首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical model of erythrocyte lysis in isotonic solution of ammonium chloride is presented in frames of a statistical approach. The model is used to evaluate several parameters of mature erythrocytes (volume, surface area, hemoglobin concentration, number of anionic exchangers on membrane, elasticity and critical tension of membrane) through their sphering and lysis measured by a scanning flow cytometer (SFC). SFC allows measuring the light-scattering pattern (indicatrix) of an individual cell over the angular range from 10° to 60°. Comparison of the experimentally measured and theoretically calculated light scattering patterns allows discrimination of spherical from non-spherical erythrocytes and evaluation of volume and hemoglobin concentration for individual spherical cells. Three different processes were applied for erythrocytes sphering: (1) colloid osmotic lysis in isotonic solution of ammonium chloride, (2) isovolumetric sphering in the presence of sodium dodecyl sulphate and albumin in neutrally buffered isotonic saline, and (3) osmotic fragility test in hypotonic media. For the hemolysis in ammonium chloride, the evolution of distributions of sphered erythrocytes on volume and hemoglobin content was monitored in real-time experiments. The analysis of experimental data was performed in the context of a statistical approach, taking into account that parameters of erythrocytes vary from cell to cell.  相似文献   

2.
In a companion paper, the shapes of spectrin deficient mouse erythrocytes were described; in contrast to previous assumptions, spherules with tethered microvesicles rather than true "spherocytes" were found. Thence, spectrin deficient mouse erythrocytes are endowed with an excess of surface area for the given volume but the membrane is assuming a highly positive curvature. Observations during and after the action of enzymes cleaving the red cell surface charge (Neuraminidase, Trypsin, Chymotrypsin) showed that the previously positive membrane curvature, as well as the tendency of the membrane to flow into fingerlike protrusions was completely abolished. The erythrocytes of the spectrin deficient, desialylated mouse erythrocytes assumed a variety of shapes, often discocytic or even stomatocytic, i.e. their membrane presented with negative curvature. However, while these desialylated membranes could be easily deformed (elongated) by shear flow they did not recoil elastically into any definitive configuration after removal of the deforming forces. It is concluded from these observations that spectrin (acting on the inner interface between membrane and cytoplasm) and sialic acid residues (acting on the outer interface between membrane and plasma) exert antagonizing effects on membrane curvature and membrane bending elasticity. Sialic acid residues, strongly charged and situated on the outer side of the cell, produce positive membrane curvature; this observation can most readily be explained by assuming that this mechanical effect is caused by repulsive coulombic forces expanding the outer half of the bilayer. To explain the effect of the spectrin-complex in counteracting positive or in producing negative membrane curvature, a similar expansive coulombic force acting between the highly charged residues has been postulated. Thence, a model for explaining the overall elastic behaviour of the normal mammalian red cell is developed which is based on the assumption of elastic interactions of proteinacous membrane components coupled to the lipid bilayer of the membrane.  相似文献   

3.
Previous work demonstrated that human red cells can be drawn into cylindrical glass micropipettes of internal diameter approximately 2.0 mum without lysing. For pipettes of less than approximately 2.9 mum inside diameter, the red cell must become less spherical, that is, reduce its volume-to-area ratio. In this work measurements were made from 16-mm film records that allowed the determination of the cellular area and volume of individual erythrocytes as they were drawn into a 2.0-mum pipette with negative pressures. The results showed that the total surface area of the membrane remains constant and that the cell endures the passage into the pipette by losing volume. The volume loss was interpreted to be due to cell water and solute loss when the membrane is under stress. The loss of cell volume, rather than the stretching of the membrane, adds confirmation that although it is very deformable, the membrane is very resistant to two-dimensional strain.  相似文献   

