首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Summary We have compared the competition between strong or weak suppressor tRNAs and translational release factors (RF) at nonsense codons in the lacI gene of Escherichia coli. Using the F'lacIZ fusions developed by Miller and coworkers, UAG, UAA, and UGA codons at positions 189 and 220 were efficiently suppressed by plasmid-borne tRNAtrp suppressors cognate to each nonsense triplet. Introduction of a compatible RF 1 plasmid competed at UAG and UAA but not UGA codons. An RF2 expressing plasmid competed at UAA and UGA but had little effect at UAG. Release factor competition against weak suppressors was measured using combinations of noncognate suppressors and nonsense codons. In each case, release factor plasmids behaved identically towards poorly suppressed codons as they did when the same codons were efficiently suppressed. The implications for these studies on the role of release factors in nonsense suppression context effects are discussed.  相似文献   

2.
Cloning of the Escherichia coli release factor 2 gene.   总被引:9,自引:5,他引:4       下载免费PDF全文
The protein release factor 2 (RF2) participates in Escherichia coli polypeptide chain termination with codon specificity (UAA or UGA). A colicin E1 recombinant identified in the Carbon and Clarke E. coli bank contains the protein release factor 2 gene. A 1.7-kilobase E. coli fragment has been subcloned into the plasmid pUC9 vector. Bacterial cells, containing the plasmid recombinant, produce elevated levels of protein release factor 2 as detected by an immune precipitation assay and in vitro measurement of UGA-directed peptide chain termination and [3H]UGA codon recognition.  相似文献   

3.
Stop codons have been exploited for genetic incorporation of unnatural amino acids (Uaas) in live cells, but their low incorporation efficiency, which is possibly due to competition from release factors, limits the power and scope of this technology. Here we show that the reportedly essential release factor 1 (RF1) can be knocked out from Escherichia coli by 'fixing' release factor 2 (RF2). The resultant strain JX33 is stable and independent, and it allows UAG to be reassigned from a stop signal to an amino acid when a UAG-decoding tRNA-synthetase pair is introduced. Uaas were efficiently incorporated at multiple UAG sites in the same gene without translational termination in JX33. We also found that amino acid incorporation at endogenous UAG codons is dependent on RF1 and mRNA context, which explains why E. coli tolerates apparent global suppression of UAG. JX33 affords a unique autonomous host for synthesizing and evolving new protein functions by enabling Uaa incorporation at multiple sites.  相似文献   

4.
Release factors (RF) 1 and 2 trigger the hydrolysis of the peptide from the peptidyl-tRNA during translation termination. RF1 binds to the ribosome in response to the stop codons UAG and UAA, whereas RF2 recognizes UAA and UGA. RF1 and RF2 have been shown to bind to several ribosomal proteins. To study this interaction in vivo, prfA1, a mutant form of RF1 has been used. A strain with the prfA1 mutation is temperature sensitive (Ts) for growth at 42 degrees C and shows an increased misreading of UAG and UAA. In this work we show that a point mutation in ribosomal protein S4 can, on the one hand, make the RF1 mutant strain Ts(+); on the other hand, this mutation increases the misreading of UAG, but not UAA, caused by prfA1. The S4 mutant allele, rpsD101, is a missense mutation (Tyr51 to Asp), which makes the cell cold sensitive. The behaviour of rpsD101 was compared to the well-studied S4 alleles rpsD12, rpsD14, and rpsD16. These three mutations all confer both a Ts (44 degrees C) phenotype and show a ribosomal ambiguity phenotype, which rpsD101 does not. The three alleles were sequenced and shown to be truncations of the S4 protein. None of the three mutations could compensate for the Ts phenotype caused by the prfA1 mutation. Hence, rpsD101 differs in all studied characteristics from the three above mentioned S4 mutants. Because rpsD101 can compensate for the Ts phenotype caused by prfA1 but enhances the misreading of UAG and not UAA, we suggest that S4 influences the interaction of RF1 with the decoding center of the ribosome and that the Ts phenotype is not a consequence of increased readthrough.  相似文献   

