corresponding monovalent controls and divalent glycosides carrying LacNAc on both sides are unable to precipitate the lectin and bind as univalent ligands.  相似文献   

5.
Endo-beta-galactosidase was purified 4400-fold from a culture filtrate of Escherichia freundii with 45% recovery. The enzyme preparation was practically free of exoglycosidases, sulfatase, and proteases. This enzyme hydrolyzed several keratan sulfates, endoglycosidically releasing oligosaccharides of various molecular sizes. Among the digestion products of the corneal keratan sulfate, the structure of a disaccharride and a tetrasaccharride were shown to be 2-acetamido-2-deoxy-6-O-sulfo-beta-D-glucosyl-(1 leads to 3)-D-galactose and 2-acetamido-2-deoxy-6-O-sulfo-beta-D-glucosyl-(1 leads to 3)-6-O-sulfo-beta-D-galactosyl-(1 leads to 4)-2-acetamido-2-deoxy-6-O-sulfo-beta-D-glucosyl-(1 leads to 3)-D-galactose, respectively. These oligosaccharide structures indicate that this enzyme specifically hydrolyzes the galactosidic bonds in which nonsulfated galactose residues participate. The enzyme could also hydrolyze a small oligosaccharide such as lacto-N-neotetraitol as follows: Gal(beta 1 leads to 4)GlcNAc(beta 1 leads to 3)Gal(beta 1 leads to 4) sorbitol leads to Gal(beta 1 leads to 4)GlcNAc(beta 1 leads to 3)Gal + sorbitol AB active blood group substance could be hydrolyzed by this enzyme only after Smith degradation. After enzymatic digestion small oligosaccharides and resistant macromolecules were produced. These findings indicate that the enzyme should be useful in studying the precise structures of keratan sulfates, related glycoproteins, and oligosaccharides.  相似文献   

6.
Sulfated sialyl-alpha-(2 --> 3)-neolactotetraose (IV3NeuAcnLcOse4) derivatives at C-6 of GlcNAc (6-O-sulfo), terminal Gal (6'-O-sulfo), and both GlcNAc and Gal (6,6'-di-O-sulfo) residues have systematically been synthesized. (Methyl 5-acetamido-4,7,8,9- tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosy lonate)-(2 --> 3)-2,4-di-O-benzoyl-6-O-levulinoyl-D-galactopyranosyl trichloroacetimidate was coupled with 2-(trimethylsilyl)ethyl (2-acetamido-2-deoxy- 3-O-benzyl-6-O-p-methoxyphenyl-beta-D-glucopyranosyl)-(1 --> 3)-(2,4,6-tri-O-benzyl-beta-D-galactopyranosyl)-(1 --> 4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside to give the suitably protected pentasaccharide which, upon selective removal of the p-methoxyphenyl and/or levulinoyl groups at C-6 of the GlcNAc and the terminal Gal residues, successive O-sulfation(s) and deprotection, afforded the desired three sulfated IV3NeuAcnLcOse4 derivatives. Acceptor specificity of the synthetic IV3NeuAcnLcOse4 probes for a human alpha-(1 --> 3)-fucosyltransferase (Fuc-TVII) was examined to study the biosynthetic pathway of L-selectin ligand. Only the 6-sulfated derivative at C-6 of GlcNAc was recognized by Fuc-TVII to give 6-O-sulfo sialyl LeX.  相似文献   

7.
The gene encoding chitinase from Streptomyces sp. (strain J-13-3) was cloned and its nucleotide structure was analyzed. The chitinase consisted of 298 amino acids containing a signal peptides (29 amino acids) and a mature protein (269 amino acids), and had calculated molecular mass of 31,081 Da. The calculated molecular mass (28,229 Da) of the mature protein was almost same as that of the native chitinase determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometer. Comparison of the encoded amino acid sequences with those of other chitinases showed that J-13-3 chitinase was a member of the glycosyl-hydrolase family 19 chitinases and the mature protein had a chitin binding domain (65 amino acids) containing AKWWTQ motif and a catalytic domain (204 amino acids). The J-13-3 strain had a single chitinase gene. The chitinase (298 amino acids) with C-terminal His tag was overexpressed in Escherichia coli BL21(DE3) cells. The recombinant chitinase purified from the cell extract had identical N-terminal amino acid sequence of the mature protein in spite of confirmation of the nucleotide sequence, suggesting that the signal peptide sequence is successfully cut off at the predicted site by signal peptidase from E. coli and will be a useful genetic tool in protein engineering for production of soluble recombinant protein. The optimum temperature and pH ranges of the purified chitinase were at 35-40 degrees C and 5.5-6.0, respectively. The purified chitinase hydrolyzed colloidal chitin and trimer to hexamer of N-acetylglucosamine and also inhibited the hyphal extension of Tricoderma reesei.  相似文献   