4.
The relationship between alterations in transmembrane potential, cell volume, and phospholipid fatty acid turnover has been examined in human erythrocytes by treating the cells with the monovalent cation ionophore valinomycin. Valinomycin increases the cellular uptake of tetra[3H]phenylphosphonium ion by erythrocytes, indicating membrane hyperpolarization, and causes net loss of potassium chloride and water from the cells leading to a decrease in cell volume. Treatment of erythrocytes with valinomycin also enhances incorporation of [9, 10-(3)H]oleic acid into phospholipids, primarily diacylphosphatidylethanolamine. After replacing intracellular chloride with sulfate and treating cells with the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonate, exposure to valinomycin results in uptake of tetra[3H]phenylphosphonium ion and stimulation of [9, 10-(3)H]oleic acid incorporation, but, because anion efflux is prevented, no decrease in cell volume occurs. When tetra[3H]phenylphosphonium ion uptake is also prevented by suspending these cells in 125 mM KCl to dissipate the transmembrane potassium gradient, valinomycin still enhances [9, 10-(3)H] oleic acid incorporation into phospholipid. These results suggest that the presence of valinomycin in the membrane directly alters phospholipid fatty acid turnover and that some of the effects of this ionophore on cellular function previously attributed to alterations in transmembrane potential or cellular potassium content may instead be due to altered phospholipid turnover. Since it is possible that valinomycin may directly perturb phospholipid fatty acid turnover in other cells, the possibility that valinomycin-induced alterations in cellular function are due to altered phospholipid turnover rather than membrane hyperpolarization or altered potassium content should be considered in the interpretation of studies employing this ionophore.  相似文献   

5.
Erythrocyte membranes from multiple sclerosis (MS) patients and normal individuals were studied by electron spin resonance spectroscopy, osmotic fragility tests, scanning electron microscopy (SEM) and fatty acid analysis of membrane lipids. There was no significant difference in the membrane fluidity between MS and normal erythrocytes using fatty acid spin labels with the nitroxide moiety on carbons 5, 12, or 16 from the carboxyl group. Linoleic acid, which has been reported to decrease the absolute electrophoretic mobility of only MS erythrocytes, increased the fluidity of MS and normal erythrocyte membranes to a similar extent. The osmotic fragility of MS erythrocytes obtained from outpatients was similar to normal control cells but the osmotic fragility of erythrocytes obtained from hospitalized MS patients was greater than normal. Scanning electron microscopy of MS erythrocytes revealed no gross abnormalities. Cells incubated with linoleic acid had transformed from discocytes into sphero-echinocytes with prominent membrane surface indentations but MS and normal erythrocytes appeared identical. Of the fatty acid content of the total lipid extract, erythrocytes from most, but not all, MS hospitalized patients and some patients with other demyelinating diseases had relatively less (P<.001) 18:2 than the normal cells. These results indicate that at least some of the abnormalities reported in MS erythrocytes may only be found in hospitalized patients and may be due to other complications of the disease. They also indicate that the reported abnormal effects of linoleic acid on the electrophoretic mobility of MS erythrocytes may be caused by some other mechanism than an effect on the fluidity of the bilayer.  相似文献   

6.
The effects of electrical fields on the shape and volume of normal and abnormal red blood cells (RBC) are discussed. If an electrical field of 2-3 kV/cm is applied to the suspension of RBC, normal biconcave erythrocytes transform into spherocytes and their mean volume will increase from the usual volume of 90 µm3 to 160-170/µm3 in several minutes. There are two possible explanations for this phenomenon. The one is the membrane perforation by the potential induced by electrical field and subsequent influx of water. The other Is the mechanical surface traction caused by applied fields. The second mechanism will be discussed mainly in this paper.  相似文献   