5.
Bacterial release factors (RFs) 1 and 2 catalyse translation termination at UAG/UAA and UGA/UAA stop codons respectively. It has been shown that limiting the amount of ribosomal protein L11 affects translation termination at UAG and UGA differently. To understand the functional interplay between L11 and RF1/RF2, we isolated 21 distinct mutations in L11 as suppressors of either temperature-sensitive (ts) RF1/RF2 strains or read-through mutants of lacZ nonsense (UAG or UGA) strains. 10 of 21 mutants restored ts lethal growth of RF1 and/or RF2 strains. All the selected L11 mutants, including the RF1ts- and RF2ts-specific suppressors, had the same effect, either enhancing or reducing, on UAG and UGA termination efficiency in vivo. The specific properties of the selected L11 mutations remained unchanged in an RF3 deletion strain. Moreover, ribosomes absent of L11 had equally reduced activity for both RF1- and RF2-mediated peptide release in vitro. These results suggest that, unlike the previous notion, L11 has a common, cooperative role with RF1 and RF2. These L11 mutations were located on the surface of two domains of L11, and interpreted to affect the interaction between L11 and rRNA or the RFs thereby leading to the altered translation termination.  相似文献   

6.
R Martin  M Weiner    J Gallant 《Journal of bacteriology》1988,170(10):4714-4717
In Escherichia coli, nonsense suppression at UAA codons is governed by the competition between a suppressor tRNA and the translational release factors RF1 and RF2. We have employed plasmids carrying the genes for RF1 and RF2 to measure release factor preference at UAA codons at 13 different sites in the lacI gene. We show here that the activity of RF1 and RF2 varies according to messenger context. RF1 is favored at UAA codons which are efficiently suppressed. RF2 is preferred at poorly suppressed sites.  相似文献   

7.
8.
9.
10.
Recoding a stop codon to an amino acid may afford orthogonal genetic systems for biosynthesizing new protein and organism properties. Although reassignment of stop codons has been found in extant organisms, a model organism is lacking to investigate the reassignment process and to direct code evolution. Complete reassignment of a stop codon is precluded by release factors (RFs), which recognize stop codons to terminate translation. Here we discovered that RF1 could be unconditionally knocked out from various Escherichia coli stains, demonstrating that the reportedly essential RF1 is generally dispensable for the E. coli species. The apparent essentiality of RF1 was found to be caused by the inefficiency of a mutant RF2 in terminating all UAA stop codons; a wild type RF2 was sufficient for RF1 knockout. The RF1-knockout strains were autonomous and unambiguously reassigned UAG to encode natural or unnatural amino acids (Uaas) at multiple sites, affording a previously unavailable model for studying code evolution and a unique host for exploiting Uaas to evolve new biological functions.  相似文献   

11.
Y Inagaki  Y Bessho    S Osawa 《Nucleic acids research》1993,21(6):1335-1338
In Mycoplasma capricolum, a relative of Gram-positive eubacteria with a high genomic AT-content (75%), codon UGA is assigned to tryptophan instead of termination signal. Thus, in this bacterium the release factor 2 (RF-2), that recognizes UAA and UGA termination codons in eubacteria such as Escherichia coli and Bacillus subtilis, would be either specific to UAA or deleted. To test this, we have constructed a cell-free translation system using synthetic mRNA including codon UAA [mRNA(UAA)], UAG [mRNA(UAG)] and UGA [mRNA(UGA)] in-frame. In the absence of tryptophan, the translation of mRNA(UGA) ceased at UGA sites without appreciable release of the synthesized peptides from the ribosomes, whereas with mRNA(UAA) or mRNA(UAG) the bulk of the peptides was released. Upon addition of the E.coli S-100 fraction or B.subtilis S-100 fraction to the translation system, the synthesized peptides with mRNA(UGA) were almost completely released from the ribosomes, presumably because of the presence of RF-2 active to UGA in the added S-100 fraction. These data suggest that RF-2 is deleted or its activity to UGA is strongly weakened in M.capricolum.  相似文献   

12.
O Mikuni  K Kawakami  Y Nakamura 《Biochimie》1991,73(12):1509-1516
Mutations in the prfB gene which encodes peptide-chain-release factor 2 of Escherichia coli were defined by DNA sequence analysis. prfB1 and prfB3 substitute lysine and asparagine for glutamate and aspartate at amino acid positions 89 and 143, respectively. Temperature-sensitive mutations, prfB2 and prfB286, each contain the identical substitution of phenylalanine for leucine-328. These mutations suppress UGA but not UAG or UAA. The efficiency of suppression was affected by the neighboring RNA context. The prfB gene encodes a premature UGA stop codon at position 26 and is expressed by +1 frameshifting. The efficiency of natural frameshift was 18% as measured by using the monolysogenic lambda assay vector containing prfB-lacZ fusions, and increased up to 30% in the prfB mutants. These observations can be interpreted as genetic evidence for the autogenous control of RF2 synthesis by frameshifting. Structural and functional organizations of release factors are discussed.  相似文献   

