首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo trafficking and localization of p24 proteins in plant cells   总被引:1,自引:0,他引:1  
p24 proteins constitute a family of putative cargo receptors that traffic in the early secretory pathway. p24 proteins can be divided into four subfamilies (p23, p24, p25 and p26) by sequence homology. In contrast to mammals and yeast, most plant p24 proteins contain in their cytosolic C-terminus both a dilysine motif in the −3, −4 position and a diaromatic motif in the −7, −8 position. We have previously shown that the cytosolic tail of Arabidopsis p24 proteins has the ability to interact with ARF1 and coatomer (through the dilysine motif) and with COPII subunits (through the diaromatic motif). Here, we establish the localization and trafficking properties of an Arabidopsis thaliana p24 protein ( At p24) and have investigated the contribution of the sorting motifs in its cytosolic tail to its in vivo localization. At p24-red fluorescent protein localizes exclusively to the endoplasmic reticulum (ER), in contrast with the localization of p24 proteins in other eukaryotes, and the dilysine motif is necessary and sufficient for ER localization. In contrast, At p24 mutants lacking the dilysine motif are transported along the secretory pathway to the prevacuolar compartment and the vacuole, although a significant fraction is also found at the plasma membrane. Finally, we have found that ER export of At p24 is COPII dependent, while its ER localization requires COPI function, presumably for efficient Golgi to ER recycling.  相似文献   

2.
Anantharaman V  Aravind L 《Genome biology》2002,3(5):research0023.1-research00237

Background  

Members of the p24 (p24/gp25L/emp24/Erp) family of proteins have been shown to be critical components of the coated vesicles that are involved in the transportation of cargo molecules from the endoplasmic reticulum to the Golgi complex. The p24 proteins form hetero-oligomeric complexes and are believed to function as receptors for specific secretory cargo.  相似文献   

3.
The Golgi apparatus is a highly complex organelle comprised of a stack of cisternal membranes on the secretory pathway from the ER to the cell surface. This structure is maintained by an exoskeleton or Golgi matrix constructed from a family of coiled-coil proteins, the golgins, and other peripheral membrane components such as GRASP55 and GRASP65. Here we find that TMP21, p24a, and gp25L, members of the p24 cargo receptor family, are present in complexes with GRASP55 and GRASP65 in vivo. GRASPs interact directly with the cytoplasmic domains of specific p24 cargo receptors depending on their oligomeric state, and mutation of the GRASP binding site in the cytoplasmic tail of one of these, p24a, results in it being transported to the cell surface. These results suggest that one function of the Golgi matrix is to aid efficient retention or sequestration of p24 cargo receptors and other membrane proteins in the Golgi apparatus.  相似文献   

4.
The p24 family of type I integral-membrane proteins, which are localised in the endoplasmic reticulum (ER), the intermediate compartment and the Golgi apparatus, are thought to function as receptors for cargo exit from the ER and in transport vesicle formation. Members of the p24 family have been found in a molecular complex and are enriched in COPI-coated vesicles, which are involved in membrane traffic between the ER and Golgi complex. Although expressed abundantly, simultaneous deletion of several family members does not appear to affect cell viability and protein secretion in yeast. In order to gain more insights into the physiological roles of different p24 proteins, we generated mice deficient in the expression of one family member, p23 (also called 24delta1, see for alternative nomenclature). In contrast to yeast genetics, in mice disruption of both p23 alleles resulted in early embryonic lethality. Inactivation of one allele led not only to reduced levels of p23 itself but also to reduced levels of other family members. The reduction in steady-state protein levels also induced structural changes in the Golgi apparatus, such as the formation of dilated saccules. The generation of mice deficient in p23 expression has revealed an essential and non-redundant role for p23 in the earliest stages of mammalian development. It has also provided genetic evidence for the participation of p24 family members in oligomeric complexes and indicates a structural role for these proteins in maintaining the integrity of the early secretory pathway.  相似文献   

