首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study is to investigate influences of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. Tall oil resinic acids were reacted with MgO and MoO(2) stoichiometrically for the production of metal-based fuel additives (combustion catalysts). The metal-based additives were added into tall oil biodiesel (B60) at the rate of 4 micromol/l, 8 micromol/l and 12 micromol/l for preparing test fuels. In general, both of the metal-based additives improved flash point, pour point and viscosity of the biodiesel fuel, depending on the rate of additives. A single cylinder DI diesel engine was used in the tests. Engine performance values did not change significantly with biodiesel fuels, but exhaust emission profile was improved. CO emissions and smoke opacity decreased by 56.42% and by 30.43%, respectively. In general, low NO(x) and CO(2) emissions were measured with the biodiesel fuels.  相似文献   

2.
Effects of biodiesel on emissions of a bus diesel engine   总被引:2,自引:0,他引:2  
This paper discusses the influence of biodiesel on the injection, spray, and engine characteristics with the aim to reduce harmful emissions. The considered engine is a bus diesel engine with injection M system. The injection, fuel spray, and engine characteristics, obtained with biodiesel, are compared to those obtained with mineral diesel (D2) under various operating regimes. The considered fuel is neat biodiesel from rapeseed oil. Its density, viscosity, surface tension, and sound velocity are determined experimentally and compared to those of D2. The obtained results are used to analyze the most important injection, fuel spray, and engine characteristics. The injection characteristics are determined numerically under the operating regimes, corresponding to the 13 mode ESC test. The fuel spray is obtained experimentally under peak torque condition. Engine characteristics are determined experimentally under 13 mode ESC test conditions. The results indicate that, by using biodiesel, harmful emissions (NO(x), CO, smoke and HC) can be reduced to some extent by adjusting the injection pump timing properly.  相似文献   

3.
Diesel particulate emissions from used cooking oil biodiesel   总被引:9,自引:1,他引:8  
Two different biodiesel fuels, obtained from waste cooking oils with different previous uses, were tested in a DI diesel commercial engine either pure or in 30% and 70% v/v blends with a reference diesel fuel. Tests were performed under a set of engine operating conditions corresponding to typical road conditions. Although the engine efficiency was not significantly affected, an increase in fuel consumption with the biodiesel concentration was observed. This increase was proportional to the decrease in the heating value. The main objective of the work was to study the effect of biodiesel blends on particulate emissions, measured in terms of mass, optical effect (smoke opacity) and size distributions. A sharp decrease was observed in both smoke and particulate matter emissions as the biodiesel concentration was increased. The mean particle size was also reduced with the biodiesel concentration, but no significant increases were found in the range of the smallest particles. No important differences in emissions were found between the two tested biodiesel fuels.  相似文献   

4.
This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH4–40% CO2) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.  相似文献   

5.
In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.  相似文献   

6.
We studied the spray characteristics of inedible oil using experimental and simulation methods. Spray penetration, spray cone angle and spray tip speed were measured at different biodiesel ratios in a constant volume vessel with wide visualization and high back pressure, using a high-speed camera. The characteristics of biodiesel spray were simulated under the same conditions using Star-CD software. The experimental results showed that, as the ratio of biodiesel in the blends increased, spray penetration and spray speed increased, but the spray cone angle decreased. Throughout the spray injection period, the region at 0.05–0.475S (spray tip penetration) was a key area affecting spray cone angle. From 0.8 ms after injection, the spray penetration deviation ratios started to increase with increasing biodiesel blend ratios. Simulation results showed similar macroscopic spray characteristics to the experimental results for jatropha oil. The results also showed that the Sauter mean diameter of blend fuels was greater than that of diesel, and spray was more concentrated, due to the higher viscosity and surface tension of the biodiesel, compared with conventional diesel fuel. The macroscopic and microscopic spray properties of blended fuels containing 5%, 10% and 20% biodiesel were similar to diesel.  相似文献   

7.
8.
9.
Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results.  相似文献   

10.
Biodegradation experiments for diesel/biodiesel blends in liquid cultures by-petroleum degrading microbial consortium showed that for low amendments of biodiesel (10%) the overall biodegradation efficiency of the mixture after seven days was lower than for petroleum diesel fuel. Preferential usage of methyl esters in the broad biodiesel concentration range and diminished biodegradation of petroleum hydrocarbons for 10% biodiesel blend was confirmed. Rhamnolipids improved biodegradation efficiency only for blends with low content of biodiesel. Emulsion formation experiments showed that biodiesel amendments significantly affected dispersion of fuel mixtures in water. The presence of rhamnolipids biosurfactant affected stability of such emulsions and altered cell surface properties of tested consortium.  相似文献   