8.
In this study, we cloned the gene encoding goose-type (G-type) lysozyme with chitinase (Ra-ChiC) activity from Ralstonia sp. A-471 genomic DNA library. This is the first report of another type of chitinase after the previously reported chitinases ChiA (Ra-ChiA) and ChiB (Ra-ChiB) in the chitinase system of the moderately thermophilic bacterium, Ralstonia sp. A-471 and also the first such data in Ralstonia sp. G-type lysozyme gene. It consisted of 753 bp nucleotides, which encodes 251 amino acids including a putative signal peptide. This ORF was modular enzyme composed of a signal sequence, chitin-binding domain, linker, and catalytic domain. The catalytic domain of Ra-ChiC showed homologies to those of G-type lysozyme (glycoside hydrolases (GH) family 23, 16.8%) and lysozyme-like enzyme from Clostridium beijerincki (76.1%). Ra-ChiC had activities against ethylene glycol chitin, carboxyl methyl chitin, and soluble chitin but not against the cell wall of Micrococcus lysodeikticus. The enzyme produced α-anomer by hydrolyzing β-1,4-glycosidic linkage of the substrate, indicating that the enzyme catalyzes the hydrolysis through an inverting mechanism. When N-acetylglucosamine hexasaccharide [(GlcNAc)6] was hydrolyzed by the enzyme, the second and third glycosidic linkage from the non-reducing end were split producing (GlcNAc)2 + (GlcNAc)4 and (GlcNAc)3 + (GlcNAc)3 of almost the same concentration in the early stage of the reaction. The G-type lysozyme hydrolyzed (GlcNAc)6 in an endo-splitting manner, which produced (GlcNAc)3 + (GlcNAc)3 predominating over that to (GlcNAc)2 + (GlcNAc)4. Thus, Ra-ChiC was found to be a novel enzyme in its structural and functional properties. The sequence data reported in the present paper have been submitted to the DDBJ, EMBL, and NCBI databases under the accession number AB45458.  相似文献   

9.
The chitinase A (ChiA)-coding gene of Pseudomonas sp. BK1, which was isolated from a marine red alga Porphyra dentata, was cloned and expressed in Escherichia coli. The structural gene consists of 1602 bp encoding a protein of 534 amino acids, with a predicted molecular weight of 55,370 Da. The deduced amino acid sequence of ChiA showed low identity (less than 32%) with other bacterial chitinases. The ChiA was composed of multiple domains, unlike the arrangement of domains in other bacterial chitinases. Recombinant ChiA overproduced as inclusion bodies was solubilized in the presence of 8 M urea, purified in a urea-denatured form and re-folded by removing urea. The purified enzyme showed maximum activity at pH 5.0 and 40 degrees C. It exhibited high activity towards glycol chitosan and glycol chitin, and lower activity towards colloidal chitin. The enzyme hydrolyzed the oligosaccharides from (GlcNAc)4 to (GlcNAc)6, but not GlcNAc to (GlcNAc)3. The results suggest that the ChiA is a novel enzyme, with different domain structure and action mode from bacterial family 18 chitinases.  相似文献   