5.
p24 proteins are a family of type I membrane proteins localized to compartments of the early secretory pathway and to coat protein I (COPI)- and COPII-coated vesicles. They can be classified, by sequence homology, into four subfamilies, named p24α, p24β, p24γ, and p24δ. In contrast to animals and fungi, plants contain only members of the p24β and p24δ subfamilies. It has previously been shown that transiently expressed red fluorescent protein (RFP)-p24δ5 localizes to the endoplasmic reticulum (ER) as a consequence of highly efficient COPI-based recycling from the Golgi apparatus. Using specific antibodies, endogenous p24δ5 has now been localized to the ER and p24β2 to the Golgi apparatus in Arabidopsis root tip cells by immunogold electron microscopy. The relative contributions of the cytosolic tail and the luminal domains to p24δ5 trafficking have also been characterized. It is demonstrated that whereas the dilysine motif in the cytoplasmic tail determines the location of p24δ5 in the early secretory pathway, the luminal domain may contribute to its distribution downstream of the Golgi apparatus. By using knock-out mutants and co-immunoprecipitation experiments, it is shown that p24δ5 and p24β2 interact with each other. Finally, it is shown that p24δ5 and p24β2 exhibit coupled trafficking at the ER-Golgi interface. It is proposed that p24δ5 and p24β2 interact with each other at ER export sites for ER exit and coupled transport to the Golgi apparatus. Once in the Golgi, p24δ5 interacts very efficiently with the COPI machinery for retrograde transport back to the ER.  相似文献   

6.
Heteromeric complexes of p24 proteins cycle between early compartments of the secretory pathway and are required for efficient protein sorting. Here we investigated the role of cytoplasmically exposed tail sequences on two p24 proteins, Emp24p and Erv25p, in directing their movement and subcellular location in yeast. Studies on a series of deletion and chimeric Emp24p-Erv25p proteins indicated that the tail sequences impart distinct functional properties that were partially redundant but not entirely interchangeable. Export of an Emp24p-Erv25p complex from the endoplasmic reticulum (ER) did not depend on two other associated p24 proteins, Erp1 and Erp2p. To examine interactions between the Emp24p and Erv25p tail sequences with the COPI and COPII coat proteins, binding experiments with immobilized tail peptides and coat proteins were performed. The Emp24p and Erv25p tail sequences bound the Sec13p/Sec31p subunit of the COPII coat (K(d) approximately 100 microm), and binding depended on a pair of aromatic residues found in both tail sequences. COPI subunits also bound to these Emp24p and Erv25p peptides; however, the Erv25p tail sequence, which contains a dilysine motif, bound COPI more efficiently. These results suggest that both the Emp24p and Erv25p cytoplasmic sequences contain a di-aromatic motif that binds subunits of the COPII coat and promotes export from the ER. The Erv25p tail sequence binds COPI and is responsible for returning this complex to the ER.  相似文献   

7.
The secretory pathway is of vital importance for eukaryotic cells and has a pivotal role in the synthesis, sorting, processing and secretion of a large variety of bioactive molecules involved in intercellular communication. One of the key processes in the secretory pathway concerns the transport of cargo proteins from the ER (endoplasmic reticulum) to the Golgi. Type‐I transmembrane proteins of ~24 kDa are abundantly present in the membranes of the early secretory pathway, and bind the COPI and COPII coat complexes that cover vesicles travelling between the membranes. These p24 proteins are thought to play an important role in the selective transport processes at the ER—Golgi interface, although their exact functioning is still obscure. One model proposes that p24 proteins couple cargo selection in the lumen with vesicle coat recruitment in the cytosol. Alternatively, p24 proteins may furnish subcompartments of the secretory pathway with the correct subsets of machinery proteins. Here we review the current knowledge of the p24 proteins and the various roles proposed for the p24 family members.  相似文献   

8.
Misfolded secretory proteins are retained in the endoplasmic reticulum (ER) by quality control mechanisms targeted to exposed hydrophobic surfaces. Paradoxically, certain conotoxins expose extensive hydrophobic surfaces upon folding to their bioactive structures. How then can such secreted mini-proteins traverse the secretory pathway? Here we show that secretion of the hydrophobic conotoxin-TxVI is strongly dependent on its propeptide domain, which enhances TxVI export from the ER. The propeptide domain interacts with sorting receptors from the sortilin Vps10p domain family. The sortilin-TxVI interaction occurs in the ER, and sortilin facilitates export of TxVI from the ER to the Golgi. Thus, the prodomain in a secreted hydrophobic protein acts as a tag that can facilitate its ER export by a hitchhiking mechanism.  相似文献   

