首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tetraspanin family protein, CD9, has not previously been identified in sperm cells. Here, we characterize sperm CD9 in the mouse, including its unique localization in sperm, appearance during spermatogenesis, and behavior and fate during mouse fertilization. In sperm, CD9 is an inner acrosomal membrane-associated protein, not a plasma membrane-associated protein. Its molecular weight is approximately 24 kDa throughout its processing, from testicular germ cells to acrosome-reacted sperm. A temporal difference was found between mRNA and protein expression; CD9 mRNA was detected in the stages from spermatogonia through round spermatids showing the strongest levels in midpachytene spermatocytes. CD9 protein was detected in the cytoplasm throughout the stages from spermatogonia to spermatocytes. While CD9 was weakly expressed in the spermatids from step 1 through step 14, the signals became clearly positive at the marginal region of the anterior acrosome in elongated spermatids. After the acrosome reaction, the majority of sperm CD9 was retained in the inner acrosomal membrane, but some quantity of CD9 was found on the plasma membrane covering the equatorial segment as detected by immunogold electron microscopy using anti-CD9 antibody. CD9 was maintained on the sperm head after reaching the perivitelline space of CD9-deficient eggs that were recovered after natural mating with wild males. Thus, this study characterizes CD9 in sperm development and fertilization.  相似文献   

2.
The localization of proacrosin was determined by using colloidal gold labeling and electron microscopy of boar germ cells during spermiogenesis to post-ejaculation. Proacrosin was first localized in round spermatids during the Golgi phase of spermiogenesis; it was associated with the electron-dense granule, or acrosomal granule that was conspicuous within the acrosome. It remained within the acrosomal granule during the cap and acrosome phases of spermiogenesis. At these stages, there was no apparent association of the proacrosin molecule with the acrosomal membranes. During the maturation phase of spermiogenesis, proacrosin was seen to become dispersed into all regions of the acrosome except the equatorial segment. When sperm from different segments of the epididymis and ejaculated sperm were examined, localization was observed throughout the acrosome except for the equatorial segment. Here proacrosin appeared to be localized on both the inner and outer acrosomal membranes as well as with the acrosomal matrix, although further studies are required to verify the membrane localization. No labeling was seen on the plasma membrane. These data suggest that the synthesis and movement of proacrosin to sites in the acrosome are controlled by an as yet unknown process. The absence of proacrosin on the plasma membrane of mature ejaculated sperm makes it unlikely that this enzyme plays a role in sperm-zona adhesion prior to capacitation.  相似文献   

3.
Guinea pig ovarian oocytes matured in vitro were inseminated in vitro with capacitated, acrosome-reacted spermatozoa and sperm penetration through the zona pellucida and into the egg cytoplasm were examined. Sperm heads passing through the zona pellucida had already lost all their acrosomal elements except for the inner acrosomal membrane and the equatorial segment. It was often observed that the texture of the zona material around the sperm head was distorted, giving the impression that the zona pellucida was parted, at least partially, by a shearing force produced by the sperm head advancing through the zona. When eggs were freed from their zonae pellucidae and inseminated, the acrosome-reacted spermatozoa immediately bound to the egg surfaces and began to fuse with the eggs; whereas the spermatozoa with intact acrosomes failed to do so. Fusion began between the egg plasma membrane and the sperm plasma membrane at the central region of the sperm head. The anterior half of the sperm head was engulfed by the egg in a phagocytic fashion, while its posterior half was incorporated into the egg by a fussion between egg and sperm plasma membranes. Incorporation of the sperm tail into the egg was achieved by fusion between the sperm and egg plasma membranes.  相似文献   