13.
The YrdC protein--a putative ribosome maturation factor   总被引:2,自引:0,他引:2  
Release factor one (RF1) terminates protein synthesis in response to stop codons UAG and UAA. A mutant allele of RF1 causes temperature sensitive growth at 42 degrees C. We have earlier described the isolation of a suppressor of the temperature sensitive phenotype. The suppressor mutation is a small deletion in the open reading frame yrdC, and we have shown that the DeltayrdC mutation leads to immature 30S subunits and, as a consequence, to fewer translating ribosomes. YrdC is a small conserved protein with a dsRNA-binding surface. Here, we have characterized the YrdC protein. We show that the deletion leads to no production of functional protein, and we have indications that the YrdC protein might be essential in a wild type background. The protein is needed for the maturation of 16S rRNA, even though it does not interact tightly with either of the ribosomal subunits, or the 70S particles. The less effective maturation of rRNA affects the ribosomal feedback control, leading to an increase in expression from P1rrnB. We suggest that the function of the YrdC protein is to keep an rRNA structure needed for proper processing of 16S rRNA, especially at lower temperatures. This activity may require other factor(s). We suggest the gene be renamed rimN, and the mutant allele rimN141.  相似文献   

14.
W J Craigen  C T Caskey 《Biochimie》1987,69(10):1031-1041
The termination of protein synthesis in Escherichia coli depends upon the soluble protein factors RF1 or RF2. RF1 catalyzes UAG and UAA dependent termination, while RF2 catalyzes UGA and UAA dependent termination. The proteins have been purified to homogeneity, their respective genes isolated, and their primary structures deduced from the DNA sequences. The sequences reveal considerable conserved homology, presumably reflecting functional similarities and a common ancestral origin. The RFs are encoded as single copy genes on the bacterial chromosome. RF2 exhibits autogenous regulation in an in vitro translation system. The mechanism of autoregulation appears to be an in-frame UGA stop codon that requires a 1+ frameshift for the continued synthesis of the protein. Frameshifting prior to the inframe stop codon occurs at a remarkably high frequency by an unknown mechanism. Future studies will be directed at understanding how RFs interact with the ribosomal components, and further defining the mechanism of RF2 frameshifting.  相似文献   

15.
We previously reassigned the amber UAG stop triplet as a sense codon in Escherichia coli by expressing a UAG-decoding tRNA and knocking out the prfA gene, encoding release factor 1. UAG triplets were left at the ends of about 300 genes in the genome. In the present study, we showed that the detrimental effect of UAG reassignment could be alleviated by increasing the efficiency of UAG translation instead of reducing the number of UAGs in the genome. We isolated an amber suppressor tRNA(Gln) variant displaying enhanced suppression activity, and we introduced it into the prfA knockout strain, RFzero-q, in place of the original suppressor tRNA(Gln). The resulting strain, RFzero-q3, translated UAG to glutamine almost as efficiently as the glutamine codons, and it proliferated faster than the parent RFzero-q strain. We identified two major factors in this growth enhancement. First, the sucB gene, which is involved in energy regeneration and has two successive UAG triplets at the end, was expressed at a higher level in RFzero-q3 than RFzero-q. Second, the ribosome stalling that occurred at UAG in RFzero-q was resolved in RFzero-q3. The results revealed the importance of "backup" stop triplets, UAA or UGA downstream of UAG, to avoid the deleterious impact of UAG reassignment on the proteome.  相似文献   

16.
In the translational termination step of protein synthesis the three termination codons UAA, UAG or UGA are recognized by so-called release or termination factors. The release factor RF-1 interacts with UAG and UAA whereas RF-2 is specific for UGA and UAA. Two mechanisms concerning the termination event have been discussed so far: recognition of the termination codon by the protein in a tRNA-like manner or double-strand formation between the codon and the 3' end of the 16S rRNA which is stabilized by the termination factor. Using equilibrium dialysis we show that 40% of the ribosomes can bind UGAA in an RF-2-dependent manner. The stability with the correct combination RF-2-UGA is tenfold higher as compared to the wrong termination codon UAG. We confirm prior findings that the termination factor RF-2 is bound to the A-site of the ribosome. In addition to the ribosomal proteins L2, L10, L7/L12 and L20 of the large subunit and S6 and S18 of the small subunit, the 16S rRNA became labelled when radioactive UGA was crosslinked to the ribosome in the presence of RF-2. Our data support a mechanism of termination in which a double strand between the termination codon and the 3' end of the 16S rRNA is formed as the starting event. The resulting RNA-RNA double strand in turn may be recognized and stabilized by the termination factor.  相似文献   

