首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygen uptake kinetics in trained athletes differing in VO2max   总被引:1,自引:0,他引:1  
Previous work has shown that when VO2 kinetics are compared for endurance trained athletes and untrained subjects, the highly trained athletes have a faster response time. However, it remains to be determined whether the more rapid adjustment of VO2 toward steady state in athletes is due to VO2max differences or training adaptation alone. One approach to this problem is to study the time course of VO2 kinetics at the onset of work in athletes who differ in VO2max but have similar training habits. Therefore, the purpose of these experiments was to compare the time course of VO2 kinetics at the onset of exercise in athletes with similar training routines but who differ in VO2max. Ten subjects (VO2max range 50-70 ml . kg-1 . min-1) performed 6-minutes of cycle ergometer exercise at approximately 50% VO2max. Ventilation and gas exchange were monitored by open circuit techniques. The data were modeled with a single component exponential function incorporating a time delay, (TD); delta VO2t = delta VO2ss (1-e-t-TD/tau), where tau is the time constant delta VO2t is the increase in VO2 at time t and delta VO2ss is the steady-rate increment above resting VO2. Kinetic analysis revealed a range of VO2 half times from 21.6 to 36.0 s across subjects with a correlation coefficient of r = -0.80 (p less than 0.05) between VO2max and VO2 half time. These data suggest that in highly trained individuals with similar training habits, those with a higher VO2max achieve a more rapid VO2 adjustment at the onset of work.  相似文献   

2.
We used endurance training and acute anemia to assess the interactions among maximal oxygen consumption (VO2max), muscle oxidative capacity, and exercise endurance in rats. Animals were evaluated under four conditions: untrained and endurance-trained with each group subdivided into anemic (animals with reduced hemoglobin concentrations) and control (animals with unchanged hemoglobin concentrations). Anemia was induced by isovolemic plasma exchange transfusion. Hemoglobin concentration and hematocrit were decreased by 38 and 41%, respectively. Whole body VO2max was decreased by 18% by anemia regardless of training condition. Anemia significantly reduced endurance by 78% in untrained rats but only 39% in trained animals. Endurance training resulted in a 10% increase in VO2max, a 75% increase in the distance run to exhaustion, and 35, 45, and 58% increases in skeletal muscle pyruvate-malate, alpha-ketoglutarate, and palmitylcarnitine oxidase activities, respectively. We conclude that endurance is related to the interactive effects of whole body VO2max and muscle oxidative capacities for the following reasons: 1) anemic untrained and trained animals had similar VO2max but trained rats had higher muscle oxidative capacities and greater endurance; 2) regardless of training status, the effect of acute anemia was to decrease VO2max and endurance; and 3) trained anemic rats had lower VO2max but had greater muscle oxidative capacity and greater endurance than untrained controls.  相似文献   

3.
To determine whether the reduced blood lactate concentrations [La] during submaximal exercise in humans after endurance training result from a decreased rate of lactate appearance (Ra) or an increased rate of lactate metabolic clearance (MCR), interrelationships among blood [La], lactate Ra, and lactate MCR were investigated in eight untrained men during progressive exercise before and after a 9-wk endurance training program. Radioisotope dilution measurements of L-[U-14C]lactate revealed that the slower rise in blood [La] with increasing O2 uptake (VO2) after training was due to a reduced lactate Ra at the lower work rates [VO2 less than 2.27 l/min, less than 60% maximum VO2 (VO2max); P less than 0.01]. At power outputs closer to maximum, peak lactate Ra values before (215 +/- 28 mumol.min-1.kg-1) and after training (244 +/- 12 mumol.min-1.kg-1) became similar. In contrast, submaximal (less than 75% VO2max) and peak lactate MCR values were higher after than before training (40 +/- 3 vs. 31 +/- 4 ml.min-1.kg-1, P less than 0.05). Thus the lower blood [La] values during exercise after training in this study were caused by a diminished lactate Ra at low absolute and relative work rates and an elevated MCR at higher absolute and all relative work rates during exercise.  相似文献   

