首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signature-tagged transposon mutagenesis of Salmonella with differential recovery from wild-type and immunodeficient mice revealed that the gene here named cdgR[for c-diguanylate (c-diGMP) regulator] is required for the bacterium to resist host phagocyte oxidase in vivo. CdgR consists solely of a glutamate-alanine-leucine (EAL) domain, a predicted cyclic diGMP (c-diGMP) phosphodiesterase. Disruption of cdgR decreased bacterial resistance to hydrogen peroxide and accelerated bacterial killing of macrophages. An ultrasensitive assay revealed c-diGMP in wild-type Salmonella with increased levels in the CdgR-deficient mutant. Thus, besides its known role in regulating cellulose synthesis and biofilm formation, bacterial c-diGMP also regulates host-pathogen interactions involving antioxidant defence and cytotoxicity.  相似文献   

2.
3.
Only a limited number of bacterial pathogens evade destruction by phagocytic cells such as macrophages. Legionella pneumophila is a Gram-negative γ-proteobacterial species that can infect and replicate in alveolar macrophages, causing Legionnaires' disease, a severe pneumonia. L. pneumophila uses a complex secretion system to inject host cells with effector proteins capable of disrupting or altering the host cell processes. The L. pneumophila effectors target multiple processes but are essentially aimed at modifying the properties of the L. pneumophila phagosome by altering vesicular trafficking, gradually creating a specialized vacuole in which the bacteria replicate robustly. In nature, L. pneumophila is thought to parasitize free-living protists, which may have selected for traits that promote virulence of L. pneumophila in humans. Indeed, many effector genes encode proteins with eukaryotic domains and are likely to be of protozoan origin. Sustained horizontal gene transfer events within the protozoan niche may have allowed L. pneumophila to become a professional parasite of phagocytes, simultaneously giving rise to its ability to infect macrophages, cells that constitute the first line of cellular defence against bacterial infections.  相似文献   

4.
Legionella pneumophila is an intracellular pathogen that uses effector proteins translocated by the Dot/Icm type IV secretion system to modulate host cellular processes. Here we investigate the dynamics of subcellular structures containing ubiquitin during L. pneumophila infection of phagocytic host cells. The Dot/Icm system mediated the formation of K48 and K63 poly-ubiquitin conjugates to proteins associated with L. pneumophila -containing vacuoles in macrophages and dendritic cells, suggesting that regulatory events and degradative events involving ubiquitin are regulated by bacterial effectors during infection. Stimulation of TLR2 on the surface of macrophages and dendritic cells by L. pneumophila- derived molecules resulted in the production of ubiquitin-rich dendritic cell aggresome-like structures (DALIS). Cells infected by L. pneumophila with a functional Dot/Icm system, however, failed to produce DALIS. Suppression of DALIS formation did not affect the accumulation of ubiquitinated proteins on vacuoles containing L. pneumophila. Examining other species of Legionella revealed that Legionella jordanis was unable to suppress DALIS formation after creating a ubiquitin-decorated vacuole. Thus, the L. pneumophila Dot/Icm system has the ability to modulate host processes to promote K48 and K63 ubiquitin conjugates on proteins at the vacuole membrane, and independently suppress cellular events required for the formation of DALIS.  相似文献   

5.
Salmonella typhimurium LT2 rapidly accumulates high levels of a family of five adenylylated nucleotides following exposure to a bacteriostatic quinone, 6-amino-7-chloro-5,8-dioxoquinoline. These compounds have been analyzed using our recently described two-dimensional thin layer chromatographic method. The five dinucleotides, which cannot be detected in exponentially growing cells, have been identified as diadenosine 5',5"'-P1,P4-tetraphosphate (AppppA), ApppGpp (guanosine 3'-diphosphate-5'-adenosine-5'-(P1,P3-triphosphate)), AppppG (adenosine 5'-guanosine-5'-(P1,P4-tetraphosphate)), ApppG (adenosine 5'-guanosine-5'-(P1,P3-triphosphate)), and ApppA (diadenosine 5',5"'-P1,P3-triphosphate). AppppA has been previously detected in vitro as an enzymatic product of aminoacyl-tRNA synthetases and in vivo at submicromolar levels in eucaryotic cells. The induced intracellular concentration of AppppA and the other adenylylated nucleotides in S. typhimurium is approximately 100-fold higher than that found in eucaryotic cells. We propose that these dinucleotides are alarmones, regulatory molecules signaling a particular metabolic stress.  相似文献   