9.
The GPI (glycosylphosphatidylinositol) moiety is attached to newly synthesized proteins in the lumen of the ER (endoplasmic reticulum). The modified proteins are then directed to the PM (plasma membrane). Less well understood is how nascent mammalian GPI-anchored proteins are targeted from the ER to the PM. In the present study, we investigated mechanisms underlying membrane trafficking of the GPI-anchored proteins, focusing on the early secretory pathway. We first established a cell line that stably expresses inducible temperature-sensitive GPI-fused proteins as a reporter and examined roles of transport-vesicle constituents called p24 proteins in the traffic of the GPI-anchored proteins. We selectively suppressed one of the p24 proteins, namely p23, employing RNAi (RNA interference) techniques. The suppression resulted in pronounced delays of PM expression of the GPI-fused reporter proteins. Furthermore, maturation of DAF (decay-accelerating factor), one of the GPI-anchored proteins in mammals, was slowed by the suppression of p23, indicating delayed trafficking of DAF from the ER to the Golgi. Trafficking of non-GPI-linked cargo proteins was barely affected by p23 knockdown. This is the first to demonstrate direct evidence for the transport of mammalian GPI-anchored proteins being mediated by p24 proteins.  相似文献   

10.
BACKGROUND INFORMATION: The p24 protein family plays an important but unclear role at the ER (endoplasmic reticulum)-Golgi interface. A p24 member from each subfamily (p24alpha(3), beta(1), gamma(3) and delta(2)) is upregulated with the prohormone POMC (pro-opiomelanocortin) when Xenopus laevis intermediate pituitary melanotrope cells are physiologically activated. Here we explored the role of p24 by generating and analysing Xenopus with melanotrope cell-specific transgene expression of p24beta(1) or p24gamma(3), two of the p24 proteins coexpressed with POMC, and compared the results with those previously reported for the two other coexpressed p24s (p24alpha(3) and p24delta(2)). RESULTS: The transgene expression of p24beta(1) or p24gamma(3) did not affect the endogenous p24 proteins or affected only endogenous p24gamma(3) respectively, whereas in transgenics expressing p24alpha(3) and p24delta(2), the levels of all endogenous p24 proteins were strongly decreased. Nevertheless, as for p24alpha(3) but albeit to a lesser extent, in the p24beta(1)-transgenic melanotrope cells the rate of cargo cleavage was reduced, probably reflecting reduced cargo transport from the ER, and POMC glycosylation and sulfation in the Golgi were not affected. The p24gamma(3)-transgenic cells displayed features of both the p24alpha(3)-transgenics (reduced cargo cleavage, normal POMC sulfation) and the p24delta(2)-transgenics (affected POMC glycosylation). CONCLUSIONS: Our results show that the four upregulated proteins p24alpha(3), beta(1), gamma(3) and delta(2) have non-redundant roles in the early secretory pathway, and suggest that each p24 subfamily member provides a proper ER/Golgi subcompartmental microenvironment, together allowing correct secretory protein transport and processing.  相似文献   

11.
Trafficking of secretory proteins between the endoplasmic reticulum (ER) and the Golgi apparatus depends on coat protein complexes I (COPI) and II (COPII) machineries. To date, full characterization of the distribution and dynamics of these machineries in plant cells remains elusive. Furthermore, except for a presumed linkage between COPI and COPII for the maintenance of ER protein export, the mechanisms by which COPI influences COPII-mediated protein transport from the ER in plant cells are largely uncharacterized. Here we dissect the dynamics of COPI in intact cells using live-cell imaging and fluorescence recovery after photobleaching analyses to provide insights into the distribution of COPI and COPII machineries and the mechanisms by which COPI influences COPII-mediated protein export from the ER. We found that Arf1 and coatomer are dynamically associated with the Golgi apparatus and that the COPII coat proteins Sec24 and Sec23 localize at ER export sites that track with the Golgi apparatus in tobacco leaf epidermal cells. Arf1 is also localized at additional structures that originate from the Golgi apparatus but that lack coatomer, supporting the model that Arf1 also has a coatomer-independent role for post-Golgi protein transport in plants. When ER to Golgi protein transport is inhibited by mutations that hamper Arf1-GTPase activity without directly disrupting the COPII machinery for ER protein export, Golgi markers are localized in the ER and the punctate distribution of Sec24 and Sec23 at the ER export sites is lost. These findings suggest that Golgi membrane protein distribution is maintained by the balanced action of COPI and COPII systems, and that Arf1-coatomer is most likely indirectly required for forward trafficking out of the ER due to its role in recycling components that are essential for differentiation of the ER export domains formed by the Sar1-COPII system.  相似文献   