4.
Endurance training of older men: responses to submaximal exercise.   总被引:2,自引:0,他引:2  
The purpose of this study was to quantify the exercise response of older subjects on a time-to-fatigue (TTF) submaximal performance test before and after a training program. Eight older men (67.4 +/- 4.8 yr) performed two maximal treadmill tests to determine maximum oxygen uptake (VO2max) and ventilation threshold (TVE) and a constant-load submaximal exercise treadmill test that required an oxygen uptake (VO2) between TVE and VO2max. The submaximal test, performed at the same absolute work rate before and after the training program, was performed to volitional fatigue to measure endurance time. The men trained under supervision at an individualized pace representing approximately 70% of VO2max (80% maximum heart rate) for 1 h, four times per week for 9 wk. Significant increases were demonstrated for VO2max (ml.kg-1.min-1; 10.6%); maximal ventilation (VE, l/min; 11.6%), and TVE (l/min; 9.8%). Weight decreased 2.1%. Performance time on the TTF test increased by 180% (7.3 +/- 3.0 to 20.4 +/- 13.5 min). The similar end points for VO2, VE, and heart rate during the TTF and maximal treadmill tests established that the TTF test was stopped because of physiological limitations. The increase in performance time among the subjects was significantly correlated with improvements in VO2max and TVE, with the submaximal work rate representing a VO2 above TVE by 88% of the difference between TVE and VO2max pretraining and 73% of this difference on posttraining values.  相似文献   

5.
This study determined the effects of endurance or resistance exercise training on maximal O2 consumption (VO2max) and the cardiovascular responses to exercise of 70- to 79-yr-old men and women. Healthy untrained subjects were randomly assigned to a control group (n = 12) or to an endurance (n = 16) or resistance training group (n = 19). Training consisted of three sessions per week for 26 wk. Resistance training consisted of one set of 8-12 repetitions on 10 Nautilus machines. Endurance training consisted of 40 min at 50-70% VO2max and at 75-85% VO2max for the first and last 13 wk of training, respectively. The endurance training group increased its VO2max by 16% during the first 13 wk of training and by a total of 22% after 26 wk of training; this group also increased its maximal O2 pulse, systolic blood pressure, and ventilation, and decreased its heart rate and perceived exertion during submaximal exercise. The resistance training group did not elicit significant changes in VO2max or in other maximal or submaximal cardiovascular responses despite eliciting 9 and 18% increases in lower and upper body strength, respectively. Thus healthy men and women in their 70s can respond to prolonged endurance exercise training with adaptations similar to those of younger individuals. Resistance training in older individuals has no effect on cardiovascular responses to submaximal or maximal treadmill exercise.  相似文献   

6.
The aim of this study was to examine the effect of aging and training status on ventilatory response during incremental cycling exercise. Eight young (24 ± 5 years) and 8 older (64 ± 3 years) competitive cyclists together with 8 young (27 ± 4 years) and 8 older (63 ± 2 years) untrained individuals underwent a continuous incremental cycling test to exhaustion to determine ventilatory threshold (VT), respiratory compensation point (RCP), and maximal oxygen uptake (VO?max). In addition, the isocapnic buffering (IB) phase was calculated together with the hypocapnic hyperventilation. Ventilatory threshold occurred at similar relative exercise intensities in all groups, whereas RCP was recorded at higher intensities in young and older cyclists compared to the untrained subjects. The IB phase, reported as the difference between VT and RCP and expressed either in absolute (ml·min?1·kg?1 VO?) or in relative terms, was greater (p < 0.01) in both young and older trained cyclists than in untrained subjects, who were also characterized by a lower exercise capacity. Isocapnic buffering was particularly small in the older untrained volunteers. Although young untrained and older trained subjects had a similar level of VO?max, older athletes exhibited a larger IB. In addition, a higher absolute but similar relative IB was observed in young vs. older cyclists, despite a higher VO?max in the former. In conclusion, the present study shows that aging is associated with a reduction of the IB phase recorded during an incremental exercise test. Moreover, endurance training induces adaptations that result in an enlargement of the IB phase independent of age. This information can be used for the characterization and monitoring of the physiological adaptations induced by endurance training.  相似文献   