6.
The 2'-5' RNA ligase family members are bacterial and archaeal RNA ligases that ligate 5' and 3' half-tRNA molecules with 2',3'-cyclic phosphate and 5'-hydroxyl termini, respectively, to the product containing the 2'-5' phosphodiester linkage. Here, the crystal structure of the 2'-5' RNA ligase protein from an extreme thermophile, Thermus thermophilus HB8, was solved at 2.5A resolution. The structure of the 2'-5' RNA ligase superimposes well on that of the Arabidopsis thaliana cyclic phosphodiesterase (CPDase), which hydrolyzes ADP-ribose 1",2"-cyclic phosphate (a product of the tRNA splicing reaction) to the monoester ADP-ribose 1"-phosphate. Although the sequence identity between the two proteins is remarkably low (9.3%), the 2'-5' RNA ligase and CPDase structures have two HX(T/S)X motifs in their corresponding positions. The HX(T/S)X motifs play important roles in the CPDase activity, and are conserved in both the CPDases and 2'-5' RNA ligases. Therefore, the catalytic mechanism of the 2'-5' RNA ligase may be similar to that of the CPDase. On the other hand, the electrostatic potential of the cavity of the 2'-5' RNA ligase is positive, but that of the CPDase is negative. Furthermore, in the CPDase, two loops with low B-factors cover the cavity. In contrast, in the 2'-5' RNA ligase, the corresponding loops form an open conformation and are flexible. These characteristics may be due to the differences in the substrates, tRNA and ADP-ribose 1",2"-cyclic phosphate.  相似文献   

7.
Forty different oligonucleotides were investigated as possible inhibitors of the depolymerizing activity of RNase A. The strongest inhibitors among the diribonucleoside 2'-5' mono- phosphates were: G2'-5'G, C2'-5'G and U2'-5'G, and among the diribonucleoside 3'-5' monophosphates: ApU, ApC and GpU. Of the eight trinucleotides investigated, ApApUp, ApApCp and ApGpUp were the strongest inhibitors. All four dinucleotides studied (ApUp, ApCp, GpUp and GpCp) were very strong inhibitors, ApUp being the strongest one. The results show that the nature of the various bases in the oligonucleotide has an effect on the degree of inhibition, and that the 3' phosphomonoester group increases the binding of the oligonucleotide to RNase A. These inhibitors can be used in physicochemical and biochemical studies of ribonuclease.  相似文献   

8.
The cyclic nucleotide cyclic di-guanosine-monophosphate (c-diGMP) was recognized in the 1980s as a signaling compound that is involved in controlling the condensation of glucose moieties into cellulose polymers. More recent data from several different bacterial species now suggest that c-diGMP might have a general role as secondary messenger in modulating bacterial growth on surfaces by regulating cellular adhesion components and preparing cells for cell-cell and cell-surface interactions.  相似文献   

9.
Ge J  Shao F 《Cellular microbiology》2011,13(12):1870-1880
Legionella pneumophila, the causative agent of Legionnaires' disease, infects and replicates in macrophages and amoebas. Following internalization, L. pneumophila resides in a vacuole structure called Legionella-containing vacuole (LCV). The LCV escapes from the endocytic maturation process and avoids fusion with the lysosome, a hallmark of Legionella pathogenesis. Interference with the secretory vesicle transport and avoiding lysosomal targeting render the LCV permissive for L. pneumophila intracellular replication. Central to L. pneumophila pathogenesis is a defect in the organelle trafficking/intracellular multiplication (Dot/Icm) type IV secretion system that translocates a large number of effector proteins into host cells. Many of the Dot/Icm effectors employ diverse and sophisticated biochemical strategies to manipulate the host vesicular transport system, playing an important role in LCV biogenesis and trafficking. Similar to other bacterial pathogens, L. pneumophila also delivers effector proteins to modulate or counteract host innate immune defence pathways such as the NF-κB and apoptotic signalling. This review summarizes the known functions and mechanisms of Dot/Icm effectors that target host membrane trafficking and innate immune defence pathways.  相似文献   