4.
The equatorial segment of the acrosome underlies the domain of the sperm that fuses with the egg membrane during fertilization. Equatorial segment protein (ESP), a novel 349-amino acid concanavalin-A-binding protein encoded by a two-exon gene (SP-ESP) located on chromosome 15 at q22, has been localized to the equatorial segment of ejaculated human sperm. Light microscopic immunofluorescent observations revealed that during acrosome biogenesis ESP first appears in the nascent acrosomal vesicle in early round spermatids and subsequently segregates to the periphery of the expanding acrosomal vesicle, thereby defining a peripheral equatorial segment compartment within flattened acrosomal vesicles and in the acrosomes of early and late cap phase, elongating, and mature spermatids. Electron microscopic examination revealed that ESP segregates to an electron-lucent subdomain of the condensing acrosomal matrix in Golgi phase round spermatids and persists in a similar electron-lucent subdomain within cap phase spermatids. Subsequently, ESP was localized to electron-dense regions of the equatorial segment and the expanded equatorial bulb in elongating spermatids and mature sperm. ESP is the earliest known protein to be recognized as a marker for the specification of the equatorial segment, and it allows this region to be traced through all phases of acrosomal biogenesis. Based on these observations, we propose a new model of acrosome biogenesis in which the equatorial segment is defined as a discrete domain within the acrosomal vesicle as early as the Golgi phase of acrosome biogenesis.  相似文献   

5.
Rabbit spermatozoa were labeled predominantely in their acrosomal glycoproteins by 1-3H-glucosamine during spermiogenesis. Ova fertilized in vivo by spermatozoa labeled 22 days earlier were analyzed by fine-structure autoradiography for the localization of the label. The latter was found associated with 1) the fused membranes of the acrosomal cap remaining on the zona pellucida surface, 2) the material released on the zona surface after the acrosome reaction and possibly detectable after tannic acid fixation, 3) the equatorial segment of the sperm head and the preequatorial swellings, and 4) other sperm components, eg, the sperm tail. No labeling, on the other hand, was detected on the denuded leading edge of spermatozoa found either in the penetration slit or in the perivitelline space. Our observations suggest the involvement of acrosomal glycoproteins in different mechanisms of sperm/zona pellucida interaction but are not in favor of a major role of (enzymatic) glycoproteins bound to the inner acrosomal membrane during the penetration of the zona pellucida.  相似文献   

6.
The distribution of intramembranous particles (IMPs) and membrane filipin-sterol complexes (FSC) was examined ultrastructurally in mouse spermatozoa from the male reproductive tract and ejaculates. IMPs were qualitatively analyzed on freeze-fracture replicas of glutaraldehyde-fixed tissue, while membrane FSC were quantitatively analyzed on replicas of filipin-treated cells. The distribution pattern of IMPs of mouse spermatozoa was fundamentally similar to that of other mammalian spermatozoa. 1) In the head, the plasma membrane had a heterogeneous population density, e.g., few IMPs on the acrosomal region, particularly few on the marginal segment, and somewhat regularly arranged IMPs on the postacrosomal region. The acrosomal membrane had many IMPs in hexagonal arrays. The nuclear membrane had many IMPs on the P-face, few IMPs on the variegated E-face, and an intense population density on the P-face of the basal plate. 2) In the neck, the plasma membrane had many IMPs with square arrangements of small IMPs in some areas on the P-face; the redundant nuclear membrane had a few IMPs on both P- and E-faces. 3) In the tail, the plasma membrane had diagonal rows of IMPs in some areas amongst larger IMPs on the middle piece, while it had "zippers" composed of IMPs running parallel to the axis on the principal piece. The distribution of sperm membrane FSC may be summarized as follows: 1) In the head, the acrosomal plasma membrane, which was heavily labeled with filipin, had much more FSC in the equatorial segment than in the marginal segment throughout the study. The postacrosomal plasma membrane generally had no FSC, but some sperm in ejaculates were slightly positive to filipin. The acrosomal membranes (both outer and inner) had no FSC. The nuclear membrane in the main part of the head had less FSC in vas deferens and ejaculated sperm than in the epididymal sperm. The nuclear membrane on the basal plate had no FSC. 2) In the neck, the plasma membrane had little FSC. The redundant nuclear envelope had scattered FSC with a higher incidence in the epididymal sperm than in those from the vas deferens and ejaculates. The membrane scroll, which was elongated from the extreme caudal end of the redundant nuclear envelope, had abundant FSC in the vas deferens and ejaculated sperm. 3) The tail plasma membrane (both middle and principal piece), which was weakly labeled with filipin, had less FSC in sperm from the vas deferens and ejaculates than in those from the epididymis. The limiting membrane covering the mitochondria had no FSC.  相似文献   

