首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kanaori K  Tamura Y  Wada T  Nishi M  Kanehara H  Morii T  Tajima K  Makino K 《Biochemistry》1999,38(49):16058-16066
The duplex structures of the stereoregulated phosphorothioate DNAs, [R(p),R(p)]- and [S(p),S(p)]-[d(GC(ps)T(ps)ACG)] (ps, phosphorothioate; PS-DNA), with their complementary RNA have been investigated by combined use of (1)H NMR and restrained molecular dynamics calculation. Compared to those obtained for the unmodified duplex structures (PO-DNA.RNA), the NOE cross-peak intensities are virtually identical for the PS-DNA.RNA hybrid duplexes. The structural analysis on the basis of the NOE restraints reveals that all of the three DNA.RNA duplexes take a A-form conformation and that there is no significant difference in the base stacking for the DNA.RNA hybrid duplexes. On the other hand, the NOE cross-peak intensities of the protons around the central T(ps)A step of the PS-DNA.DNA duplexes are apparently different from those of PO-DNA. DNA. The chemical shifts of H8/6 and H1' at the T(ps)A step are also largely different among PS-DNA.DNAs and PO-DNA.DNA, suggesting that the DNA.DNA structure is readily changed by the introduction of the phosphorothioate groups to the central T(p)A step. The structure calculations indicate that all of these DNA.DNA duplexes are B-form although there exist some small differences in helical parameters between the [R(p),R(p)]- and [S(p),S(p)]PS-DNA.DNA duplexes. The melting temperatures (T(m)) were determined for all of the duplexes by plotting the chemical shift change of isolated peaks as a function of temperature. For the PS-DNA.RNA hybrid duplexes, the [S(p),S(p)] isomer is less stable than the [R(p),R(p)] isomer while this trend is reversed for the PS-DNA.DNA duplexes. Consequently, although the PS-DNA.RNA duplexes take the similar A-form structure, the duplex stability is different between PS-DNA.RNA duplexes. The stability of the DNA.RNA duplexes may not be governed by the A-form structure itself but by some other factors such as the hydration around the phosphorothioate backbone, although the T(m) difference of the DNA.DNA duplexes could be explained by the structural factor.  相似文献   

2.
The conformation of the trans-anti-(1S,2R,3S,4R)-N(2)-[1-(1,2,3,4-tetrahydro-2,3,4-trihydroxybenz[a]anthracenyl)]-2'-deoxyguanosyl adduct in d(G(1)G(2)C(3)A(4)G(5)X(6)T(7)G(8)G(9)T(10)G(11)).d(C(12)A(13)C(14)C(15)A(16)C(17)C(18)T(19)G(20)C(21)C(22)), bearing codon 12 of the human N-ras protooncogene (underlined), was determined. This adduct had S stereochemistry at the benzylic carbon. Its occurrence in DNA is a consequence of trans opening by the deoxyguanosine amino group of (1R,2S,3S,4R)-1,2-epoxy-1,2,3,4-tetrahydrobenz[a]anthracenyl-3,4-diol. The resonance frequencies, relative to the unmodified DNA, of the X(6) H1' and H6 protons were shifted downfield, whereas those of the C(18) and T(19) H1', H2', H2' ', and H3' deoxyribose protons were shifted upfield. The imino and amino resonances exhibited the expected sequential connectivities, suggesting no interruption of Watson-Crick pairing. A total of 426 interproton distances, including nine uniquely assigned BA-DNA distances, were used in the restrained molecular dynamics calculations. The refined structure showed that the benz[a]anthracene moiety bound in the minor groove, in the 5'-direction from the modified site. This was similar to the (+)-trans-anti-benzo[a]pyrene-N(2)-dG adduct having S stereochemistry at the benzylic carbon [Cosman, M., De Los Santos, C., Fiala, R., Hingerty, B. E., Singh, S. B., Ibanez, V., Margulis, L. A., Live, D., Geacintov, N. E., Broyde, S., and Patel, D. J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1914-1918]. It differed from the (-)-trans-anti-benzo[c]phenanthrene-N(2)-dG adduct having S stereochemistry at the benzylic carbon, which intercalated in the 5'-direction [Lin, C. H., Huang, X., Kolbanovskii, A., Hingerty, B. E., Amin, S., Broyde, S., Geacintov, N. E., and Patel, D. J. (2001) J. Mol. Biol. 306, 1059-1080]. The results provided insight into how PAH molecular topology modulates adduct structure in duplex DNA.  相似文献   