11.
In this report combustion and exhaust emissions with neat diesel fuel and diesel-biodiesel blends have been investigated. In the investigation, firstly biodiesel from non-edible neem oil has been made by esterification. Biodiesel fuel (BDF) is chemically known as mono-alkyl fatty acid ester. It is renewable in nature and is derived from plant oils including vegetable oils. BDF is non-toxic, biodegradable, recycled resource and essentially free from sulfur and carcinogenic benzene. In the second phase of this investigation, experiment has been conducted with neat diesel fuel and diesel-biodiesel blends in a four stroke naturally aspirated (NA) direct injection (DI) diesel engine. Compared with conventional diesel fuel, diesel-biodiesel blends showed lower carbon monoxide (CO), and smoke emissions but higher oxides of nitrogen (NOx) emission. However, compared with the diesel fuel, NOx emission with diesel-biodiesel blends was slightly reduced when EGR was applied.  相似文献   

12.
Water is the most common choice of absorption medium selected in many gasification systems. Because of poor solubility of tar in water, hydrophobic absorbents (diesel fuel, biodiesel fuel, vegetable oil, and engine oil) were studied on their absorption efficiency of biomass tar and compared with water. The results showed that only 31.8% of gravimetric tar was removed by the water scrubber, whereas the highest removal of gravimetric tar was obtained by a vegetable oil scrubber with a removal efficiency of 60.4%. When focusing on light PAH tar removal, the absorption efficiency can be ranked in the following order; diesel fuel > vegetable oil > biodiesel fuel > engine oil > water. On the other hand, an increase in gravimetric tar was observed for diesel fuel and biodiesel fuel scrubbers because of their easy evaporation. Therefore, the vegetable oil is recommended as the best absorbent to be used in gasification systems.  相似文献   

13.
In commodity chemicals, cost drives everything. A working class family of four drives up to the gas pumps and faces a choice of a renewable diesel or petroleum diesel. Renewable diesel costs $0.50 more per gallon. Which fuel do they pick? Petroleum diesel will be the winner every time, unless the renewable fuel can achieve cost and performance parity with petrol. Nascent producers of advanced biofuels, including Amyris, LS9, Neste and Solazyme, aim to deliver renewable diesel fuels that not only meet the cost challenge, but also exceed the storage, transport, engine performance and emissions properties of petroleum diesel.  相似文献   

14.
In recent years, liquid biofuels for transport have benefited from significant political support due to their potential role in curbing climate change and reducing our dependence on fossil fuels. They may also participate to rural development by providing new markets for agricultural production. However, the growth of energy crops has raised concerns due to their high consumption of conventional fuels, fertilizers and pesticides, their impacts on ecosystems and their competition for arable land with food crops. Low-input species such as Jatropha curcas , a perennial, inedible crop well adapted to semiarid regions, has received much interest as a new alternative for biofuel production, minimizing adverse effects on the environment and food supply. Here, we used life-cycle assessment to quantify the benefits of J. curcas biofuel production in West Africa in terms of greenhouse gas emissions and fossil energy use, compared with fossil diesel fuel and other biofuels. Biodiesel from J. curcas has a much higher performance than current biofuels, relative to oil-derived diesel fuels. Under West Africa conditions, J. curcas biodiesel allows a 72% saving in greenhouse gas emissions compared with conventional diesel fuel, and its energy yield (the ratio of biodiesel energy output to fossil energy input) is 4.7. J. curcas production studied is eco-compatible for the impacts under consideration and fits into the context of sustainable development.  相似文献   

15.
Alternative fuels are receiving considerable attention, especially biodiesel, which is recognized for its environmental benefits. One advantage is its biodegradability. However, biodegradability may allow the fuel to be more susceptible to microbial contamination, especially during storage. The susceptibility to biodeterioration of biodiesel, diesel, and diesel containing 5, 10, and 20% biodiesel was evaluated using fungi isolated from contaminated oil systems. Paecilomyces sp. produced the highest biomass in 20% and 100% biodiesel, while Aspergillus fumigatus grew best in pure biodiesel. Yeasts had the highest rates of degradation, especially Candida silvicola, with 100% degradation of all esters. Rhodotorula sp. showed greatest activity for C18:3 (linolenic acid), at 39.4%, followed by C18:1 (oleic acid) and C16 (palmitic acid), at 21% and 15%, respectively, after 7 days of incubation. The results are relevant for the resolution of the decade-long debate on the increase in diesel biodegradability due to the addition of biodiesel.  相似文献   

16.
Environmental concerns and depletion of fossil fuels along with government policies have led to the search for alternative fuels from various renewable and sustainable feedstocks. This review provides a critical overview of the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, WCO, and CTO and their recent trends toward potential biofuel production. Plant oils with a high energy content are primarily composed of triglycerides (generally >?95%), accompanied by diglycerides, monoglycerides, and free fatty acids. The heat content of plant oils is close to 90% for diesel fuels. The oxygen content is the most important difference in chemical composition between fossil oils and plant oils. Triglycerides can even be used directly in diesel engines. However, their high viscosity, low volatility, and poor cold flow properties can lead to engine problems. These problems require that plant oils need to be upgraded if they are to be used as a fuel in conventional diesel engines. Biodiesel, biooil, and renewable diesel are the three major biofuels obtained from plant oils. The main constraint associated with the production of biodiesel is the cost and sustainability of the feedstock. The renewable diesel obtained from crude tall oil is more sustainable than biofuels obtained from other feedstocks. The fuel properties of renewable diesel are similar to those of fossil fuels with reduced greenhouse gas emissions. In this review, the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, and tall oil, are presented. Both their major and minor components are discussed. Their compositions and fuel properties are compared to both fossil fuels and biofuels.  相似文献   

