首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucose Metabolism in Neisseria gonorrhoeae   总被引:32,自引:8,他引:24       下载免费PDF全文
The metabolism of glucose was examined in several clinical isolates of Neisseria gonorrhoeae. Radiorespirometric studies revealed that growing cells metabolized glucose by a combination on the Entner-Doudoroff and pentose phosphate pathways. A portion of the glyceraldehyde-3-phosphate formed via the Entner-Doudoroff pathway was recycled by conversion to glucose-6-phosphate. Subsequent catabolism of this glucose-6-phosphate by either the Entner-Doudoroff or pentose phosphate pathways yielded CO(2) from the original C6 of glucose. Enzyme analyses confirmed the presence of all enzymes of the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways. There was always a high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) relative to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.44). The glucose-6-phosphate dehydrogenase utilized either nicotinamide adenine dinucleotide phosphate or nicotinamide adenine dinucleotide as electron acceptor. Acetate was the only detectable nongaseous end product of glucose metabolism. Following the disappearance of glucose, acetate was metabolized by the tricarboxylic acid cycle as evidenced by the preferential oxidation of [1-(14)C]acetate over that of [2-(14)C]acetate. When an aerobically grown log-phase culture was subjected to anaerobic conditions, lactate and acetate were formed from glucose. Radiorespirometric studies showed that under these conditions, glucose was dissimilated entirely by the Entner-Doudoroff pathway. Further studies determined that this anaerobic dissimilation of glucose was not growth dependent.  相似文献   

2.
Heterotrophic Metabolism of the Chemolithotroph Thiobacillus ferrooxidans   总被引:4,自引:2,他引:2  
Glucose-6-phosphate dehydrogenase and the enzymes of the Entner-Doudoroff pathway, 6-phosphogluconate dehydrase and 2-keto-3-deoxy-6-phosphogluconate aldolase (assayed together), are induced during heterotrophic growth of Thiobacillus ferrooxidans on an iron-glucose-supplemented medium or on glucose alone. By contrast, autotrophic cells (iron-grown) contain low levels of these enzymes. Fructose 1, 6-diphosphate aldolase, an enzyme of the Embden-Meyerhof pathway, is present at low levels irrespective of the growth medium, suggesting that this enzyme is not involved in energy-yielding reactions but merely provides intermediates for biosynthesis. The Entner-Doudoroff and pentose-phosphate pathways are the principle means through which glucose is dissimilated and is presumed to be concerned with energy production. Isotopic studies showed that a high rate of CO(2) formation from specifically labeled glucose came from carbon atoms 1 and 4. An unexpectedly high rate of evolution of CO(2) also came from carbon 6, suggesting that the triose phosphate formed during glucose breakdown and specifically as a result of 2-keto-3-deoxy-6-phosphogluconate aldolase activity, was metabolized via some unorthodox metabolic route. Cells grown in the iron-supplemented and glucose-salts media have a complete tricarboxylic acid cycle, whereas autotrophically grown T. ferrooxidans lacked both alpha-ketoglutarate dehydrogenase and reduced nicotinamide adenine dinucleotide oxidase. Two isocitrate dehydrogenases [nicotinamide adenine dinucleotide (NAD) and NAD phosphate (NADP) specific] were present. NAD-linked enzyme was constitutive, whereas the NADP-linked enzyme was induced upon adaptation of autotrophic cells to heterotrophic growth.  相似文献   

3.
Citrate Cycle and Related Metabolism of Listeria monocytogenes   总被引:8,自引:1,他引:7       下载免费PDF全文
The growth response of Listeria monocytogenes strains A4413 and 9037-7 to carbohydrates was determined in a defined medium. Neither pyruvate, acetate, citrate, isocitrate, alpha-ketoglutarate, succinate, fumarate, nor malate supported growth. Furthermore, inclusion of any of these carbohydrates in the growth medium with glucose did not increase the growth of Listeria over that observed on glucose alone. Resting cell suspensions of strain A4413 oxidized pyruvate but not acetate, citrate, isocitrate, alpha-ketoglutarate, succinate, fumarate, or malate. Cell-free extracts of strain A4413 contained active citrate synthase, aconitate hydratase, isocitrate dehydrogenase, malate dehydrogenase, fumarate hydratase, fumarate reductase, pyruvate dehydrogenase system, and oxidases for reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate. The alpha-ketoglutarate oxidation system, succinate dehydrogenase, isocitrate lyase, and malate synthase were not detected. Cytochromes were not detected. The data suggest that strain A4413, under these conditions, utilizes a split noncyclic citrate pathway which has an oxidative portion (citrate synthase, aconitate hydratase, and isocitrate dehydrogenase) and a reductive portion (malate dehydrogenase, fumarate hydratase, and fumarate reductase). This pathway is probably important in biosynthesis but not for a net gain in energy.  相似文献   