3.
More than twenty repeating sequence DNAs containing phosphorothioates were prepared from the appropriate dXTPs with DNA polymerase I. The Tms of the modified DNAs were all lower than the parent polymers. A phosphorothioate group 5' to a pyrimidine gave rise to a large decrease than 5' to a purine, e.g., poly(dA).poly(dT) = 50 degrees; poly(dsA).poly(dT) = 44 degrees; poly(dA).poly(dsT) = 33 degrees; and poly(dsA).poly(dsT) = 26 degrees. The presence of phosphorothioate groups had a dramatic effect on triplex formation; poly[d(TC)].poly[d(sGsA)] spontaneously dismutases to a triplex at pH 8 whereas triplex formation in poly[d(sTsC)].poly[d(GA)] was inhibited. Surprisingly poly(dsG).poly(dC) had a Tm which initially decreased with increasing ionic strength. Resistance to digestion with pancreatic DNAse I did not correlate with phosphorothioate content. Poly[d(AsT)], poly[d(TsC)].poly[d(sGA)] and poly[d(sTG)].poly[d(sCA)] were resistant whereas poly[d(sAT)] and poly[d(sTsTG)].poly[d(CsAsA)] were rapidly degraded. Thus phosphorothioate groups cause small conformational changes and may reveal new families of conformational polymorphisms.  相似文献   

4.
Horton TE  Maderia M  DeRose VJ 《Biochemistry》2000,39(28):8201-8207
This study analyzes the impact of phosphorothioate substitutions on the thermodynamic stability of a 12-nt RNA hairpin containing a (5')GAAA(3') tetraloop. The thermodynamic consequences of stereospecific phosphorothioate substitutions 5' to each adenosine in the loop region are measured using optical melting and calorimetry experiments. Surprisingly, a single stereospecific phosphorothioate substitution 5' to the second adenosine of the tetraloop, R(p)-A7, results in a stabilization corresponding to a Delta(DeltaG(37)(degrees)(C)) of approximately -2.9 kcal mol(-1) (0.1 M NaCl) when compared with that of an unmodified sample. Five other phosphorothioate-substituted samples did not show significant thermodynamic differences in comparison with the unsubstituted samples. Addition of Mg(2+) to all of the hairpins studied results in increased t(m's) that are fit with a general electrostatic model to a dissociation constant of K(d)(Mg(2+)) approximately 2-3 mM (0.1 M NaCl). The R(p)-A7 phosphorothioate-substituted hairpin showed an unusual decrease in t(m) and apparent increase in enthalpy of unfolding upon addition of Cd(2+). These results may impact the interpretation of interference mapping experiments that use phosphorothioate substitutions to characterize RNAs in solution.  相似文献   

5.
The thermodynamics of coenzyme binding to human cytochrome P450 reductase (CPR) and its isolated FAD-binding domain have been studied by isothermal titration calorimetry. Binding of 2',5'-ADP, NADP(+), and H(4)NADP, an isosteric NADPH analogue, is described in terms of the dissociation binding constant (K(d)), the enthalpy (DeltaH(B)) and entropy (TDeltaS(B)) of binding, and the heat capacity change (DeltaC(p)). This systematic approach allowed the effect of coenzyme redox state on binding to CPR to be determined. The recognition and stability of the coenzyme-CPR complex are largely determined by interaction with the adenosine moiety (K(d2)(')(,5)(')(-ADP) = 76 nM), regardless of the redox state of the nicotinamide moiety. Similar heat capacity change (DeltaC(p)) values for 2',5'-ADP (-210 cal mol(-)(1) K(-)(1)), NADP(+) (-230 cal mol(-)(1) K(-)(1)), and H(4)NADP (-220 cal mol(-)(1) K(-)(1)) indicate no significant contribution from the nicotinamide moiety to the binding interaction surface. The coenzyme binding stoichiometry to CPR is 1:1. This result validates a recently proposed one-site kinetic model [Daff, S. (2004) Biochemistry 43, 3929-3932] as opposed to a two-site model previously suggested by us [Gutierrez, A., Lian, L.-Y., Wolf, C. R., Scrutton, N. S., and Roberts, C. G. K. (2001) Biochemistry 40, 1964-1975]. Calorimetric studies in which binding of 2',5'-ADP to CPR (TDeltaS(B) = -13400 +/- 200 cal mol(-)(1), 35 degrees C) was compared with binding of the same ligand to the isolated FAD-binding domain (TDeltaS(B) = -11200 +/- 300 cal mol(-)(1), 35 degrees C) indicate that the number of accessible conformational substates of the protein increases upon 2',5'-ADP binding in the presence of the FMN-binding domain. This pattern was consistently observed along the temperature range that was studied (5-35 degrees C). This contribution of coenzyme binding energy to domain dynamics in CPR agrees with conclusions from previous temperature-jump studies [Gutierrez, A., Paine, M., Wolf, C. R., Scrutton, N. S., and Roberts, G. C. K. (2002) Biochemistry 41, 4626-4637]. A combination of calorimetry and stopped-flow spectrophotometry kinetics experiments showed that this linkage between coenzyme binding energetics and diffusional domain motion impinges directly on the molecular recognition of cytochrome c by CPR. Single-turnover reduction of cytochrome c by CPR (k(max) = 15 s(-)(1), K(d) = 37 microM) is critically coupled to coenzyme binding through ligand-induced motions that enable the FMN-binding domain to overcome a kinetically unproductive conformation. This is remarkable since the FMN-binding domain is not directly involved in coenzyme binding, the NADP(H) binding site being fully contained in the FAD-binding domain. Sequential rapid mixing measurements indicate that harnessing of coenzyme binding energy to the formation of a kinetically productive CPR-cytochrome c complex is a highly synchronized event. The inferred half-time for the decay of this productive conformation (tau(50)) is 330 +/- 70 ms only. Previously proposed structural and kinetic models are discussed in light of these findings.  相似文献   