7.
Actin was localized in testicular spermatids and in spermatozoa of rabbit by using a monoclonal anti-actin antibody and a specific antiserum against actin, labeled with colloidal gold. The antibody reactivity with sperm homogenates was determined by immunoblotting of one-dimensional gels. With on-grid postembedding immunostaining of Lowicryl K4M sections, actin was identified in the subacrosomal region of differentiating spermatids, and in four bulges situated between the inner acrosomal membrane and the nuclear envelope and in the anterior part of the postacrosomal region of ejaculated spermatozoa. Sperm actin was identified on two-dimensional gels as two spots in the isoelectric point and molecular weight corresponding to gamma and beta-isoforms of actin. Immunoblots stained with specific antibodies demonstrated that rabbit spermatozoa express gamma and beta-actin isoforms.  相似文献   

8.
Adult female golden hamsters were induced to superovulate. When they were mated several hours prior to ovulation or artificially inseminated about the time of ovulation, nearly 100% of their eggs were subsequently fertilized monospermically. During the progression of fertilization when the eggs were still surrounded by compact cumulus oophorus, the contents of the ampullary region of the oviducts were collected and spermatozoa moving in the ampullary fluid, within the cumulus and on/in the zonae pellucidae of unfertilized eggs, were examined by light and electron microscopy to evaluate the status of their acrosomal caps. Most spermatozoa swimming in the ampullary fluid had apparently intact acrosomal caps, while the vast majority moving within the cumulus had distinctly modified acrosomal caps. Most spermatozoa that had passed through the cumulus and reached the zona surfaces had remnants of their acrosomal caps (“acrosomal ghosts”). When the ghosts were present around the sperm heads on the zona, the heads pivoted about a point roughly corresponding to the places where the ghosts were located. The ghosts seemed to firmly attach to the zona surfaces, then were split open by the sperm heads and left behind as the sperm heads advanced into the zona. A few spermatozoa on the zona surfaces had no acrosomal ghosts (at least not detectable by light microscopy). In this case, the sperm head pivoted about either the inner acrosomal membrane or the equatorial segment of the acrosome. In no instance were spermatozoa with intact acrosomal caps found on zona surfaces. We infer from these observations that most spermatozoa in vivo initiate their acrosome reactions while they are advancing through the cumulus. When they arrive at the zona surfaces, acrosomal ghosts are generally present on the sperm heads. These ghosts appear to hold sperm heads to zona surfaces as well as to restrict the direction of advancement of sperm head through the zona. In a minority of cases, ghostless spermatozoa reach the zona surfaces. As these spermatozoa appear to be able to penetrate the zona successfully, structures other than the acrosomal ghost (ie, the inner acrosomal membrane and the plasma membrane over the equatorial segment of the acrosome) may also attach to zona surfaces before spermatozoa penetrate into the zona.  相似文献   