7.
The objective of the present study was to compare pulmonary gas exchange kinetics (VO2 kinetics) and time to exhaustion (Tlim) between trained and untrained individuals during severe exercise performed on a cycle ergometer and treadmill. Eleven untrained males in running (UR) and cycling (UC), nine endurance cyclists (EC), and seven endurance runners (ER) were submitted to the following tests on separate days: (i) incremental test for determination of maximal oxygen uptake (VO2max) and the intensity associated with the achievement of VO2max (IVO2max) on a mechanical braked cycle ergometer (EC and UC) and on a treadmill (ER and UR); (ii) all-out exercise bout performed at IVO2max to determine the time to exhaustion at IVO2max (Tlim) and the time constant of oxygen uptake kinetics (tau). The tau was significantly faster in trained group, both in cycling (EC = 28.2 +/- 4.7s; UC = 63.8 +/- 25.0s) and in running (ER = 28.5 +/- 8.5s; UR = 59.3 +/- 12.0s). Tlim of untrained was significantly lower in cycling (EC = 384.4 +/- 66.6s vs. UC; 311.1 +/- 105.7 s) and higher in running (ER = 309.2 +/- 176.6 s vs. UR = 439.8 +/- 104.2 s). We conclude that the VO2 kinetic response at the onset of severe exercise, carried out at the same relative intensity is sensitive to endurance training, irrespective of the exercise type. The endurance training seems to differently influence Tlim during exercise at IVO2max in running and cycling.  相似文献   

8.
Twelve subjects participated in an exercise program of cycling and running 40 min/day, 6 days/wk. After 10 wk, they continued to train with either a one-third or two-thirds reduction in work rates for an additional 15 wk. Frequency and duration for the additional training remained the same as during the 10 wk of training. The average increases in maximum O2 uptake (VO2 max) were between 11 and 20% when measured during cycling and treadmill running after 10 wk of training. VO2 max was not maintained at the 6-day/wk training levels with a one-third reduction in training intensity but was still higher than pretraining levels. With a two-thirds reduction in intensity, VO2 max declined to an even greater extent than with the one-third reduction. Short-term endurance (approximately 5 min) was maintained in the one-third reduced group but was markedly reduced in the two-thirds reduced group. Long-term endurance was decreased significantly from training by 21% in the one-third reduced group (184-145 min) and by 30% in the two-thirds reduced group (202-141 min). Calculated left ventricular mass, obtained from echocardiographic measurements, increased approximately 15% after training but returned to control levels after reduced training in both groups. These results demonstrate that training intensity is an essential requirement for maintaining the increased aerobic power and cardiac enlargement with reduced training.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Recently, we have shown that an untrained respiratory system does limit the endurance of submaximal exercise (64% peak oxygen consumption) in normal sedentary subjects. These subjects were able to increase breathing endurance by almost 300% and cycle endurance by 50% after isolated respiratory training. The aim of the present study was to find out if normal, endurance trained subjects would also benefit from respiratory training. Breathing and cycle endurance as well as maximal oxygen consumption (VO2max) and anaerobic threshold were measured in eight subjects. Subsequently, the subjects trained their respiratory muscles for 4 weeks by breathing 85-160 l.min-1 for 30 min daily. Otherwise they continued their habitual endurance training. After respiratory training, the performance tests made at the beginning of the study were repeated. Respiratory training increased breathing endurance from 6.1 (SD 1.8) min to about 40 min. Cycle endurance at the anaerobic threshold [77 (SD 6) %VO2max] was improved from 22.8 (SD 8.3) min to 31.5 (SD 12.6) min while VO2max and the anaerobic threshold remained essentially the same. Therefore, the endurance of respiratory muscles can be improved remarkably even in trained subjects. Respiratory muscle fatigue induced hyperventilation which limited cycle performance at the anaerobic threshold. After respiratory training, minute ventilation for a given exercise intensity was reduced and cycle performance at the anaerobic threshold was prolonged. These results would indicate the respiratory system to be an exercise limiting factor in normal, endurance trained subjects.  相似文献   