6.
V K Moudgil  C Hurd 《Biochemistry》1987,26(16):4993-5001
Effects of different transforming agents were examined on the sedimentation characteristics of calf uterine progesterone receptor (PR) bound to the synthetic progestin [3H]R5020 or the known progesterone antagonist [3H]RU38486 (RU486). [3H]R5020-receptor complexes [progesterone-receptor complexes (PRc)] sedimented as fast migrating 8S moieties in 8-30% linear glycerol gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of cytosol containing [3H]PRc at 23 degrees C for 10-60 min, or at 0 degrees C with 0.15-0.3 M KCl or 1-10 mM ATP, caused a gradual transformation of PRc to a slow sedimenting 4S form. This 8S to 4S transformation was molybdate sensitive. In contrast, the [3H]RU486-receptor complex exhibited only the 8S form. Treatment with all three activation agents caused a decrease in the 8S form but no concomitant transformation of the [3H]RU486-receptor complex into the 4S form. PR in the calf uterine cytosol incubated at 23 or at 0 degrees C with 0.3 M KCl or 10 mM ATP could be subsequently complexed with [3H]R5020 to yield the 4S form of PR. However, the cytosol PR transformed in the absence of any added ligand failed to bind [3H]RU486. Heat treatment of both [3H]R5020- and [3H]RU486-receptor complexes caused an increase in DNA-cellulose binding, although the extent of this binding was lower when RU486 was bound to receptors. An aqueous two-phase partitioning analysis revealed a significant change in the surface properties of PR following both binding to ligand and subsequent transformation. The partition coefficient (Kobsd) of the heat-transformed [3H]R5020-receptor complex increased about 5-fold over that observed with PR at 0 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Triethylammonium uridine-3',5'-cyclic phosphorothioate crystallizes in space group P2(1)2(1)2(1), a = 7.177(1), b = 13.155(6), c = 21.114(7) A, C15H26N3O7PS, MW 423.4, Z = 4, dx = 1.41g/cm3. The crystal structure was solved by direct methods on the basis of 1493 counter X-ray diffraction data (CuK alpha) and refined to R = 5.1%. The configuration of the thiophosphate group is Rp; conformational parameters are: glycosyl torsion angle anti, -151.9(5) degrees, sugar pucker C(3')-endo with P = 27.3 degrees, vmax = 45.5 degrees, six-membered cycle in chair form. The bond distances in the non-esterified P-S and P-O suggest that the negative charge is distributed between the groups. As illustrated in this and other studies, P-O has a much higher affinity for hydrogen bonds than P-S, indicated here by interactions with triethyl-ammonium N-H and O(2')-H as donors. One additional hydrogen bond N(3)-H---0(4) ties the bases which form a ribbon-like structure. 0(2) and S are not engaged in hydrogen bonds. The triethylammonium ion is two-fold disordered.  相似文献   