17.
There is a need for sustainable fuels for diesel engines and fuels containing particles will function as a fuel in diesel engines. Some microalgae such as Chlorella vulgaris are unicellular and 5–10 μm in size, which is suitable for combining in an emulsion fuel. An emulsion consisting of transesterified rapeseed oil, a surfactant and a slurry of C. vulgaris was used as a fuel in an unmodified single cylinder diesel engine. The fuel consumption and emissions of this fuel was determined and although the carbon monoxide levels were higher the NOx emission was lower than that of diesel.  相似文献   

18.
This field study investigated the colonization process of soil contaminated with different petroleum products (petrol, diesel fuel, spent engine oil; dose: 6000 mg of fuel·kg?1 dry mass [d.m.] of soil) by epigeic and edaphic invertebrates during the progress of natural bioremediation and bioremediation enhanced using selected microorganisms (ZB-01 biopreparation). Epigeic fauna was captured using pitfall traps. Occurrence of edaphic fauna in soil samples as well as total petroleum hydrocarbon contents (TPH) were also investigated. Results showed that inoculation with ZB-01 biocenosis allowed the degradation of petroleum derivatives in the soil contaminated with diesel fuel and engine oil, with 82.3% and 75.4% efficiency, respectively. Applying bioremediation to all contaminated soils accelerated the process of recolonization by edaphic invertebrates. However, the 28-month period was too short to observe full population recovery in soils contaminated with diesel fuel and engine oil. Microbe-enhanced bioremediation accelerated recolonization by epigeic invertebrates on soil contaminated with diesel fuel, whereas it exerted inhibitory effect on recolonization of soil contaminated with engine oil (especially by Collembola). The observed discrepancies in the rates of recolonization for soils contaminated with petrol and diesel fuel that were still noted at the stage of no longer different TPH levels justify the idea to include the survey of edaphic faunal density as one of the parameters in the ecological risk assessment of various bioremediation techniques.  相似文献   

19.
The global economy heads for a severe energy crisis: whereas the energy demand is going to rise, easily accessible sources of crude oil are expected to be depleted in only 10–20 years. Since a serious decline of oil supply and an associated collapse of the economy might be reality very soon, alternative energies and also biofuels that replace fossil fuels must be established. In addition, these alternatives should not further impair the environment and climate. About 90% of the biofuel market is currently captured by bioethanol and biodiesel. Biodiesel is composed of fatty acid alkyl esters (FAAE) and can be synthesized by chemical, enzymatic, or in vivo catalysis mainly from renewable resources. Biodiesel is already established as it is compatible with the existing fuel infrastructure, non-toxic, and has superior combustion characteristics than fossil diesel; and in 2008, the global production was 12.2 million tons. The biotechnological production of FAAE from low cost and abundant feedstocks like biomass will enable an appreciable substitution of petroleum diesel. To overcome high costs for immobilized enzymes, the in vivo synthesis of FAAE using bacteria represents a promising approach. This article points to the potential of different FAAE as alternative biofuels, e.g., by comparing their fuel properties. In addition to conventional production processes, this review presents natural and genetically engineered biological systems capable of in vivo FAAE synthesis.  相似文献   

20.
The biodiesel processor was developed for the production of biodiesel from non-edible oil of jatropha and karanj. The newly developed biodiesel processor is suitable for farmers in village level biodiesel production. The biodiesel processor was capable of producing 15 kg biodiesel per batch in 1.5 h at reaction temperature of 60°C. The biodiesel was produced from raw jatropha and karanj oil, and its blends with diesel were tested for power generation in a 7.5-kVA diesel engine generator set. The fuel properties, namely, kinematic viscosity and specific gravity, were found within the limits of Bureau of Indian Standards specifications. The overall efficiency of the generator for 4,500 W loading condition of jatropha- and karanj-biodiesel-blended fuel were recorded in the range of 21–23% and 24–27%, respectively. The overall efficiency of the generator for 6,000 W loading conditions was improved for jatropha and karanj biodiesel blends and were found in the range of 31–33% and 33–39%, respectively. Biodiesel blends B80 and pure biodiesel of karanj produced more power, and maximum overall efficiency was recorded as compared with diesel fueled generator. The overall efficiency on jatropha-biodiesel-blended fuel were found less than the diesel-fueled generator. The biodiesel processor based on alkali-catalyzed transesterification process can be used for quality biodiesel production from edible and non-edible vegetable oils. This processor can be integrated with rural energy system for domestic and small-scale industrial unit for biodiesel production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号