10.
Seven men and four women (age 63 +/- 2 yr, mean +/- SD, range 61-67 yr) participated in a 12-mo endurance training program to determine the effects of low-intensity (LI) and high-intensity (HI) training on the blood lactate response to submaximal exercise in older individuals. Maximal oxygen uptake (VO2max), blood lactate, O2 uptake (VO2), heart rate (HR), ventilation (VE), and respiratory exchange ratio (R) during three submaximal exercise bouts (65-90% VO2max) were determined before training, after 6 mo of LI training, and after an additional 6 mo of HI training. VO2max (ml X kg-1 X min-1) was increased 12% after LI training (P less than 0.05), while HI training induced a further increase of 18% (P less than 0.01). Lactate, HR, VE, and R were significantly lower (P less than 0.05) at the same absolute work rates after LI training, while HI training induced further but smaller reductions in these parameters (P greater than 0.05). In general, at the same relative work rates (ie., % of VO2max) after training, lactate was lower or unchanged, HR and R were unchanged, and VO2 and VE were higher. These findings indicate that LI training in older individuals results in adaptations in the response to submaximal exercise that are similar to those observed in younger populations and that additional higher intensity training results in further but less-marked changes.  相似文献   

11.
Before the start and after 4, 8, and 12 wk of a treadmill training program male rats were randomly selected and tested for running performance, maximum O2 consumption (VO2 max), running economy (VO2 submax), and skeletal muscle oxidative capacity (QO2). Data were compared with values from untrained weight-matched control rats. Maximum running time to exhaustion increased significantly (P less than 0.01) by 4 wk and again at 12 wk (P less than 0.01). Submaximal running endurance increased by 120 (4 wk), 320 (8 wk), and 372% (12 wk) (P less than 0.01). VO2 max was increased only at 12 wk (86.0 +/- 2.7 vs. 75.5 +/- 1.9 ml O2.kg-1.min-1); VO2 submax was decreased at 4 and 8 wk but not at 12 wk. Soleus QO2 was unchanged after 4 wk of training and increased by 50% at 8 wk and by 77% at 12 wk. This study is the first to show a dissociation in both the time course and the magnitude of longitudinal changes in VO2 max, VO2 submax, QO2, and maximal and submaximal running performance. We conclude that factors other than those measured explain the improvement in running performance that resulted from endurance training in these rats.  相似文献   

12.
The present study sought to evaluate the inconsistencies previously observed regarding the predominance of continuous or interval training for improving fitness. The experimental design initially equated and subsequently maintained the same relative exercise intensity by both groups throughout the program. Twelve subjects were equally divided into continuous (CT, exercise at 50% maximal work) or interval (IT, 30 s work, 30 s rest at 100% maximal work) training groups that cycled 30 min day-1, 3 days.week-1, for 8 weeks. Following training, aerobic power (VO2max), exercising work rates, and peak power output were all higher (9-16%) after IT than after CT (5-7%). Vastus lateralis muscle citrate synthase activity increased 25% after CT but not after IT. A consistent increase in adenylate kinase activity (25%) was observed only after IT. During continuous cycling testing the CT group had reduced blood lactate (lab) levels and respiratory quotient at both the same absolute and relative (70% VO2max) work rates after training, while the IT group displayed similar changes only at the same absolute work rates. By contrast, both groups responded similarly during intermittent cycling testing with lower lab concentrations seen only at absolute work rates. These results show that, of the two types of training programs currently employed, IT produces higher increases in VO2max and in maximal exercise capacity. Nevertheless, CT is more effective at increasing muscle oxidative capacity and delaying the accumulation of lab during continuous exercise.  相似文献   

13.
Seventeen women (mean age 31 yr) participated in a training program divided into an initial 9-wk period and a subsequent 52-wk period, during which time 6 continued to exercise and the remainder detrained. Improvements in VO2max were significant (+34%) during the initial 9 wk and small (+5%) for the final 52 wk. Four women who stopped training showed a decrease in VO2max (-10%) during the last phase. During the initial 9 wk, central adaptation was important, with SV showing an increase of 28% at 80% VO2max. Peripheral adaptation (a-v O2 difference) was unchanged. Subjects who trained an additional 52 wk showed a slight drop in SV at submaximal work loads from the initial increase following the first 9 wk. When compared with the initial test the change at 9 wk in peripheral adaptation was a small and nonsignificant rise, followed by a significant increase at 61 wk. Women who are very unfit initially (predicted VO2max of 28 ml/kg-min), apparently adapt to the initial training with a central change followed by a much stronger peripheral adaptation during a longer training program.  相似文献   