8.
Stereochemical aspects of the formation of double bonds in abscisic acid   总被引:2,自引:1,他引:1  
The stereochemistry of the hydrogen elimination that occurs during the formation of the Delta(4)- and Delta(2)'-double bonds of abscisic acid has been determined from the (14)C/(3)H ratios in abscisic acid biosynthesized by avocado fruit from [2-(14)C,(2R)-2-(3)H(1)]-, [2-(14)C,(2S)-2-(3)H(1)]- and [2-(14)C,(5S)-5-(3)H(1)]-mevalonate. Setting the (14)C/(3)H ratio at 3:3 for [2-(14)C,(2R)-2-(3)H(1)]mevalonate, the corresponding ratio in derived methyl abscisate was 3:2.28; the analogous ratio for methyl abscisate from [2-(14)C,(2S)-2-(3)H(1)]mevalonate was 3:1.63. Removal of the 3'-hydrogen atom of abscisic acid by base-catalysed exchange altered the ratios to 3:1.55 and 3:1.44 respectively. It was concluded that this 3'-hydrogen atom is derived from the pro-2R-hydrogen atom of mevalonate. Removal of the 4-hydrogen atom from methyl abscisate by formation of a derivative, a lactone, lacking this hydrogen atom changed the ratio to 3:1.04 for material derived from [2-(14)C,(2R)-2-(3)H(1)]-mevalonate and to 3:1.05 for [2-(14)C,(2S)-2-(3)H(1)]mevalonate, showing that this hydrogen atom also is derived from the pro-2R-hydrogen atom of mevalonate. These ratios of the lactones are consistent with their retaining one (3)H atom at the 6'-methyl position of abscisic acid from the [(2R)-2-(3)H(1)]- and [(2S)-2-(3)H(1)]-mevalonate. The presence of some label at positions 3' and 4 when [(2S)-2-(3)H(1)]mevalonate was the precursor is attributed to the action of isopentenyl pyrophosphate isomerase. The hydrogen atom at C-5 of abscisic acid is derived from the pro-5S-hydrogen atom of mevalonate.  相似文献   

9.
The enzymatic degradability of chemosynthesized atactic poly([R,S]-3-hydroxybutyrate) [a-P(3HB)] by two types of extracellular poly(3-hydroxyalkanoate) (PHA) depolymerases purified from Ralstonia pickettii T1 (PhaZ(ral)) and Acidovorax Sp. TP4 (PhaZ(aci)), defined respectively as PHA depolymerase types I and II according to the position of the lipase box in the catalytic domain, were studied. The enzymatic degradation of a-P(3HB) by PhaZ(aci) depolymerase was confirmed from the results of weight loss and the scanning electron micrographs. The degradation products were characterized by one- and two-dimension (1)H NMR spectroscopy. It was found that a-P(3HB) could be degraded into monomer, dimer, and trimer by PhaZ(aci) depolymerase at temperatures ranging from 4 to 20 degrees C, while a-P(3HB) could hardly be hydrolyzed by PhaZ(ral) depolymerase in the same temperature range. These results suggested that the chemosynthesized a-P(3HB) could be degraded in the pure state by natural PHA depolymerase.  相似文献   

10.
The impact of 2'-deoxy-2'-fluoroarabinonucleotide residues (2'F-araN) on different G-quadruplexes derived from a thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2), an anti-HIV phosphorothioate aptamer PS-d(T2G4T2) and a DNA telomeric sequence d(G4T4G4) via UV thermal melting (T(m)) and circular dichroism (CD) experiments has been investigated. Generally, replacement of deoxyguanosines that adopt the anti conformation (anti-guanines) with 2'F-araG can stabilize G-quartets and maintain the quadruplex conformation, while replacement of syn-guanines with 2'F-araG is not favored and results in a dramatic switch to an alternative quadruplex conformation. It was found that incorporation of 2'F-araG or T residues into a thrombin-binding DNA G-quadruplex stabilizes the complex (DeltaT(m) up to approximately +3 degrees C/2'F-araN modification); 2'F-araN units also increased the half-life in 10% fetal bovine serum (FBS) up to 48-fold. Two modified thrombin-binding aptamers (PG13 and PG14) show an approximately 4-fold increase in binding affinity to thrombin, as assessed via a nitrocellulose filter binding assay, both with increased thermal stability (approximately 1 degrees C/2'F-ANA modification increase in T(m)) and nuclease resistance (4-7-fold) as well. Therefore, the 2'-deoxy-2'-fluoro-d-arabinonucleic acid (2'F-ANA) modification is well suited to tune (and improve) the physicochemical and biological properties of naturally occurring DNA G-quartets.  相似文献   