10.
Legionella pneumophila , the causative agent of Legionnaires' disease, replicates within a specific vacuole in amoebae and macrophages. To form these ' Legionella -containing vacuoles' (LCVs), the bacteria employ the Icm/Dot type IV secretion system and effector proteins, some of which anchor to the LCV membrane via the host glycolipid phosphatidylinositol 4-phosphate [PtdIns(4) P ]. Here we analysed the role of inositol polyphosphate 5-phosphatases (IP5Ps) during L. pneumophila infections. Bacterial replication and LCV formation occurred more efficiently in Dictyostelium discoideum amoebae lacking the IP5P Dd5P4, a homologue of human OCRL1 (Oculocerebrorenal syndrome of Lowe), implicated in retrograde endosome to Golgi trafficking. The phenotype was complemented by Dd5P4 but not the catalytically inactive 5-phosphatase. Ectopically expressed Dd5P4 or OCRL1 localized to LCVs in D. discoideum via an N-terminal domain previously not implicated in membrane targeting, and OCRL1 was also identified on LCVs in macrophages. Dd5P4 was catalytically active on LCVs and accumulated on LCVs harbouring wild-type but not Δ icmT mutant L. pneumophila . The N-terminal domain of OCRL1 bound L. pneumophila LpnE, a Sel1-like repeat protein involved in LCV formation, which localizes to LCVs and selectively binds PtdIns(3) P . Our results indicate that OCRL1 restricts intracellular growth of L. pneumophila and binds to LCVs in association with LpnE.  相似文献   

11.
BACKGROUND: Legionella pneumophila is a gram-negative bacterial pathogen that is the cause of Legionnaires' Disease. Legionella produces disease because it can replicate inside a specialized compartment of host macrophages. Macrophages isolated from various inbred mice exhibit large differences in permissiveness for intracellular replication of Legionella. A locus affecting this host-resistance phenotype, Lgn1, has been mapped to chromosome 13, but the responsible gene has not been identified. RESULTS: Here, we report that Naip5 (also known as Birc1e) influences susceptibility to Legionella. Naip5 encodes a protein that is homologous to plant innate immunity (so-called "resistance") proteins and has been implicated in signaling pathways related to apoptosis regulation. Detailed recombination mapping and analysis of expression implicates Naip5 in the Legionella permissiveness differences among mouse strains. A bacterial artificial chromosome (BAC) transgenic line expressing a nonpermissive allele of Naip5 exhibits a reduction in macrophage Legionella permissiveness. In addition, morpholino-based antisense inhibition of Naip5 causes an increase in the Legionella permissiveness of macrophages. CONCLUSIONS: We conclude that polymorphisms in Naip5 are involved in the permissiveness differences of mouse macrophages for intracellular Legionella replication. We speculate that Naip5 is a functional mammalian homolog of plant "resistance" proteins that monitor for, and initiate host response to, the presence of secreted bacterial virulence proteins.  相似文献   

12.
The Gram-negative bacterium Legionella pneumophila is a parasite of eukaryotic cells. It has evolved to survive and replicate in a wide range of protozoan hosts and can also infect human alveolar macrophages as an opportunistic pathogen. Crucially for the infection process, L. pneumophila uses a type IV secretion system called Dot/Icm to translocate bacterial proteins into host cells. In recent years a large number of Dot/Icm-translocated proteins have been identified. The study of these proteins, referred to as effectors, is providing valuable insight into the mechanism by which an intracellular pathogen can manipulate eukaryotic cellular processes to traffic and replicate in host cells.  相似文献   