17.
G F Short  S Y Golovine  S M Hecht 《Biochemistry》1999,38(27):8808-8819
An in vitro protein synthesizing system was modified to facilitate the improved, site-specific incorporation of unnatural amino acids into proteins via readthrough of mRNA nonsense (UAG) codons by chemically misacylated suppressor tRNAs. The modified system included an S-30 extract derived from Escherichia coli that expresses a temperature-sensitive variant of E. coli release factor 1 (RF1). Mild heat treatment of the S-30 extract partially deactivated RF1 and improved UAG codon readthrough by as much as 11-fold, as demonstrated by the incorporation of unnatural amino acids into positions 25 and 125 of HIV-1 protease and positions 10 and 22 of E. coli dihydrofolate reductase. The increases in yields were the greatest for those amino acids normally incorporated poorly in the in vitro protein synthesizing system, thus significantly enhancing the repertoire of modified amino acids that can be incorporated into the proteins of interest. The substantial increase in mutant protein yields over those obtained with an S-30 extract derived from an RF1 proficient E. coli strain is proposed to result from a relaxed stringency of termination by RF1 at the stop codon (UAG). When RF1 levels were depleted further, the intrinsic rate of DHFR synthesis increased, consistent with the possibility that RF1 competes not only at stop codons but also at other mRNA codons during peptide elongation. It thus seems possible that in addition to its currently accepted role as a protein factor involved in peptide termination, RF1 is also involved in functions that control the rate at which protein synthesis proceeds.  相似文献   

18.
Certain C-terminal sequences of nascent peptide cause an efficient protein tagging by tmRNA system at stop codons in Escherichia coli. Here, we demonstrate that both mRNA cleavage and tmRNA tagging occur at UAG stop codon recognized specifically by polypeptide release factor 1 (RF-1) when the activity of RF-1 is reduced by a mutation in the prfA gene without requirement of particular C-terminal sequences of nascent peptide. The tmRNA tagging and mRNA cleavage in the prfA mutant were eliminated when the wild-type RF-1 but not RF-2 was supplied from plasmid. In addition, depletion of either RF-1 or RF-2 induces endonucleolytic cleavage and tmRNA tagging at UAG or UGA stop codons respectively. We conclude that ribosome stalling at the cognate stop codon caused by reduced activity or expression of RF-1 or RF-2 is responsible for mRNA cleavage. The present data along with our previous studies strongly suggest that ribosome stalling leads to endonucleolytic cleavage of mRNA in general resulting in non-stop mRNA and that the 3' end of non-stop mRNA is probably only target for the tmRNA system.  相似文献   

19.
During of protein synthesis, or translation, four stages are usually recognized: initiation, elongation, termination, and recycling. Translation termination involves two protein types, the factors of termination of the first class participate in recognition of stop-codons and the termination factors of the second class are GTP-ases, which stimulate activity of the first class factors. Bacteria have two proteins of class 1, RF1 and RF2 (release factor), with overlapping codon specificity; both factors are capable to recognize the codon UAA, while the codons UAG and UGA are only decoded by RF1 and RF2, respectively. In addition, bacteria contain one factor of class 2, RF3, which not only stimulates activity of RF1 and RF2, but also promotes release of the first class factors after completion of termination. In contrast to prokaryotes, eukaryotic organisms have only one termination factor of class 1, eRF1. This protein recognizes each of the three stop-codons, which results in hydrolysis of peptidyl-tRNA. Eukaryotic cells also have only one factor of class 2, eRF3.  相似文献   

20.
In eubacteria, termination of translation is signaled by any one of the stop codons UAA, UAG, and UGA moving into the ribosomal A site. Two release factors, RF1 and RF2, recognize and bind to the stop codons with different affinities and trigger the hydrolysis of the ester bond that links the polypeptide with the P-site tRNA. Cryo-electron microscopy (cryo-EM) results obtained in this study show that ribosome-bound RF1 is in an open conformation, unlike the closed conformation observed in the crystal structure of the free factor, allowing its simultaneous access to both the decoding center and the peptidyl-transferase center. These results are similar to those obtained for RF2, but there is an important difference in how the factors bind to protein L11, which forms part of the GTPase-associated center of the large ribosomal subunit. The difference in the binding position, C-terminal domain for RF2 versus N-terminal domain for RF1, explains a body of L11 mutation studies that revealed differential effects on the activity of the two factors. Very recent data obtained with small-angle X-ray scattering now reveal that the solution structure of RF1 is open, as here seen on the ribosome by cryo-EM, and not closed, as seen in the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号