9.
Distinct cytoskeletal domains revealed in sperm cells   总被引:10,自引:2,他引:8       下载免费PDF全文
《The Journal of cell biology》1984,99(3):1083-1091
Antibodies against different cytoskeletal proteins were used to study the cytoskeletal organization of human spermatozoa. A positive staining with actin antibodies was seen in both the acrosomal cap region and the principal piece region of the tail. However, no staining was obtained with nitrobenzoxadiazol-phallacidin, suggesting that most of the actin was in the nonpolymerized form. Most of the myosin immunoreactivity was confirmed to a narrow band in the neck region of spermatozoa. Tubulin was located to the entire tail, whereas vimentin was only seen in a discrete band-like structure encircling the sperm head, apparently coinciding with the equatorial segment region. Surface staining of the spermatozoa with fluorochrome-coupled Helix pomatia agglutinin revealed a similar band-like structure that co-distributed with the vimentin- specific staining. Instead, other lectin conjugates used labeled either the acrosomal cap region (peanut and soybean agglutinins), both the acrosomal cap and the postacrosomal region of the head (concanavalin A), or the whole sperm cell surface membrane (wheat germ and lens culinaris agglutinins and ricinus communis agglutinin l). In lectin blotting experiments, the Helix pomatia agglutinin-binding was assigned to a 80,000-mol-wt polypeptide which, together with vimentin, also resisted treatment with Triton X-100. Only the acrosomal cap and the principal piece of the tail were decorated with rabbit and hydridoma antibodies against an immunoanalogue of erythrocyte alpha-spectrin (p230). p230 appeared to be the major calmodulin-binding polypeptide in spermatozoa, as shown by a direct overlay assay of electrophoretic blots of spermatozoa with 125I-calmodulin. The results indicate that spermatozoa have a highly specialized cytoskeletal organization and that the distribution of actin, spectrin, and vimentin can be correlated with distinct surface specializations of the sperm cells. This suggest that cytoskeleton may regulate the maintenance of these surface assemblies and, hence, affect the spermatozoan function.  相似文献   

10.
The presence and localization of actin was investigated in guinea pig spermatogenic cells and cauda epididymal sperm (CauE). Staining with rhodamine-phalloidin demonstrated the presence of actin filaments in the region of the developing acrosome in guinea pig spermatids. The actin filaments were visualized predominantly in the region of the inner acrosomal membrane in both round and elongating spermatids. As development progressed, the intensity of the staining diminished. No rhodamine-phalloidin staining was found in testicular sperm lacking a residual body or in CauE sperm. Analysis of actin levels by immunoblotting with an anti-actin monoclonal antibody showed that the disappearance of actin filaments is accompanied by a decrease in the level of actin per cell. By using immunoblotting techniques, actin was readily detected in preparations of purified spermatogenic cells, but not in preparations of purified CauE sperm. Actin was also not detected in cauda sperm by indirect immunofluorescence (IIF) with anti-actin antibodies or examination of whole cell extracts by two-dimensional gel electrophoresis.  相似文献   

11.
Zonadhesin is the only sperm protein known to bind in a species-specific manner to the zona pellucida. The zonadhesin precursor is a mosaic protein with a predicted transmembrane segment and large extracellular region composed of cell adhesion, mucin, and tandem von Willebrand D domains. Because the precursor possesses a predicted transmembrane segment and localizes to the anterior head, the mature protein was presumed to be a sperm surface zona pellucida-binding protein. In this study of hamster spermatozoa, we demonstrate that zonadhesin does not localize to the sperm surface but is instead a constituent of the acrosomal matrix. Immunoelectron microscopy revealed that distinct targeting pathways during spermiogenesis and sperm maturation in the epididymis result in trafficking of zonadhesin to the acrosomal matrix. In round spermatids, zonadhesin localized specifically to the acrosomal membrane, where it appeared to be evenly distributed between the outer and inner membrane domains. Subsequent redistribution of zonadhesin resulted in its elimination from the inner acrosomal membrane and restriction to the outer acrosomal membrane of the apical and principal segments and the contents of the posterior acrosome. During sperm maturation in the epididymis, zonadhesin dissociated from the outer acrosomal membrane and became incorporated into the forming acrosomal matrix. These data suggest an important structural role for zonadhesin in assembly of the acrosomal matrix and further support the view that the species specificity of zona pellucida adhesion is mediated by egg-binding proteins contained within the acrosome rather than on the periacrosomal plasma membrane.  相似文献   