13.
Abstract: Neurofibroma type 1 tissue was investigated for the presence of growth-promoting activity on human neuroblastoma cells. The activity was isolated by gel filtration and reversed-phase column chromatographs from neurofibroma type 1 extracts. An adenosine-containing dinucleotide (adenylyl(3'-5')cytidine-3'-phosphate) was identified as one of the major components of the activities by its enzymatic fragmentation and liquid chromatography/mass spectrometry. Synthetic adenosine-containing dinucleotide derivatives such as cytidyl(3'-5')adenosine, cytidyl(2'-5')adenosine, adenylyl(3'-5')cytidine, and adenylyl(2'-5')cytidine showed a similar action. Cytidyl(3'-5')adenosine, cytidyl(2'-5')adenosine, and adenylyl(2'-5')cytidine, which are able to release a free adenosine through enzymatic hydrolysis, in particular elicited a strong activity corresponding to that of adenosine with the highest action. These results suggest that neuroblastoma cells are able to use adenosine-containing dinucleotides as well as mononucleotides for their survival and proliferation.  相似文献   

14.
Evidence is available for a role of a (2'-5')(A)n-activated endoribonuclease (RNase L) in the antiviral activity of interferon for several RNA viruses. (2'-5')(A)n and their analogues might thus provide an interesting alternative to exogenous interferons or their inducers in antiviral chemotherapy. In addition, the evaluation of the activity of (2'-5)(A)n as mediators of interferon's biological activities or as cell growth regulators requires biochemical studies using agonists or antagonists of the system. Non-disruptive techniques for the introduction of (2'-5')(A)n and their analogues into cell lines or tissues are required for these studies since these highly charged compounds are cell impermeable. (2'-5')(A)n oligomers and analogues of increased stability towards phosphodiesterases were derived by chemical modification of their 2' end and encapsulated in protein-A-bearing liposomes. The specific delivery of liposome contents into L1210 mouse leukemic cells was achieved with the help of monoclonal antibodies directed against the appropriate class I major histocompatibility complex-encoded proteins expressed by these cells. This intracellular delivery led to transient inhibition of protein synthesis and an antiviral activity, both compatible with activation of RNase L. This activity was enhanced for the analogues designed to resist degradation, with respect to the natural product.  相似文献   

15.
S S Birke  M Diem 《Biophysical journal》1995,68(3):1045-1049
The infrared absorption and vibrational circular dichroism (VCD) spectra of buffered aqueous solutions of cytidylyl-(3'-5')-guanosine (5'(CG)3') and guanylyl-(3'-5')-cytidine (5'(GC)3') are reported. Under low ionic strength conditions, these dinucleotides exhibit VCD features that can be predicted qualitatively from structural data of (CG)2 and (GC)2 sequences of poly(dG-dC).poly(dG-dC), using the exciton model for infrared VCD intensities.  相似文献   

16.
Successful pathogens have evolved to evade innate immune recognition of microbial molecules by pattern recognition receptors (PRR), which control microbial growth in host tissues. Upon Legionella pneumophila infection of macrophages, the cytosolic PRR Nod1 recognizes anhydro-disaccharide-tetrapeptide (anhDSTP) generated by soluble lytic transglycosylase (SltL), the predominant bacterial peptidoglycan degrading enzyme, to activate NF-κB-dependent innate immune responses. We show that L.?pneumophila periplasmic protein EnhC, which is uniquely required for bacterial replication within macrophages, interferes with SltL to lower anhDSTP production. L.?pneumophila mutant strains lacking EnhC (ΔenhC) increase Nod1-dependent NF-κB activation in host cells, while reducing SltL activity in?a ΔenhC strain restores intracellular bacterial growth. Further, L.?pneumophila ΔenhC is specifically rescued in Nod1- but not Nod2-deficient macrophages, arguing that EnhC facilitates evasion from Nod1 recognition. These results indicate that?a bacterial pathogen regulates peptidoglycan degradation to control the production of PRR ligands and evade innate immune recognition.  相似文献   