11.
The sequence specific binding of the antibiotic (4S)-(+)-dihydrokikumycin B and its (4R)-(-) enantiomer, [(S)-1 and (R)-1, respectively] to DNA were characterized by DNase I and MPE footprinting, calorimetry, UV spectroscopy, circular dichroism, and 1H NMR studies. Footprinting analyses showed that both enantiomers [(S)-1 and (R)-1] bind to AT-rich regions of DNA. 1H NMR studies (ligand induced chemical shift changes and NOE differences) of the dihydrkikumycins with d-[CGCAATTGCG]2 show unambiguously that the N to C termini of the ligands are bound to 5'-A5T6T7-3' reading from left to right. From quantitative 1D-NOE studies, the AH2(5)-ligand H7 distance of complex A [(S)-1 plus decamer (which is bound more strongly)] and complex B [(R)-1 and decamer] are estimated to be 3.8 +/- 0.3 A and 4.9 +/- 0.4 A, respectively. This difference in binding properties is reflected in the thermodynamic profiles of the two enantiomeric ligands determined by a combination of spectroscopic and calorimetric techniques. The binding free energies (delta G degrees) of (S)-1 and (R)-1 to poly d(AT).poly d(AT) at 25 degrees C are -31.8 and -29.3 kJ mol-1, respectively while the corresponding binding enthalpies (delta H degrees) are -11.3 and -0.8 kJ mol-1. These data permit the construction of models for the binding of the enantiomeric dihydrokikumycins to DNA and account for the more efficient binding of the natural (S) isomer to DNA.  相似文献   

12.
R Cosstick  F Eckstein 《Biochemistry》1985,24(14):3630-3638
The synthesis of four oligonucleotides containing alternating phosphorothioate groups, (Rp)-and (Sp)-d[G(p(S)CpG)3p(S)C] and (Rp)- and (Sp)-d[C(p(S)GpC)p(S)G], by the phosphite approach is described. Silica gel to which 2'(3')-O-acetyluridine and 5'-succinyl groups were bound served as support for oligomer synthesis. The syntheses were carried out by dimer addition with presynthesized diastereomerically pure dinucleoside phosphorothioates as building blocks. The products were characterized by 31P NMR, nuclease P1 digestion, and oxidation to the corresponding all-phosphate-containing oligomers. The ability of each oligomer to adopt the Z conformation under high-salt conditions was screened for by circular dichroism spectroscopy. Both (Rp)-d[G(p(S)CpG)3p(S)C] and (Sp)-d[C(p(S)GpC)3p(S)G] are capable of forming Z-type structures at high NaCl concentrations. In the case of (Rp)-d[G(p(S)CpG)3p(S)C] where a phosphorothioate of the Rp configuration occurs 5' to a deoxycytidine residue, the B----Z transition is potentiated in comparison to the unmodified oligomer. (Sp)-d[G(p(S)CpG)3p(S)C] and (Rp)-d[C(p(S)GpC)3p(S)G] retain the B conformation even at high NaCl concentration.  相似文献   

13.
A method is described for the preparation of multi-labeled cortisol and cortisone with (13)C and (2)H via the indan synthon method, starting from chiral 11-oxoindanylpropionic acid. [1, 3-(13)C(2)]Acetone was used for the syntheses of [1,2,4, 19-(13)C(4)]cortisol (cortisol-(13)C(4)) and [1,2,4, 19-(13)C(4)]cortisone (cortisone-(13)C(4)), and [1,3-(13)C(2),1,1,1, 3,3,3-(2)H(6)]acetone was for [1,2,4,19-(13)C(4),1,1,19,19, 19-(2)H(5)]cortisol (cortisol-(13)C(4),(2)H(5)) and [1,2,4, 19-(13)C(4),1,1,19,19,19-(2)H(5)]cortisone (cortisone-(13)C(4), (2)H(5)). The chemical shifts for the (13)C and (1)H NMR spectra of cortisol and cortisone were fully assigned.  相似文献   