14.
The hemodynamic response to maximal exercise was determined in sedentary and trained rats with a chronic myocardial infarction (MI) produced by coronary artery ligation and in rats that underwent sham operations (SHAM). Infarct size in the MI groups of rats comprised 28-29% of the total left ventricle and resulted in both metabolic and hemodynamic changes that suggested that these animals had moderate compensated heart failure. The training regimen used in the present study produced significant increases in maximal O2 uptake (VO2max) when expressed in absolute terms (ml/min) or when normalized for body weight (ml.min-1.kg-1) and consisted of treadmill running at work loads that were equivalent to 70-80% of the animal's VO2max for a period of 60 min/day, 5 days/wk over an 8- to 10-wk interval. This training paradigm produced two major cardiocirculatory adaptations in the MI rat that had not been elicited previously when using a training paradigm of a lower intensity. First, the decrement in the maximal heart rate response to exercise (known as "chronotropic incompetence") found in the sedentary MI rat was completely reversed by endurance training. Second, the downregulation of cardiac myosin isozyme composition from the fast ATPase V1 isoform toward the slower ATPase (V2 and V3) isoforms in the MI rat was partially reversed by endurance training. These cardiac adaptations occurred without a significant increase in left ventricular pump function as an increase in maximal cardiac output (Qmax) and maximal stroke volume (SVmax) did not occur in the trained MI rat.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Six trained male cyclists and six untrained but physically active men participated in this study to test the hypothesis that the use of percentage maximal oxygen consumption (%VO2max) as a normalising independent variable is valid despite significant differences in the absolute VO2max of trained and untrained subjects. The subjects underwent an exercise test to exhaustion on a cycle ergometer to determine VO2max and lactate threshold. The subjects were grouped as trained (T) if their VO2max exceeded 60 ml.kg-1.min-1, and untrained (UT) if their VO2max was less than 50 ml.kg-1.min-1. The subjects were required to exercise on the ergometer for up to 40 min at power outputs that corresponded to approximately 50% and 70% VO2max. The allocation of each exercise session (50% or 70% VO2max) was random and each session was separated by at least 5 days. During these tests venous blood was taken 10 min before exercise (- 10 min), just prior to the commencement of exercise (0 min), after 20 min of exercise (20 min), at the end of exercise and 10 min postexercise (+ 10 min) and analysed for concentrations of cortisol, [Na+], [K+], [Cl-], glucose, free fatty acid, lactate [la-], [NH3], haemoglobin [Hb] and for packed cell volume. The oxygen consumption (VO2) and related variables were measured at two time intervals (14-15 and 34-35 min) during the prolonged exercise tests. Rectal temperature was measured throughout both exercise sessions. There was a significant interaction effect between the level of training and exercise time at 50% VO2max for heart rate (fc) and venous [la-].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This study was conducted to obtain additional information about the adaptations after 12 wk of high-fat diet (HFD) per se or HFD combined with endurance training in the rat using a two [diet: carbohydrate (CHO) or HFD] by two (training: sedentary or trained) by two (condition at death: rested or exercised) factorial design. Adaptation to prolonged HFD increases maximal O2 uptake (VO2max; 13%, P less than 0.05) and submaximal running endurance (+64%, P less than 0.05). This enhancement in exercise capacity could be attributed to 1) an increase in skeletal muscle aerobic enzyme activities (3-hydroxyacyl-CoA dehydrogenase and citrate synthase in soleus and red quadriceps) or 2) a decrease in liver glycogen breakdown in response to 1 h exercise at 80% VO2max. When training is superimposed to HFD, the most prominent finding provided by this study is that the diet-induced effects are cumulative with the well-known training effect on VO2max, exercise endurance, oxidative capacity of red muscle, and metabolic responses to exercise, with a further reduction in liver glycogen breakdown.  相似文献   

17.
The present study was performed to clarify the effects of intermittent exposure to an altitude of 4,500 m with endurance training and detraining on ventilatory chemosensitivity. Seven subjects (sea-level group) trained at sea level at 70% maximal oxygen uptake (VO2 max) for 30 min/day, 5 days/wk for 2 wk, whereas the other seven subjects (altitude group) trained at the same relative intensity (70% altitude VO2 max) in a hypobaric chamber. VO2 max, hypoxic ventilatory response (HVR), and hypercapnic ventilatory response, as an index of central hypercapnic chemosensitivity (HCVR) and as an index of peripheral chemosensitivity (HCVRSB), were measured. In both groups VO2 max increased significantly after training, and a significant loss of VO2 max occurred during 2 wk of detraining. HVR tended to increase in the altitude group but not significantly, whereas it decreased significantly in the sea-level group after training. HCVR and HCVRSB did not change in each group. After detraining, HVR returned to the pretraining level in both groups. These results suggest that ventilatory chemosensitivity to hypoxia is more variable by endurance training and detraining than that to hypercapnia.  相似文献   