10.
The enzyme 6-oxocamphor hydrolase, which catalyzes the desymmetrization of 6-oxocamphor to yield (2R,4S)-alpha-campholinic acid, has been purified with a factor of 35.7 from a wild type strain of Rhodococcus sp. NCIMB 9784 grown on (1R)-(+)-camphor as the sole carbon source. The enzyme has a subunit molecular mass of 28,488 Da by electrospray mass spectrometry and a native molecular mass of approximately 83,000 Da indicating that the active protein is trimeric. The specific activity was determined to be 357.5 units mg(-)1, and the K(m) was determined to be 0.05 mm for the natural substrate. The N-terminal amino acid sequence was obtained from the purified protein, and using this information, the gene encoding the enzyme was cloned. The translation of the gene was found to bear significant homology to the crotonase superfamily of enzymes. The gene is closely associated with an open reading frame encoding a ferredoxin reductase that may be involved in the initial step in the biodegradation of camphor. A mechanism for 6-oxocamphor hydrolase based on sequence homology and the known mechanism of the crotonase enzymes is proposed.  相似文献   

11.
We have established a unique enzymatic approach for obtaining sulfated disaccharides using Bacillus circulans beta-D-galactosidase-catalyzed 6-sulfo galactosylation. When 4-methyl umbelliferyl 6-sulfo beta-D-galactopyranoside (S6Gal beta-4MU) was used as a donor, the enzyme induced transfer of 6-sulfo galactosyl residue to GlcNAc acceptor. As a result, the desired compound 6'-sulfo N-acetyllactosamine (S6Gal beta1-4GlcNAc) and its positional isomer 6'-sulfo N-acetylisolactosamine (S6Gal beta1-6GlcNAc) were observed by HPAEC-PAD, in 49% total yield based on the donor added, and in a molar ratio of 1:3.5. With a glucose acceptor, the regioselectivity was substantially changed and S6Gal beta1-2Glc was mainly produced along with beta-(1-1)alpha, beta-(1-3), beta-(1-6) isomers in 74% total yield. When methyl alpha-D-glucopyranoside (Glc alpha-OMe) was an acceptor, the enzyme also formed mainly S6Gal beta1-2Glc alpha-OMe with its beta-(1-6)-linked isomer in 41% total yield based on the donor added. In both cases, it led to the predominant formation of beta-(1-2)-linked disaccharides. In contrast, with the corresponding methyl beta-D-glucopyranoside (Glc beta-OMe) acceptor, S6Gal beta1-3Glc beta-OMe and S6Gal beta1-6Glc beta-OMe were formed in a low total yield of 12%. These results indicate that the regioselectivity and efficiency on the beta-D-galactosidase-mediated transfer reaction significantly depend on the anomeric configuration in the glucosyl acceptors.  相似文献   

12.
A class IV chitinase belonging to the glycoside hydrolase 19 family from Nepenthes alata (NaCHIT1) was expressed in Escherichia coli. The enzyme exhibited weak activity toward polymeric substrates and significant activity toward (GlcNAc)(n) [β-1,4-linked oligosaccharide of GlcNAc with a polymerization degree of n (n = 4-6)]. The enzyme hydrolyzed the third and fourth glycosidic linkages from the non-reducing end of (GlcNAc)(6). The pH optimum of the enzymatic reaction was 5.5 at 37°C. The optimal temperature for activity was 60°C in 50 mM sodium acetate buffer (pH 5.5). The anomeric form of the products indicated that it was an inverting enzyme. The k(cat)/K(m) of the (GlcNAc)(n) hydrolysis increased with an increase in the degree of polymerization. Amino acid sequence alignment analysis between NaCHIT1 and a class IV chitinase from a Picea abies (Norway spruce) suggested that the deletion of four loops likely led the enzyme to optimize the (GlcNAc)(n) hydrolytic reaction rather than the hydrolysis of polymeric substrates.  相似文献   