14.
Hydrazinonicotinamide (HYNIC) forms stable coordination complexes with Tc-99m when reacted with Tc(V)oxo species such as Tc-mannitol or other Tc-polyhydric complexes. However, radio-HPLC of [Tc-For-MLFK-HYNIC] labeled via Tc-polyhydric ligands demonstrated multiple radiochemical species each with unique biodistribution patterns. This is likely due to the fact that Tc can bind to the hydrazino moiety, as well as polyhydric ligands, in a variety of coordination geometries. Tridentate ligands, such as bis(mercaptoethyl)methylamine (NS2), may constrain the possible coordination geometries and improve overall stability. To investigate this, we synthesized NS2, converted the [Tc-mannitol-For-MLFK-HYNIC] to the corresponding NS2-containing complex [Tc-NS2-For-MLFK-HYNIC], and compared its infection imaging and biodistribution properties with [Tc-mannitol-For-MLFK-HYNIC]. Conversion to the NS2 complex was confirmed by HPLC which showed a single unique hydrophobic species with retention time greater than the [Tc-mannitol-For-MLFK-HYNIC] complex. Imaging experiments with both preparations were performed in rabbits with E. coli infections in the left thigh. Tissue radioactivity measurements demonstrated that compared to Tc-mannitol-peptide, accumulation of Tc-NS2-peptide was lower in blood, heart, and normal muscle and higher in spleen, infected muscle, and pus (p < 0.01). These results indicate that the Tc-NS2-peptide complex is chemically more homogeneous and exhibits improved infection localization and biodistribution properties. In an effort to model the interactions of the metal-HYNIC core with NS2 and related ligand types, the reactions of [ReCl3(NNC5H4NH)(NHNC5H4N)] and [99TcCl3(NNC5H4NH)(NHNC5H4N)], effective structural analogues for the [M(NNC5H4NH(x))2] core, with NS2, C5H3N-2,6-(CH2SH)2, O(CH2CH2SH)2, and S(CH2CH2SH)2 were investigated and the compounds [M[CH3N(CH2CH2S)2](NNC5H4N)(NHNC5H4N] (M = 99Tc (5a), Re (5b)), [Re[C5H3N-2,6-(CH2S)2](NNC5H4N)(NHNC5H4N)].CH2Cl2.0.5MeOH (7), [Re[SCH2CH2)2O] (NNC5H4N)(NHNC5H4N)] (8), and [Re[(SCH2CH2)2S](NNC5H4NH)(NHNC5H4N)]Cl (9) were isolated. Similarly, the reaction of [ReCl3(NNC5H4NH)(NHNC5H4N)] with the bidentate ligands pyridine-2-methanethiol and 3-(trimethlysilyl)pyridine-2-thiol led to the isolation of [ReCl(C5H4N-2-CH2S) (NNC5H4N)(NHNC5H4N)] (10) and [Re(2-SC5H3N-3-SiMe3)2 (NNC5H4N)(NHNC5H4N)] (11), respectively, while reaction with N-methylimidazole-2-thiol yielded the binuclear complex [Re(OH)Cl(SC3H2N2CH3)2(NNC5H4N)2 (NHNC5H4N)2] (12). The analogous metal-(HYNIC-OH) precursor, [ReCl3[NNC5H3NH(CO2R)] [NHNC5H3N(CO2R)]] (R = H, 13a; R = CH3, 13b) has been prepared and coupled to lysine to provide [RCl3[NNC5H3NH(CONHCH2CH2CH2CH2CH(NH2)CO2H)] [NHNC5H3NH(CONHCH2CH2CH2CH2CH(NH2)CO2H)]].2HCl (14.2HCl), while the reaction of the methyl ester 13b with 2-mercaptopyridine yields [Re(2-SC5H4N)2[NNC5H3N(CO2Me)][NHNC5H3N(CO2Me)]] (15). While the chemical studies confirm the robustness of the M-HYNIC core (M = Tc, Re) and its persistence in ligand substitution reactions at adjacent coordination sites of the metal, the isolation of oligomeric structures and the insolubility of the peptide conjugates of 13, 14, and 15 underscore the difficulty of characterizing these materials on the macroscopic scale, an observation relevant to the persistent concerns with reagent purity and identity on the tracer level.  相似文献   

15.
The role of solvent composition and temperature on equilibrium electron transfer in seven rubredoxin variants [ Clostridium pasteurianum ( Cp), V8D, V8R, V8A, V44A Cp, Pyrococcus furiosus ( Pf), and A44V Pf] were investigated to examine the role of both monopolar and dipolar interactions. The reduction potentials of all variants decreased as the polarity of the solvent decreased. The enthalpy and entropy associated with electron transfer were determined from temperature-controlled voltammetric studies. The entropic contribution [delta( Tdelta S degrees )] to the change in the reduction potential was larger for charged variants (V8D and V8R), while the enthalpic contribution [delta(-delta H degrees )] was larger for the other mutants. The large entropy change observed for monopolar variants is likely due to solvent reorganization that occurs between oxidation states. Entropic-enthalpic compensation phenomena, an observation that most proteins have an entropic term [delta( Tdelta S degrees )] and enthalpic term [delta(-delta H degrees )] with opposite signs, was observed. A correlation of the size of the amino acid side chain with delta E degrees ', delta(-delta H degrees ), and delta( Tdelta S degrees ) is also discussed.  相似文献   