18.
Twelve middle-distance runners, each having recently completed a competitive track season, were divided into two groups matched for maximal oxygen uptake (VO2max), 2-mile run time and age. Group 1 trained for 3 wk at Davis, PB = 760 mmHg, running 19.3 km/day at 75% of sea-level (SL) VO2max, while group 2 trained an equivalent distance at the same relative intensity at the US Air Force Academy (AFA), PB = 586 mmHg. The groups then exchanged sites and followed a training program of similar intensity to the group preceding it for an additional 3 wk. Periodic near exhaustive VO2max treadmill tests and 2-mile competitive time trials were completed. Initial 2-mile times at the AFA were 7.2% slower than SL control. Both groups demonstrated improved performance in the second trial at the AFA (chi = 2.0%), but mean postaltitude performance was unchanged from SL control. VO2max at the AFA was reduced initially 17.4% from SL control, but increased 2.6% after 20 days. However, postaltitude VO2max was 2.8% below SL control. It is concluded that there is no potentiating effect of hard endurance training at 2,300-m over equivalently severe SL training on SL VO2max or 2-mile performance time in already well conditioned middle-distance runners.  相似文献   

19.
To assess the effects of endurance training on plasma glucose kinetics during moderate-intensity exercise in men, seven men were studied before and after 12 wk of strenuous exercise training (3 days/wk running, 3 days/wk cycling). After priming of the glucose and bicarbonate pools, [U-13C] glucose was infused continuously during 2 h of cycle ergometer exercise at 60% of pretraining peak O2 uptake (VO2) to determine glucose turnover and oxidation. Training increased cycle ergometer peak VO2 by 23% and decreased the respiratory exchange ratio during the final 30 min of exercise from 0.89 +/- 0.01 to 0.85 +/- 0.01 (SE) (P less than 0.001). Plasma glucose turnover during exercise decreased from 44.6 +/- 3.5 mumol.kg fat-free mass (FFM)-1.min-1 before training to 31.5 +/- 4.3 after training (P less than 0.001), whereas plasma glucose clearance (i.e., rate of disappearance/plasma glucose concentration) fell from 9.5 +/- 0.6 to 6.4 +/- 0.8 ml.kg FFM-1.min-1 (P less than 0.001). Oxidation of plasma-derived glucose, which accounted for approximately 90% of plasma glucose disappearance in both the untrained and trained states, decreased from 41.1 +/- 3.4 mumol.kg FFM-1.min-1 before training to 27.7 +/- 4.8 after training (P less than 0.001). This decrease could account for roughly one-half of the total reduction in the amount of carbohydrate utilized during the final 30 min of exercise in the trained compared with the untrained state.  相似文献   

20.
When moderate exercise begins, O2 uptake (VO2) reaches a steady state within 3 min. However, with heavy exercise, VO2 continues to rise beyond 3 min (VO2 drift). We sought to identify factors contributing to VO2 drift. Ten young subjects performed cycle ergometer tests of 15 min duration for each of four constant work rates, corresponding to 90% of the anaerobic threshold (AT) and 25, 50, and 75% of the difference between maximum VO2 (VO2 max) and AT for that subject. Time courses of VO2, minute ventilation (VE), and rectal temperature were recorded. Blood lactate, norepinephrine, and epinephrine were measured at the end of exercise. Eight weeks of cycle ergometer endurance training improved average VO2 max by 15%. Subjects then performed four tests identical to pretraining studies. For the above AT tests, training reduced VO2 drift substantially; reduction in each of the possible mediators we measured was also demonstrated. The training-induced decrease in VO2 drift was well correlated with decreases in end exercise lactate and less well correlated with the drift in VE seen at above AT work rates. The training-induced reduction in VO2 drift was not significantly correlated with attenuation of rectal temperature rise or decrease in end-exercise level of the catecholamines. Thus the slow rise in VO2 during heavy exercise seems linked to lactate, though a component dictated by the work of breathing cannot be ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号