13.
14.
15.
The 2-aminoethyl glycoside of pentasaccharide 3-O-sulfo-GlcA(beta-1-->3)Gal(beta-1-->4)GlcNAc(beta-1-->3)Gal(beta-1--> 4)Glc(beta (1) and its conjugates with biotin and biotinylated polyacrylic acid were synthesized as molecular probes to investigate the recognition of the HNK-1 epitope containing carbohydrates by proteins. Key steps in the first of two investigated schemes for the preparation of the target compound 1 were (a) assembling of the pentasaccharide backbone (compound 10) by glycosylation of selectively substituted allyl glycoside of the trisaccharide GlcNAc(beta-1-->3)Gal(beta-1-->4)Glc(beta with glucuronyl-galactose glycosyl donor, (b) transformation of the allyl aglycon in 10 into 2-azidoethyl one (to give 11), (c) selective deprotection of the OH group at C-3 of the GlcA residue in 11 via saponification, intramolecular formation of 6,3-lacton (13) and its methanolysis, and (d) subsequent O-sulfation. The alternative scheme with the use of 2-azido-ethyl glycoside of the trisaccharide GlcNAc(beta-1-->3)Gal(beta-1-->4)Glc(beta instead of the allyl glycoside 6 was less effective due to smaller yield at the step of pentasaccharide synthesis. Additionally to 1 the 2-aminoethyl glycosides of the oligosaccharides GlcA(beta-1-->3)Gal(beta-1-->4)GlcNAc(beta-1-->3)Gal(beta-1-->4)Glc(beta, 3-O-sulfo-GlcA(beta-1-->3)Gal(beta, and GlcA(beta-1-->3)Gal(beta were also synthesized.  相似文献   

16.
17.
A chitinase was purified from the stomach of a fish, the silver croaker Pennahia argentatus, by ammonium sulfate fractionation and column chromatography using Chitopearl Basic BL-03, CM-Toyopearl 650S, and Butyl-Toyopearl 650S. The molecular mass and isoelectric point were estimated at 42 kDa and 6.7, respectively. The N-terminal amino acid sequence showed a high level of homology with family 18 chitinases. The optimum pH of silver croaker chitinase toward p-nitrophenyl N-acetylchitobioside (pNp-(GlcNAc)2) and colloidal chitin were observed to be pH 2.5 and 4.0, respectively, while chitinase activity increased about 1.5- to 3-fold with the presence of NaCl. N-Acetylchitooligosaccharide ((GlcNAc)n, n = 2–6) hydrolysis products and their anomer formation ratios were analyzed by HPLC using a TSK-GEL Amide-80 column. Since the silver croaker chitinase hydrolyzed (GlcNAc)4–6 and produced (GlcNAc)2–4, it was judged to be an endo-type chitinase. Meanwhile, an increase in β-anomers was recognized in the hydrolysis products, the same as with family 18 chitinases. This enzyme hydrolyzed (GlcNAc)5 to produce (GlcNAc)2 (79.2%) and (GlcNAc)3 (20.8%). Chitinase activity towards various substrates in the order pNp-(GlcNAc)n (n = 2–4) was pNp-(GlcNAc)2 >> pNp-(GlcNAc)4 > pNp-(GlcNAc)3. From these results, silver croaker chitinase was judged to be an enzyme that preferentially hydrolyzes the 2nd glycosidic link from the non-reducing end of (GlcNAc)n. The chitinase also showed wide substrate specificity for degrading α-chitin of shrimp and crab shell and β-chitin of squid pen. This coincides well with the feeding habit of the silver croaker, which feeds mainly on these animals.  相似文献   