12.
The p24 proteins belong to a highly conserved family of membrane proteins that cycle in the early secretory pathway. They bind to the coat proteins of COPI and COPII vesicles, and are proposed to be involved in vesicle biogenesis, cargo uptake, and quality control, but their precise function is still under debate. Most p24 proteins form hetero-oligomers, essential for their correct localization and stability. Functional insights regarding the mechanisms of their steady state localization and the role of interaction with coat proteins has been hampered by a lack of data on their concentration and state of oligomerization within the endoplasmic reticulum, the intermediate compartment, and Golgi complex. We have determined for all mammalian p24 family members the size of the oligomers formed and their stoichiometric relation in each of these individual organelles. In contrast to earlier reports, we show that individual members exist as dimers and monomers and that the ratio between these two forms depends on both the organelle investigated and the p24 protein. We find unequal quantities, with p23 and p27 building up concentration gradients, ruling out a simple 1:1 stoichiometry. In addition, we show differential cycling of individual p24 members. These data point to a complex and dynamic system of altering dimerizations of the family members.  相似文献   

13.
14.
Abstract. Five mammalian members of the gp25L/ emp24/p24 family have been identified as major constituents of the cis-Golgi network of rat liver and HeLa cells. Two of these were also found in membranes of higher density (corresponding to the ER), and this correlated with their ability to bind COP I in vitro. This binding was mediated by a K(X)KXX-like retrieval motif present in the cytoplasmic domain of these two members. A second motif, double phenylalanine (FF), present in the cytoplasmic domain of all five members, was shown to participate in the binding of Sec23 (COP II). This motif is part of a larger one, similar to the F/YXXXXF/Y strong endocytosis and putative AP2 binding motif. In vivo mutational analysis confirmed the roles of both motifs so that when COP I binding was expected to be impaired, cell surface expression was observed, whereas mutation of the Sec23 binding motif resulted in a redistribution to the ER. Surprisingly, upon expression of mutated members, steady-state distribution of unmutated ones shifted as well, presumably as a consequence of their observed oligomeric properties.  相似文献   

15.
Sec24 proteins and sorting at the endoplasmic reticulum   总被引:5,自引:0,他引:5  
COPII proteins are necessary to generate secretory vesicles at the endoplasmic reticulum. In yeast, the Sec24p protein is the only COPII component in which two close orthologues have been identified. By using gene knock-out in yeast, we found that the absence of one of these Sec24 orthologues resulted in a selective secretion defect for a subset of proteins released into the medium. Data base searches revealed the existence of an entire family of Sec24-related proteins in humans, worms, flies, and plants. We identified and cloned two new human cDNAs encoding proteins homologous to yeast Sec24p, in addition to two human cDNAs already present within the data bases. The entire Sec24 family identified to date is characterized by clusters of highly conserved residues within the 2/3 carboxyl-terminal domain of all the proteins and a divergent amino terminus domain. Human (h) Sec24 orthologues co-immunoprecipitate with hSec23Ap and migrate as a complex by size exclusion chromatography. Immunofluorescence microscopy confirmed that these proteins co-localize with hSec23p and hSec13p. Together, our data suggest that in addition to its role in the shaping up of the vesicle, the Sec23-24p complex may be implicated in cargo selection and concentration.  相似文献   

16.
Members of the yeast p24 family, including Emp24p and Erv25p, form a heteromeric complex required for the efficient transport of selected proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. The specific functions and sites of action of this complex are unknown. We show that Emp24p is directly required for efficient packaging of a lumenal cargo protein, Gas1p, into ER-derived vesicles. Emp24p and Erv25p can be directly cross-linked to Gas1p in ER-derived vesicles. Gap1p, which was not affected by emp24 mutation, was not cross-linked. These results suggest that the Emp24 complex acts as a cargo receptor in vesicle biogenesis from the ER.  相似文献   