12.
Our previous study has shown that fucoidin, an algal heteropolysaccharide, is a potent inhibitor of sperm-zona binding in the guinea pig, hamster and human. To visualize the surface site of fucoidin binding, a biotinated derivative (B-Fuc) of the native fucoidin was prepared. B-Fuc retained the inhibitory activity and was used in conjunction with FITC-avidin to localize its binding sites on guinea pig spermatozoa using fluorescence microscopy. In living acrosome-reacted spermatozoa, B-Fuc bound predominantly to the inner acrosomal membrane and equatorial segment domains. The binding was effectively competed by a 10-fold excess of native fucoidin, but not by a 10-fold excess of heparin or a 20-fold excess of biotinated normal rabbit serum IgG. B-Fuc binding patterns on dead spermatozoa were quite different from that of living spermatozoa. The post-acrosomal region, rather than the inner acrosomal membrane and equatorial domains, was intensely labeled. This indicates the importance of using living cells in assessing true surface binding sites whenever possible. We conclude that the inner acrosomal membrane and/or equatorial domains are critical for zona binding in the guinea pig.  相似文献   

13.
Characterization of membrane-associated actin in boar spermatozoa   总被引:2,自引:0,他引:2  
Biochemical, immunological, and electron microscopic methods have been used to provide semi-quantitative estimates and to localize actin in membranes of boar spermatozoa. Immunoblots, using a monoclonal antibody raised against actin from chicken gizzard, detected the protein in caput and cauda sperm plasma membranes. Immunoassay indicated that approximately 1% of the total plasma membrane protein was actin. Monomeric actin accounted for more than one-half of the membrane actin. Approximately 30-40% of plasma membrane actin was insoluble in Triton X-100, and approximately 10% of the total actin remained insoluble after treatment with guanidine hydrochloride. The presence of F-actin in sperm plasma membranes and in plasma membrane detergent-insoluble proteins was detected by fluorescence microscopy using the specific probe NBD phallacidin. When S1 myosin subfragments attached to colloidal gold were used to localize F-actin by electron microscopy, the label was restricted to the outer acrosomal membrane of intact epididymal and ejaculated sperm. Filaments appeared in short arrays along the anterior region of the membrane. S1/gold labeled detergent-insoluble plasma membrane fractions but did not label the plasma membrane in intact sperm. Filaments were least prominent in intact caput spermatozoa and most prominent in ejaculated spermatozoa. We conclude that most actin associated with sperm membranes is in monomeric form in boar spermatozoa, but that actin filaments or protofilaments are components of the outer acrosomal membrane. These filaments may also associate with the plasma membrane overlying the acrosome.  相似文献   

14.
Biochemical and immunoelectron microscopic methods have been used to analyze the distribution of actin in boar spermatozoa and its state of aggregation before and after acrosome reaction. F-actin was detected on sperm head and tail by electron microscopy using an improved phalloidin probe: incubation with a fluorescein-phalloidin complex and an anti-fluorescein antibody, followed by labeling with protein A-gold complex. Gold particles, indicating the presence of F-actin, were localized on the sperm surface of the acrosome-reacted spermatozoa. Specific labeling was localized (1) between the outer acrosomal membrane and the plasma membrane in the equatorial region, (2) between the outer surface of the fibrous sheath and the plasma membrane in the postacrosomal region, (3) around the connecting piece and the neck region, and (4) on the external surface of the fibrous sheath in the principal piece of the tail. Furthermore, after NP-40 extraction, the SDS-PAGE revealed a difference in solubility between reacted and unreacted boar spermatozoa, reflecting actin polymerization. We conclude that most actin in the acrosome reacted boar spermatozoa is polymeric.  相似文献   