18.
Hen oviduct membranes were shown to contain high activity of a novel enzyme, UDP-GlcNac:GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-R (GlcNAc to Man) beta 4-GlcNAc-transferase VI. The enzyme was shown to transfer GlcNAc in beta 1-4 linkage to the D-mannose residue of GlcNAc beta 1-6 (GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or methyl. Radioactive enzyme products were purified by several chromatographic steps, including high performance liquid chromatography, and structures were determined by proton nmr, fast atom bombardment-mass spectrometry, and methylation analysis to be GlcNAc beta 1-6 ([14C]GlcNAc beta 1-4) (GlcNAc beta 1-2) Man alpha-R. The enzyme is stimulated by Triton X-100 and has optimum activity at a relatively high MnCl2 concentration of about 100 mM; Co2+, Mg2+, and Ca2+ could partially substitute for Mn2+. A tissue survey demonstrated high GlcNAc-transferase VI activity in hen oviduct and lower activity in chicken liver and colon, duck colon, and turkey intestine. No activity was found in mammalian tissues. Hen oviduct membranes cannot act on GlcNAc beta 1-6Man alpha-R but have a beta 4-GlcNAc-transferase activity that converts GlcNAc beta 1-2Man alpha-R to GlcNAc beta 1-4(GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or 1-6Man beta methyl. The latter activity is probably due to GlcNAc-transferase IV which preferentially adds GlcNAc in beta 1-4 linkage to the Man alpha 1-3 arm of the GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn core structure of asparagine-linked glycans. The minimum structural requirement for a substrate of beta 4-GlcNAc-transferase VI is therefore the trisaccharide GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-; this trisaccharide is found on the Man alpha 6 arm of many branched complex asparagine-linked oligosaccharides. The data suggest that GlcNAc-transferase VI acts after the synthesis of the GlcNAc beta 1-2Man alpha 1-3-, GlcNAc beta 1-2Man alpha 1-6-, and GlcNAc beta 1-6 Man alpha 1-6-branches by GlcNAc-transferases I, II, and V, respectively, and is responsible for the synthesis of branched oligosaccharides containing the GlcNAc beta 1-6(GlcNAc beta 1-4)(GlcNAc beta 1-2)Man alpha 1-6Man beta moiety.  相似文献   

19.
The Galbeta1-->4(SO(3)(-)-->6)GlcNAc moiety is present in various N-linked and O-linked glycans including keratan sulfate and 6-sulfosialyl-Lewis X, an L-selectin ligand. We previously found beta1,4-galactosyltransferase (beta4GalT) activity in human colonic mucosa, which prefers GlcNAc 6-O-sulfate (6SGN) as an acceptor to non-substituted GlcNAc (Seko, A., Hara-Kuge, S., Nagata, K., Yonezawa, S., and Yamashita, K. (1998) FEBS Lett. 440, 307-310). To identify the gene for this enzyme, we purified the enzyme from porcine colonic mucosa. The purified enzyme had the characteristic requirement of basic lipids for catalytic activity. Analysis of the partial amino acid sequence of the enzyme revealed that the purified beta4GalT has a similar sequence to human beta4GalT-IV. To confirm this result, we prepared cDNA for each of the seven beta4GalTs cloned to date and examined substrate specificities using the membrane fractions derived from beta4GalT-transfected COS-7 cells. When using several N-linked and O-linked glycans with or without 6SGN residues as acceptor substrates, only beta4GalT-IV efficiently recognized 6SGN, keratan sulfate-related oligosaccharides, and Galbeta1-->3(SO(3)(-)-->6GlcNAcbeta1-->6) GalNAcalpha1-O-pNP, a precursor for 6-sulfosialyl-Lewis X. These results suggested that beta4GalT-IV is a 6SGN-specific beta4GalT and may be involved in the biosynthesis of various glycoproteins carrying a 6-O-sulfated N-acetyllactosamine moiety.  相似文献   

20.
A beta-1,3-galactosyl-N-acetylhexosamine phosphorylase (GalGlyNAcP) homolog gene was cloned from Vibrio vulnificus CMCP6. In synthetic reactions, the recombinant enzyme acted only with GlcNAc and GalNAc as acceptors in the presence of alpha-d-galactose-1-phosphate as a donor to form lacto-N-biose I (LNB) (Galbeta1 --> 3GlcNAc) and galacto-N-biose (GNB) (Galbeta1 --> 3GalNAc), respectively. GlcNAc was a much better acceptor than GalNAc. The enzyme also phosphorolysed LNB faster than it phosphorolysed GNB, and the k(cat)/K(m) for LNB was approximately 60 times higher than the k(cat)/K(m) for GNB. This result indicated that the enzyme was remarkably different from GalGlyNAcP from Bifidobacterium longum, which has similar activities with LNB and GNB, and GalGlyNAcP from Clostridium perfringens, which is a GNB-specific enzyme. The enzyme is the first LNB-specific enzyme that has been found and was designated lacto-N-biose I phosphorylase. The discovery of an LNB-specific GalGlyNAcP resulted in recategorization of bifidobacterial GalGlyNAcPs as galacto-N-biose/lacto-N-biose I phosphorylases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号