7.
Plasmodium falciparum, the most virulent agent of human malaria, undergoes both asexual cycling and sexual differentiation inside erythrocytes. As the intraerythrocytic parasite develops it increases in size and alters the permeability of the host cell plasma membrane. An intriguing question is: how is the integrity of the host erythrocyte maintained during the intraerythrocytic cycle? We have used water window cryo X-ray tomography to determine cell morphology and hemoglobin content at different stages of asexual and sexual differentiation. The cryo stabilization preserves native structure permitting accurate analyses of parasite and host cell volumes. Absorption of soft X-rays by protein adheres to Beer–Lambert’s law permitting quantitation of the concentration of hemoglobin in the host cell compartment. During asexual development the volume of the parasite reaches about 50% of the uninfected erythrocyte volume but the infected erythrocyte volume remains relatively constant. The total hemoglobin content gradually decreases during the 48 h cycle but its concentration remains constant until early trophozoite stage, decreases by 25%, then remains constant again until just prior to rupture. During early sexual development the gametocyte has a similar morphology to a trophozoite but then undergoes a dramatic shape change. Our cryo X-ray tomography analysis reveals that about 70% of the host cell hemoglobin is taken up and digested during gametocyte development and the parasite eventually occupies about 50% of the uninfected erythrocyte volume. The total volume of the infected erythrocyte remains constant, apart from some reversible shrinkage at stage IV, while the concentration of hemoglobin decreases to about 70% of that in an uninfected erythrocyte.  相似文献   

8.
Morphometrical parameters, osmoregulatory possibilities, and the membrane reserve value of nuclear hemocytes (leukocytes and erythrocytes) were studied in the main classes of vertebrates by using method of hypoosmotic loads. It has been established that in the fish--mammals line in erythrocytes the absolute reserve of the plasmalemma decreases and the relative area of the cell surface increases. Evolution of leukocytes is accompanied by an increase of the membrane reserve and of the surface area due to a decrease of volume and to a rise of folding of the plasmalemma.  相似文献   

9.
Cell Surface Area Regulation and Membrane Tension   总被引:17,自引:0,他引:17  
The beautifully orchestrated regulation of cell shape and volume are central themes in cell biology and physiology. Though it is less well recognized, cell surface area regulation also constitutes a distinct task for cells. Maintaining an appropriate surface area is no automatic side effect of volume regulation or shape change. The issue of surface area regulation (SAR) would be moot if all cells resembled mammalian erythrocytes in being constrained to change shape and volume using existing surface membrane. But these enucleate cells are anomalies, possessing no endomembrane. Most cells use endomembrane to continually rework their plasma membrane, even while maintaining a given size or shape. This membrane traffic is intensively studied, generally with the emphasis on targeting and turnover of proteins and delivery of vesicle contents. But surface area (SA) homeostasis, including the controlled increase or decrease of SA, is another of the outcomes of trafficking. Our principal aims, then, are to highlight SAR as a discrete cellular task and to survey evidence for the idea that membrane tension is central to the task. Cells cannot directly ``measure' their volume or SA, yet must regulate both. We posit that a homeostatic relationship exists between plasma membrane tension and plasma membrane area, which implies that cells detect and respond to deviations around a membrane tension set point. Maintenance of membrane strength during membrane turnover, a seldom-addressed aspect of SA dynamics, we examine in the context of SAR. SAR occurs in both animal and plant cells. The review shows the latter to be a continuing source of groundbreaking work on tension-sensitive SAR, but is principally slanted to animal cells. Received: 1 May 2000/Revised: 14 August 2000  相似文献   

10.
Human erythrocytes suspended in plasma, or in phosphate buffered saline (PBS), were exposed to ionizing radiation. Potassium leakage from irradiated erythrocytes is significantly higher in PBS than in plasma. The potassium leakage decreases when PBS is gradually replaced by plasma. These findings suggest that some of the plasma constituents have radioprotective properties. The potassium leakage per cell is independent of the hematocrit, Hct. The potassium leakage is attributed to the formation of radiation defects in the membrane. Analysis of the effect of radiation dose, plasma and cell concentrations on the product of the number and surface area of the radiation defects indicates that the radiation damage is mainly due to the direct formation of free radicals in the cell membrane. The radioprotective effect of plasma is attributed to surface reactions of these free radicals with plasma constituents adsorbed on the membrane.  相似文献   