15.
The ultrastructure of spermatozoa from the cauda epididymidis and vas deferens of Octodon degus-a Chilean hystricomorph rodent-is presented. The head of spermatozoa measured 7.7 micrometer long by 5.9 micrometer wide and the tail was 41 micrometer long. The head was flattened dorso-ventrally and ovate in outline. The acrosome was the most distinctive feature of O. degus spermatozoa. In a frontal view of the head, the rim of the acrosome surrounding the nucleus had the shape of an inverted U. The acrosomal region covering the plane of the flattened head exhibited dome-shaped protrusions. Transverse or sagittal sections of acrosomal protrusions showed that the plasma membrane and outer acrosomal membrane were evaginated, while the inner acrosomal membrane followed the contour of the nucleus. The protrusions were not distributed at random and they were absent in the equatorial segment and in the rim of the acrosome. In frontal views, near the boundary between the acrosome and post-acrosomal region, fine rods about 170 nm long ran obliquely on the caudal part of the equatorial segment. Behind the same boundary, the post-acrosomal region showed a serrated border. Phosphotungstic acid treatment at pH 0.3 produced staining at the surface of the sperm as well as within a superficial layer of the marginal thickening of the acrosome and on the acrosomal protuberances.  相似文献   

16.
Intermediate filament proteins in human sperm heads   总被引:1,自引:0,他引:1  
Monoclonal antibodies made against human sperm cells have been characterized with regard to binding patterns and molecular coordinates of the recognized antigens. Antibodies T5 and T6 gave uniform binding to the acrosomal cap in an intact cell, and decreased to equatorial segment binding in an 'acrosome-reacted' cell. Monoclonal antibody T15 gave the reverse: equatorial segment binding in intact cells and uniform acrosomal cap binding in reacted cells. From staining patterns on cultured cell lines, determination of molecular coordinates, immunoblots, and partial peptide analysis, we have determined that T15 is directed against the cytoskeletal protein, vimentin, while T5 and T6 recognize a keratin-like protein which may be unique to sperm cells. This is the first immunological and biochemical study to analyse both types of intermediate filament proteins in human sperm cells.  相似文献   

17.
The human sperm protein SP-10 was previously defined as a "primary vaccine candidate" by a World Health Organization Taskforce on Contraceptive Vaccines. By one- and two-dimensional immunoblots, we show that SP-10, extracted from ejaculated human sperm, demonstrated a polymorphism of immunogenic peptides from 18 to 34 kDa, a pattern that was conserved from individual to individual and was not altered by reducing agents. The majority of the antigenic peptides possessed isoelectric points of approximately 4.9. Immunocytochemistry on testis sections indicated that SP-10 was localized to round spermatids and spermatozoa within the adluminal compartment of the seminiferous epithelium. Immunofluorescence showed that SP-10 was not associated with the surface of acrosome-intact, ejaculated sperm. Light and electron microscopic immunocytochemistry localized SP-10 throughout the acrosome, and electron microscopic evidence demonstrated a bilaminar array in association with the inner aspect of the outer acrosomal membrane and the outer aspect of the inner acrosomal membrane. After induction of the acrosome reaction with the ionophore A23187, SP-10 remained displayed on the sperm head in association with the inner acrosomal membrane and equatorial segment. The results indicate that the MHS-10 monoclonal antibody may be used as a marker of acrosome development in the human and as a probe to evaluate acrosome status. The results also support the hypothesis that inhibition of sperm-egg interaction by anti-SP-10 monoclonal antibody may occur as a result of antigen exposure following the acrosome reaction.  相似文献   