17.
Glycoproteins exit the endoplasmic reticulum (ER) of the yeast Saccharomyces cerevisiae in coat protein complex II (COPII) coated vesicles. The coat consists of the essential proteins Sec23p, Sec24p, Sec13p, Sec31p, Sar1p and Sec16p. Sec24p and its two nonessential homologues Sfb2p and Sfb3p have been suggested to serve in cargo selection. Using temperature-sensitive sec24-1 mutants, we showed previously that a secretory glycoprotein, Hsp150, does not require functional Sec24p for ER exit. Deletion of SFB2, SFB3 or both from wild type or the deletion of SFB2 from sec24-1 cells did not affect Hsp150 transport. SFB3 deletion has been reported to be lethal in sec24-1. However, here we constructed a sec24-1 Deltasfb3 and a sec24-1 Deltasfb2 Deltasfb3 strain and show that Hsp150 was secreted slowly in both. Turning off the SEC24 gene did not inhibit Hsp150 secretion either, and the lack of SEC24 expression in a Deltasfb2 Deltasfb3 deletant still allowed some secretion. The sec24-1 Deltasfb2 Deltasfb3 mutant grew slower than sec24-1. The cells were irregularly shaped, budded from random sites and contained proliferated ER at permissive temperature. At restrictive temperature, the ER formed carmellae-like proliferations. Our data indicate that ER exit may occur in vesicles lacking a full complement of Sec23p/24p and Sec13p/31p, demonstrating diversity in the composition of the COPII coat.  相似文献   

18.
In Saccharomyces cerevisiae, vesicles that carry proteins from the ER to the Golgi compartment are encapsulated by COPII coat proteins. We identified mutations in ten genes, designated LST (lethal with sec-thirteen), that were lethal in combination with the COPII mutation sec13-1. LST1 showed synthetic-lethal interactions with the complete set of COPII genes, indicating that LST1 encodes a new COPII function. LST1 codes for a protein similar in sequence to the COPII subunit Sec24p. Like Sec24p, Lst1p is a peripheral ER membrane protein that binds to the COPII subunit Sec23p. Chromosomal deletion of LST1 is not lethal, but inhibits transport of the plasma membrane proton-ATPase (Pma1p) to the cell surface, causing poor growth on media of low pH. Localization by both immunofluorescence microscopy and cell fractionation shows that the export of Pma1p from the ER is impaired in lst1Delta mutants. Transport of other proteins from the ER was not affected by lst1Delta, nor was Pma1p transport found to be particularly sensitive to other COPII defects. Together, these findings suggest that a specialized form of the COPII coat subunit, with Lst1p in place of Sec24p, is used for the efficient packaging of Pma1p into vesicles derived from the ER.  相似文献   

19.
Active sorting at the endoplasmic reticulum (ER) drives efficient export of fully folded secretory proteins into coat protein complex II (COPII) vesicles, whereas ER-resident and misfolded proteins are retained and/or degraded. A number of secretory proteins depend upon polytopic cargo receptors for linkage to the COPII coat and ER export. However, the mechanism by which cargo receptors recognize transport-competent cargo is poorly understood. Here we examine the sorting determinants required for export of yeast alkaline phosphatase (ALP) by its cargo receptor Erv26p. Analyses of ALP chimeras and mutants indicated that Erv26p recognizes sorting information in the lumenal domain of ALP. This lumenal domain sorting signal must be positioned near the inner leaflet of the ER membrane for Erv26p-dependent export. Moreover, only assembled ALP dimers were efficiently recognized by Erv26p while an ALP mutant blocked in dimer assembly failed to exit the ER and was subjected to ER-associated degradation. These results further refine sorting information for ER export of ALP and show that recognition of folded cargo by export receptors contributes to strict ER quality control.  相似文献   

20.
Otte S  Barlowe C 《Nature cell biology》2004,6(12):1189-1194
Soluble secretory proteins are first translocated across endoplasmic reticulum (ER) membranes and folded in a specialized ER luminal environment. Fully folded and assembled secretory cargo are then segregated from ER-resident proteins into COPII-derived vesicles or tubular elements for anterograde transport. Mechanisms of bulk-flow, ER-retention and receptor-mediated export have been suggested to operate during this transport step, although these mechanisms are poorly understood. In yeast, there is evidence to suggest that Erv29p functions as a transmembrane receptor for the export of certain soluble cargo proteins including glycopro-alpha-factor (gpalphaf), the precursor of alpha-factor mating pheromone. Here we identify a hydrophobic signal within the pro-region of gpalphaf that is necessary for efficient packaging into COPII vesicles and for binding to Erv29p. When fused to Kar2p, an ER-resident protein, the pro-region sorting signal was sufficient to direct Erv29p-dependent export of the fusion protein into COPII vesicles. These findings indicate that specific motifs within soluble secretory proteins function in receptor-mediated export from the ER. Moreover, positive sorting signals seem to predominate over potential ER-retention mechanisms that may operate in localizing ER-resident proteins such as Kar2p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号