11.
Through Intralipid infusion in rabbits, the phospholipids derived from Intralipid were incorporated into erythrocytes, although Intralipid is mainly composed of triglycerides. This is supported by the increase in oleic acid and the compensatory decrease in linoleic acid of the phospholipids in the erythrocyte membrane, corresponding to the content of linoleic acid in the phospholipids from Intralipid. The excess phospholipid rendered the membrane more fluid, probably by overwhelming the rigidifying effect of the increased cholesterol content. Furthermore, the shape of erythrocytes was changed from biconcave to spur, dose dependently. The morphological alterations in erythrocyte membranes could not be completely elucidated by the changes in lipid. These results suggested that the alteration in lipid metabolism in Intralipid-infused rabbits caused various effects on the erythrocyte membrane, through the elevation of triglyceride, cholesterol, and phospholipid contents in plasma.  相似文献   

12.
《Free radical research》2013,47(3):135-146
Human erythrocytes suspended in plasma, or in phosphate buffered saline (PBS), were exposed to ionizing radiation. Potassium leakage from irradiated erythrocytes is significantly higher in PBS than in plasma. The potassium leakage decreases when PBS is gradually replaced by plasma. These findings suggest that some of the plasma constituents have radioprotective properties. The potassium leakage per cell is independent of the hematocrit, Hct. The potassium leakage is attributed to the formation of radiation defects in the membrane. Analysis of the effect of radiation dose, plasma and cell concentrations on the product of the number and surface area of the radiation defects indicates that the radiation damage is mainly due to the direct formation of free radicals in the cell membrane. The radioprotective effect of plasma is attributed to surface reactions of these free radicals with plasma constituents adsorbed on the membrane.  相似文献   

13.
Mayhew  T. M  Astle  D 《Brain Cell Biology》1997,26(1):53-61
A random sampling scheme is employed to obtain stereological estimates of disk membrane surface area in the entire retina and in the average photoreceptor cell. The scheme involves the use of vertical sections with combined light and electron microscopy at several magnification levels. Left and right retinas from six albino animals were analysed. There were no significant lateral differences. On average, the retina had a volume of 16 mm3, thickness of 200 μm and surface area of 80 mm2 (representing about 56% of the external surface of the eyeball). Photoreceptor disk membranes within outer segments amplified total retinal surface by almost 1000-fold (final surface 770 cm2 per retina). The retina contained 3×107 photoreceptors (packing density 374 000 mm-2) with an average disk membrane surface area of 2600 μm2. Mean nuclear volume in photoreceptor cells was 59 μm3 and the coefficient of variation for the distribution of nuclear volumes was 57%. The data are consistent with an average of 700 disks per photoreceptor cell, a membrane area of 4 μm2 per disk and a convergence ratio of ~260 photoreceptors per optic nerve fibre. The basic scheme could be modified for other species and for direct cell counts conducted on rods and cones separately.  相似文献   

14.
Sickle cell erythrocytes exhibit reduced carboxyl methylation of membrane proteins compared to normal erythrocytes. This altered methylation in sickle membrane proteins is also observable when extracted membranes, both intact and alkali treated, were used as substrates for the homologous protein methylase II (S-adenosylmethionine:protein-carboxyl O-methyltransferase, EC. 2.1.1.24). However, when glycophorin A, one of the major methyl acceptors in both membranes, was extracted by lithium diiodosalicylate and used as the methyl acceptor, the proteins from both membranes were methylated equally, suggesting an involvement of membrane structure in membrane-bound protein methylation. Merocyanine 540 (MC-540), a fluorescent probe, was used to determine if the membranes differed in organization. Incubation of both normal and sickle erythrocytes membranes with MC-540 produced a marked increase in extrinsic fluorescence, reflecting a relatively nonpolar environment for the dye bound to the membranes. The fluorescence from sickle cell ghosts was only 87% as intense as that from normal ghosts, while the actual amount of MC-540 associated with sickle cell membranes was only 62% of normal. These data suggest that differences exist in the distribution of surface charges on these plasma membranes. These results are consistent with the hypothesis that abnormal levels of membrane protein methylation observed in sickle erythrocytes may be a result of abnormal membrane organization characteristic to sickle cell anemia.  相似文献   