16.
In the recently discovered i-motif, four stretches of cytosine form two parallel-stranded duplexes whose C.C+ base pairs are fully intercalated. The i-motif may be recognized by characteristic Overhauser cross-peaks of the proton NMR spectrum, reflecting short H1'-H1' distances across the minor groove, and short internucleotide amino-proton-H2'/H2" across the major groove. We report the observation of such cross-peaks in the spectra of a fragment of the C-rich telomeric strand of vertebrates, d[CCCTAA]3CCC. The spectra also demonstrate that the cytosines are base-paired and that proton exchange is very slow, as reported previously for the i-motif. From UV absorbance and gel chromatography measurements, we assign these properties to an i-motif which includes all or nearly all the cytosines, and which is formed by intramolecular folding at slightly acid or neutral pH. A fragment of telomeric DNA of Tetrahymena, d[CCCCAA]3CCCC, has the same properties. Hence four consecutive C stretches of a C-rich telomeric strand can fold into an i-motif. Hypothetically, this could occur in vivo.  相似文献   

17.
Several beta replacement and alpha,beta elimination reactions catalyzed by tryptophanase from Escherichia coli are shown to proceed stereospecifically with retention of configuration. These conversions include synthesis of tryptophan from (2S,3R)- and (2s,3s)-[3(-3H)]serine in the presence of indole, deamination of these serines in D2O to pyruvate and ammonia, and cleavage of (2S,3R)-and (2S,3S)-[3(-3H)]tryptophan in D2O to indole, pyruvate, and ammonia. A coupled reaction with lactate dehydrogenase was used to trap the stereospecifically labeled [3-H,2H,3H]pryuvates as lactate, which was oxidized to acetate for chirality analysis of the methyl group. During deamination of tryptophan there is significant intramolecular transfer of the alpha proton of the amino acid to C-3 of indole. To determine the exposed face of the cofactor.substrate complex on the enzyme surface and to analyze its conformational orientation, sodium boro[3H]hydride was used to reduce tryptophanase-bound alaninepyridoxal phosphate Schiff's base. Degradation of the resulting pyridoxylalanine to (2S)-[2(-3H)]alanine and (4'S)-[4'(-3H)]pyridoxamine demonstrates that reduction occurs from the exposed si face at C-4' of the complex and that the ketimine double bond is trans.  相似文献   