17.
Kinetic constants for the hydrolytic susceptibility of the internucleotide phosphate bond in normal dinucleotides [e.g., 2'-deoxycytidylyl-(3'>5')-2'-deoxyuridine (dCpdU) and 2'-deoxyadenylyl-(3'-->5')-2'-deoxycytidine (dApdC)] and isomeric dinucleotides [e.g., 2'-deoxycytidylyl-(3'-->5')-1'-deoxy-2'-isouridine (dCpisodU) and 1'-deoxy-2'-isoadenylyl-(3'-->5')-2'-deoxycytidine (isodApdC)], toward 5'- and 3'-exonucleases, phosphodiesterase I (PDE I) and phosphodiesterase II (PDE II) were experimentally determined and remarkable differences emerged. The study is of importance in the discovery of nuclease-stable inhibitors of HIV integrase, but may also have ramifications in the area of anti-sense oligonucleotides of therapeutic interest.  相似文献   

18.
We have studied a variety of condensation reactions involving poly (U) as template and isomeric adenosine dinucleotides as substrates. We find that [3'-5']-linked dinucleotides such as A3pA and pA3pA are better acceptors than the corresponding [2'-5']-linked compounds, while ImpA2pA is a better donor than ImpA3pA. The reaction between A2pA and ImpA3pA, for example, yields only 4% of product while the reaction of A3pA with ImpA2pA yields 86% of product. The more efficient condensation reactions of dimers are about as efficient as the self-condensation of ImpA. They yield a few percent of material in which five or more substrate molecules are linked together. The percentage of the natural [3'-5']-linkage in the product varies greatly, from as little as 1% to as much as 45%.  相似文献   

19.
The natural hosts of the bacterial pathogen Legionella pneumophila are amoebae and protozoa. In these hosts, as in human macrophages, the pathogen enters the cell through phagocytosis, then rapidly modifies the phagosome to create a compartment that supports its replication. We have examined L. pneumophila entry and behaviour during early stages of the infection of Dictyostelium discoideum amoebae. Bacteria were labelled with a red fluorescent marker, and selected proteins and organelles in the host were labelled with GFP, allowing the dynamics and interactions of L. pneumophila -containing phagosomes to be tracked in living cells. These studies demonstrated that entry of L. pneumophila is an actin-mediated process, that the actin-binding protein coronin surrounds the nascent phagosome but dissociates immediately after internalization, that ER membrane is not incorporated into a phagosome during uptake, that the newly internalized phagosome is rapidly transported about the cell on microtubules, that association of ER markers with the phagosome occurs in two steps that correlate with distinct changes in phagosome movement, and that the vacuolar H(+)-ATPase does not associate with mature replication vacuoles. These studies have clarified certain aspects of the infection process and provided new insights into the dynamic interactions between the pathogen and its host.  相似文献   

20.
Airborne pathogens encounter several hurdles during host invasion, including alveolar macrophages (AMs) and airway epithelial cells (AECs) and their products. Although growing evidence indicates pathogen-sensing capacities of epithelial cells, the relative contribution of hematopoietic versus nonhematopoietic cells in the induction of an inflammatory response and their possible interplay is still poorly defined in vivo in the context of infections with pathogenic microorganisms. In this study, we show that nonhematopoietic cells, including AECs, are critical players in the inflammatory process induced upon airway infection with Legionella pneumophila, and that they are essential for control of bacterial infections. Lung parenchymal cells, including AECs, are not infected themselves by L. pneumophila in vivo but rather act as sensors and amplifiers of inflammatory cues delivered by L. pneumophila-infected AM. We identified AM-derived IL-1β as the critical mediator to induce chemokine production in nonhematopoietic cells in the lung, resulting in swift and robust recruitment of infection-controlling neutrophils into the airways. These data add a new level of complexity to the coordination of the innate immune response to L. pneumophila and illustrate how the cross talk between leukocytes and nonhematopoietic cells contributes to efficient host protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号