15.
Aged human erythrocytes exhibit increased anion exchange   总被引:1,自引:0,他引:1  
Young and old erythrocytes show different rate constants of anion exchange as measured by 35SO4(2-) efflux at 37 degrees C. Results indicate that the rate constant for 35SO4(2-) efflux (SO2-4-Cl- exchange) from old cells is approximately 20% greater than from young less dense cells. The cell water volume of older cells is also decreased. Based on these results and previously reported decreases of cell membrane area in aged cells we conclude that anion exchange (35SO4(2-)) is increased in older, more dense human erythrocytes.  相似文献   

16.
Lipid-soluble antioxidants, such as α-tocopherol, protect cell membranes from oxidant damage. In this work we sought to determine whether the amphipathic derivative of ascorbate, ascorbate 6-palmitate, is retained in the cell membrane of intact erythrocytes, and whether it helps to protect the cells against peroxidative damage. We found that ascorbate 6-palmitate binding to erythrocytes was dose-dependent, and that the derivative was retained during the multiple wash steps required for preparation of ghost membranes. Ascorbate 6-palmitate remained on the extracellular surface of the cells, because it was susceptible to oxidation or removal by several cell-impermeant agents. When bound to the surface of erythrocytes, ascorbate 6-palmitate reduced ferricyanide, an effect that was associated with generation of an ascorbyl free radical signal on EPR spectroscopy. Erythrocyte-bound ascorbate 6-palmitate protected membrane α-tocopherol from oxidation by both ferricyanide and a water-soluble free radical initiator, suggesting that the derivative either reacted directly with the exogenously added oxidant, or that it was able to recycle the α-tocopheroxyl radical to α-tocopherol in the cell membrane. Ascorbate 6-palmitate also partially protected cis-parinaric acid from oxidation when this fluorescent fatty acid was intercalated into the membrane of intact cells. These results show that an amphipathic ascorbate derivative is retained on the exterior cell surface of human erythrocytes, where it helps to protect the membrane from oxidant damage originating outside the cells.  相似文献   

17.
Membrane phospholipid and protein organization was studied in intact human erythrocytes exposed to phenylhydrazine, an oxidative agent inducer. The evaluation of the membrane phospholipid and protein organization was carried out in terms of asymmetric distribution across the membrane bilayer for the phospholipids, and in terms of accessibility of cleavable sites present on the outer membrane surface for the proteins. Treatment of phenylhydrazine-exposed erythrocytes either with bee venom phospholipase A2 or with trinitrobenzenesulfonic acid indicated that phosphatidylserine (PS), which is the only phospholipid not formally present on the outer leaflet of the membrane, was translocated to the outer surface of the cell membrane. The extent of this phenomenon was directly proportional to the concentration of the oxidant having a peak value at 0.1 mM. Phosphatidylcholine and phosphatidylethanolamine conserved their original distribution across the erythrocyte membrane throughout the study. The oxidant, at a dose which did not induce any modification of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis cytoskeleton membrane protein pattern, did not provoke any alteration of the membrane protein surface architecture, although the translocation of PS to the membrane outer leaflet in intact erythrocytes was present.  相似文献   