18.
Z Szendi  F Sweet 《Steroids》1991,56(9):458-463
Pregnenolone 3-(2'-tetrahydropyranyl) ether (1) was condensed with 3,4-[2H]dihydropyran to mainly give (20R)-[6'-(3',4'-[2'H]dihydropyranyl)]-pregn-5-ene-3 beta,20-diol 3-(2'-tetrahydropyranyl) ether (20R-3), according to nuclear magnetic resonance (NMR). Cold, dilute HCl in ethanol removed the tetrahydropyranyl group at C-3 and also opened the dihydropyranyl ring at the C-20 position of 20R-3 to give (20R)-27-norcholest-5-en-22-one-3 beta,20,26-triol (20R-5). Analogous results were obtained by condensing pregnenolone 3-acetate with 3,4-[2H]dihydropyran to provide (20R)-[6'-(3',4'-[2'H]dihydropyranyl)]-pregn-5-ene-3 beta,20-diol 3-acetate (20R-4). Acid-catalyzed opening of the dihydropyranyl ring at C-20 in 20R-4 yielded 20R-7, which, on acetylation followed by crystallization, provided (20R)-27-norcholest-5-en-22-one-3 beta,20,26-triol 3,26-diacetate (20R-8), identical to the diacetate made from 20R-5. Varying the reaction sequence beginning with 20(R,S)-4 gave an 84:16 ratio of 20R to 20S in a mixture of 20(R,S)-8, according to NMR analysis. Crystallization of the mixture from methanol provided pure 20R-8. Condensing 2,3-dihydrofuran and 1 for producing (20R)-[5'-(2',3'-dihydrofuranyl)]-pregn-5-ene-3 beta,20-diol 3-(2'-tetrahydropyranyl) ether (6) gave instead (20R)-26,27-bisnorcholest-5-en-22-one-3 beta,20,25-triol 3-(2'-tetrahydropyranyl) ether (20R-9) by partial hydrolysis during workup. Treating 20R-9 briefly with dilute HCl produced (20R)-26,27-bisnorcholest-5-en-22-one-3 beta,20,25-triol (20R-10).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The 1H NMR relaxation effects produced by paramagnetic Cr(III) complexes on nucleoside 5'-mono- and -triphosphates in D2O solution at pH' = 3 were measured. The paramagnetic probes were [Cr(III)(H2O)6]3+, [Cr(III)(H2O)3(HATP)], [Cr(III)(H2O)3(HCTP)] and [Cr(III)(H2O)3(UTP)-, while the matrix nucleotides (0.1 M) were H2AMP, HIMP-, and H2ATP2-. For the aromatic base protons, the ratios of the transverse to longitudinal paramagnetic relaxation rates (R2p/R1p) for the [Cr(III)(H2O)6]3+/H2ATP2-, [Cr(III)(H2O)3(HATP)]/H2ATP2-, [Cr(III)(H2O)3(HCTP)]/H2ATP2 and [Cr(III)(H2O)3(UTP)]-/H2ATP2 systems were below 2.33 so the dipolar term predominates. For a given nucleotide, R1p for the purine H(8) signal was larger than for the H(2) signal with the [Cr(III)(H2O)6]3+ probe, while R1p for the H(2) signal was larger with all the other Cr(III) probes. Molecular mechanics computations on the [Cr(III)(H2O)4(HPP)(alpha,beta)], [Cr(III)(NH3)4(HPP)(alpha,beta)], [Co(III)(NH3)3(H2PPP)(alpha,beta,gamma)] and [Co(III)(NH3)4(HPP)(alpha,beta)] complexes gave calculated energy-minimized geometries in good agreement with those reported in crystal structures. The molecular mechanics force constants found were then used to calculate the geometry of the inner sphere [Cr(III)(H2O)6]3+ and [Cr(III)(H2O)3(HATP)(alpha,beta,gamma)] complexes as well as the structures of the outer sphere [Cr(III)(H2O)6]3(+)-(H2AMP) and [Cr(III)(H2O)6]-(HIMP)- species. The gas-phase structure of the [Cr(III)(H2O)3(HATP)(alpha,beta,gamma)] complex shows the existence of a hydrogen bond interaction between a water ligand and the adenine N(7)(O...N = 2.82 A). The structure is also stabilized by intramolecular hydrogen bonds involving the -O(2')H group and the adenine N(3) (O...N = 2.80 A) as well as phosphate oxygen atoms and a water molecule (O...O = 2.47 A). The metal center has an almost regular octahedral coordination geometry. The structures of the two outer-sphere species reveal that the phosphate group interacts strongly with the hexa-aquochromium probe. In both complexes, the nucleotides have a similar "anti" conformation around the N(9)-C(1') glycosidic bond. However, a very important difference characterizes the two structures. For the (HIMP)- complex, strong hydrogen bond interactions exist between one and two water ligands and the inosine N(7) and O(6) atoms, respectively (O...O = 2.63 A; O...N = 2.72, 2.70 A). For the H2AMP complex, the [Cr(III)(H2O)6]3+ cation does not interact with N(7) since it is far from the purine system. Hydrogen bonds occur between water ligands and phosphate oxygens. The Cr-H(8) and Cr-H(2) distances revealed by the energy-minimized geometries for the two outer sphere species were used to calculate the R1p values for the H(8) and H(2) signals for comparison with the observed R1p values: 0.92(c), 1.04(ob) (H(8)) and 0.06(c), 0.35(ob) (H(2)) for H2AMP; and 3.76(c), 4.53(ob) (H(8)) and 0.16(c), 0.77(ob) s-1 (H(2)) for HIMP-.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
A cell-free system obtained from tissue cultures of Andrographis paniculata produces 2-trans,6-trans-farnesol (trans,trans-farnesol) and 2-cis,6-trans-farnesol (cis,trans-farnesol) (5:1), incorporating 10% of the radioactivity from 3R-[2-(14)C]mevalonate. There is total loss of (3)H from 3RS-[2-(14)C,(4S)-4-(3)H(1)]mevalonate and total retention from the (4R) isomer in both the trans,trans-farnesol and cis,trans-farnesol formed. When 3RS-[2-(14)C,5-(3)H(2)]mevalonate is used as substrate, there is total retention of (3)H in the trans,trans-farnesol, but loss of one-sixth of the (3)H in the cis,trans-farnesol. With (1R)- and (1S)-[4,8,12-(14)C(3),1-(3)H(1)]-trans,trans -farnesol and (1R)- and (1S)-[4,8,12-(14)C(3),1-(3)H(1)]-cis, trans-farnesol as substrates, the label is lost from the (1R)-cis,trans and (1S)-trans,trans isomers but retained in the (1R)-trans,trans and (1S)-cis,trans isomers; this shows that the pro-1S hydrogen is exchanged in the conversion of trans,trans-farnesol into cis,trans-farnesol and the pro-1R hydrogen in the conversion of cis,trans-farnesol into trans,trans-farnesol. (1R)-[1-(3)H(1)]-trans,trans-Farnesol and (1R)-[1-(3)H(1)]-cis,trans-farnesol have been synthesized by asymmetric chemical synthesis and exchanged with liver alcohol dehydrogenase. Both the trans- and the cis-alcohol exchange the pro-1R hydrogen atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号