18.
《The Journal of cell biology》1986,102(4):1363-1371
The extracellular coat, or zona pellucida, of mammalian eggs contains species-specific receptors to which sperm bind as a prelude to fertilization. In mice, ZP3, one of only three zona pellucida glycoproteins, serves as sperm receptor. Acrosome-intact, but not acrosome-reacted, mouse sperm recognize and interact with specific O- linked oligosaccharides of ZP3 resulting in sperm-egg binding. Binding, in turn, causes sperm to undergo the acrosome reaction; a membrane fusion event that results in loss of plasma membrane at the anterior region of the head and exposure of inner acrosomal membrane with its associated acrosomal contents. Bound, acrosome-reacted sperm are able to penetrate the zona pellucida and fuse with the egg's plasma membrane (fertilization). In the present report, we examined binding of radioiodinated, purified, egg ZP3 to both acrosome intact and acrosome reacted sperm by whole-mount autoradiography. Silver grains due to bound 125I-ZP3 were found localized to the acrosomal cap region of heads of acrosome-reacted sperm. Under the same conditions, 125I-fetuin bound at only bacKground levels to heads of both acrosome-intact and - reacted sperm, and 125I-ZP2, another zona pellucida glycoprotein, bound preferentially to acrosome-reacted sperm. These results provide visual evidence that ZP3 binds preferentially and specifically to heads of acrosome intact sperm; properties expected of the mouse egg's sperm receptor.  相似文献   

19.
Spermatozoa of the hagfishes Eptatretus burgeri and Eptatretus stouti, caught in the sea near Japan and North America, respectively, were found to undergo the acrosome reaction, which resulted in the formation of an acrosomal process with a filamentous core. The acrosomal region of spermatozoa of E. stouti exhibited immunofluorescent labeling using an actin antibody. The midpiece also labeled with the antibody. The acrosomal region showed a similar labeling pattern when sperm were probed with tetramethylrhodamine isothyocyanate (TRITC)-phalloidin; the midpiece did not label. Following induction of the acrosome reaction with the calcium (Ca2+) ionophore ionomycin, TRITC-phalloidin labeling was more intense in the acrosomal region, suggesting that the polymerization of actin occurs during formation of the acrosomal process, as seen in many invertebrates. The potential for sperm to undergo acrosomal exocytosis was already acquired by late spermatids. During acrosomal exocytosis, the outer acrosomal membrane and the overlying plasma membrane disappeared and were replaced by an array of vesicles; these resembled an early stage of the acrosome reaction in spermatozoa of higher vertebrates in which no formation of an acrosomal process occurs. It is phylogenetically interesting that such phenomena occur in spermatozoa of hagfish, a primitive vertebrate positioning between invertebrates and high vertebrates.  相似文献   

20.
The acrosome is a large secretory vesicle of the sperm head that carries enzymes responsible for the digestion of the oocyte's investments. The event leads to sperm penetration and allows fertilization to occur. Release of the acrosomal enzymes is mediated by the interaction between sperm acrosomal and plasma membranes (acrosome reaction). Biochemical characterization of the acrosomal membrane has been restrained by a lack of methods to isolate uncontaminated fractions of the membrane. Here, we use new methods to expose the membrane to in situ cytochemical labeling by lectin-gold complexes. We study the topology and relative density of glycoconjugates both across and along the plane of the acrosomal membrane of boar sperm. Detachment of the plasma membrane from glutaraldehyde-fixed cells exposed the cytoplasmic surface of the acrosome to the lectin markers; freeze-fractured halves of the acrosomal membrane were marked by "fracture-label" (Aguas, A. P., and P. Pinto da Silva, 1983, J. Cell Biol. 97:1356-1364). We show that the cytoplasmic surface of the intact acrosome is devoid of binding sites for both concanavalin A (Con A) and wheat germ agglutinin (WGA). By contrast, it contains a high density of neuraminidase-resistant anionic sites detected by cationic ferritin. On freeze-fractured sperm, the receptors for Con A partitioned with the exoplasmic membrane half of the acrosomal membrane. The Con A-binding glycoconjugates were accumulated on the equatorial segment of the membrane. A low density of WGA receptors, as well as of intramembrane particles, was found on the freeze-fracture halves of the acrosomal membrane. The plasma membrane displayed, in the same preparations, a high density of receptors for both Con A and WGA. We conclude that the acrosome is limited by a membrane poor in glycoconjugates, which are exclusively exposed on the exoplasmic side of the bilayer. Regionalization of Con A receptors on the acrosome shows that sperm intracellular membranes, like the sperm surface, express domain distribution of glycocomponents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号