18.
The mechanisms by which mechanical loading may alter bone development within growth plates are still poorly understood. However, several growth plate cell or tissue morphological parameters are associated with both normal and mechanically modulated bone growth rates. The aim of this study was to quantify in situ the three-dimensional morphology of growth plate explants under compression at both cell and tissue levels. Growth plates were dissected from ulnae of immature swine and tested under 15% compressive strain. Confocal microscopy was used to image fluorescently labeled chondrocytes in the three growth plate zones before and after compression. Quantitative morphological analyses at both cell (volume, surface area, sphericity, minor/major radii) and tissue (cell/matrix volume ratio) levels were performed. Greater chondrocyte bulk strains (volume decrease normalized to the initial cell volume) were found in the proliferative (35.4%) and hypertrophic (41.7%) zones, with lower chondrocyte bulk strains (24.7%) in the reserve zone. Following compression, the cell/matrix volume ratio decreased in the reserve and hypertrophic zones by 24.3% and 22.6%, respectively, whereas it increased by 35.9% in the proliferative zone. The 15% strain applied on growth plate explants revealed zone-dependent deformational states at both tissue and cell levels. Variations in the mechanical response of the chondrocytes from different zones could be related to significant inhomogeneities in growth plate zonal mechanical properties. The ability to obtain in situ cell morphometry and monitor the changes under compression will contribute to a better understanding of mechanisms through which abnormal growth can be triggered.  相似文献   

19.
Human erythrocytes were incubated in haemolytic salt or sucrose media and the amount of potassium and haemoglobin released were monitored. In hypotonic NaCl and KCl solutions potassium release and haemolysis increased with time showing that the cell membrane had been injured and became permeable to intra- and extracellular cations which, due to intracellular haemoglobin, causes water influx and continuous haemolysis. Both potassium release and haemolysis remained, however, at their 2-minute level in the presence of LPC. Thus, LPC could reseal the membrane and prevent continuous salt fluxes. It protected erythrocytes from hypotonic haemolysis and the protection was more efficient in NaCl than in sucrose media. This suggests that the increase in the critical volume of erythrocytes caused by LPC occurs both in electrolyte and sucrose media, and the additional protection observed in electrolyte media is due to the resealing of the injured cell membrane by LPC. The repairing mechanism was mediated via the membrane lipids or integral proteins, since the time-course of haemolysis of erythrocytes swollen in NaCl media at the spectrin-denaturing temperature of 49.5 degrees C was similar to that at room temperature with and without LPC. LPC did not protect erythrocytes from colloid osmotic haemolysis caused by ammonia influx in an isotonic NH4Cl medium, but protected the cells from colloid osmotic haemolysis caused by sodium influx through nystatin-channels in NaCl media without any area or volume increase. Hence, LPC could not prevent ammonia influx through the lipid bilayer, but suppressed sodium influx through nystatin-channels presumably via LPC interference with cholesterol.  相似文献   

20.
The intracellular K+/Na+ ratio of various mammalian cell types are known to differ remarkably. Particularly noteworthy is the fact that erythrocytes of different mammalian species contain entirely different potassium and sodium concentrations. The human erythrocyte is an example of the supposedly "normal" high potassium cell, while the dog erythrocyte contains ten times more sodium than potassium ions (Table I). Furthermore, this difference is sustained despite the plasma sodium and potassium concentrations being almost identical in both species (high Na+ and low K+). In spite of these inorganic ion differences, both human and dog erythrocytes contain 33% dry material (mostly Hb) and 67% water. Conventional cell theory would couple cellular volume regulation with Na+ and K+ dependent ATPase activity which is believed to control intracellular Na+/K+ concentrations. Since the high Na+ and low K+ contents of dog erythrocytes are believed to be due to the lack of the postulated Na/K-ATPase enzyme, they must presumably have an alternative mechanism of volume regulation, otherwise current ideas of membrane ATPase activity coupled volume regulation need serious reconsideration. The object of our investigation was to explore the relationship between ATPase activity, ATP levels and the Na+/K+ concentrations in human and dog erythrocytes. Our results indicate that the intracellular ATP level in erythrocytes correspond with their K+, Na+ content. They are discussed in relation to conventional membrane transport theory and also to Ling's "association-induction hypothesis", the latter proving to be a more useful basis on which to interpret results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号