4.
Growth of Salinibacter ruber, a red, extremely halophilic bacterium phylogenetically affiliated with the Flavobacterium/Cytophaga branch of the domain Bacteria, is stimulated by a small number of sugars (glucose, maltose, starch at 1 g l(-1)). Glucose consumption starts after other substrates have been depleted. Glucose metabolism proceeds via a constitutive, salt-inhibited hexokinase and a constitutive salt-dependent nicotinamide adenine dinucleotide phosphate (NADP)-linked glucose-6-phosphate dehydrogenase. Glucose dehydrogenase and fructose-1,6-bisphosphate aldolase activity could not be detected. It is therefore suggested that Salinibacter metabolizes glucose by the classic Entner-Doudoroff pathway and not by the Embden-Meyerhof glycolytic pathway or by the modified Entner-Doudoroff pathway present in halophilic Archaea of the family Halobacteriaceae, in which the phosphorylation step is postponed. However, activity of 2-keto-3-deoxy-6-phosphogluconate aldolase could not be detected in extracts of Salinibacter cells, whether or not grown in the presence of glucose.  相似文献   

5.
Regulation of Glucose Metabolism in Thiobacillus intermedius   总被引:8,自引:5,他引:3       下载免费PDF全文
Glucose-yeast extract or glucose-casein hydrolysate-grown Thiobacillus intermedius cells, which use glucose for energy generation, possess high specific activities of the Entner-Doudoroff pathway and related enzymes, 6-phosphogluconate dehydrase, 2-keto-3-deoxy-6-phosphogluconate aldolase, glucokinase, and glucose-6-phosphate dehydrogenase, but low activities of enzymes unique to the pentose shunt and Embden-Meyerhof pathways. Although the synthesis of the latter enzymes remains largely unaffected by the growth environment, that of the former is stimulated by glucose. Radiorespirometric measurements demonstrate an early and parallel respiration of glucose carbon atoms one and four in glucose-casein hydrolysate broth. It is concluded that the Entner-Doudoroff pathway performs an energetic role in glucose metabolism by T. intermedius with the pentose shunt and Embden-Meyerhof pathways functioning mainly in biosynthesis. The presence of thiosulfate in the growth medium inhibits the synthesis of the Entner-Doudoroff pathway and related enzymes. In addition, both thiosulfate and glucose inhibit the synthesis of the Krebs cycle enzymes, nicotinamide adenine dinucleotide phosphate-linked isocitrate and alpha-ketoglutarate dehydrogenases. Thus, repression of enzymes is of significance in the adaptation of T. intermedius to its nutritional environment. The activity of glucose-6-phosphate dehydrogenase of T. intermedius is inhibited by adenosine triphosphate. Such a control could afford the organism a mechanism to regulate the flow of glucose into major energetic and biosynthetic routes.  相似文献   

6.
The two species of 6-phosphogluconate dehydrogenase (EC 1.1.1.43) from Pseudomonas multivorans were resolved from extracts of gluconate-grown bacteria and purified to homogeneity. Each enzyme comprised between 0.1 and 0.2% of the total cellular protein. Separation of the two enzymes, one which is specific for nicotinamide adenine dinucleotide phosphate and the other which is active with nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate was facilitated by the marked difference in their respective isoelectric points, which were at pH 5.0 and 6.9. Comparison of the subunit compositions of the two enzymes indicated that they do not share common peptide chains. The enzyme active with nicotinamide adenine dinucleotide was composed of two subunits of about 40,000 molecular weight, and the nicotinamide adenine dinucleotide phosphate-specific enzyme was composed of two subunits of about 60,000 molecular weight. Immunological studies indicated that the two enzymes do not share common antigenic determinants. Reduced nicotinamide adenine dinucleotide phosphate strongly inhibited the 6-phosphogluconate dehydrogenase active with nicotinamide adenine dinucleotide by decreasing its affinity for 6-phosphogluconate. Guanosine-5'-triphosphate had a similar influence on the nicotinamide adenine dinucleotide phosphate-specific 6-phosphogluconate dehydrogenase. These results in conjunction with other data indicating that reduced nicotinamide adenine dinucleotide phosphate stimulates the conversion of 6-phosphogluconate to pyruvate by crude bacterial extracts suggest that in P. multivorans, the relative distribution of 6-phosphogluconate into the pentose phosphate and Entner-Doudoroff pathways might be determined by the intracellular concentrations of reduced nicotinamide adenine dinucleotide phosphate and purine nucleotides.  相似文献   

7.
Levels of enzymes operative in the Embden-Meyerhof-Parnas (glycolytic) pathway, pentose phosphate cycle, citric acid cycle, and certain other phases of intermediary carbohydrate metabolism have been compared in Thiobacillus thioparus and T. neapolitanus. All enzymes of the glycolytic pathway except phosphofructokinase were demonstrated in both organisms. There were some striking quantitative differences between the two organisms with respect to the activities of the individual enzymes of the glycolytic pathway and the citric acid cycle. Qualitative differences were also found: the isocitrate dehydrogenase activity of T. thioparus is strictly nicotinamide adenine dinucleotide phosphate (NADP)-dependent, whereas that of T. neapolitanus is primarily nicotinamide adenine dinucleotide-dependent, activity with NADP being low; the glucose-6-phosphate dehydrogenase of T. thioparus is particulate, whereas that of T. neapolitanus is partly soluble and partly particulate; the 6-phosphogluconate dehydrogenase of T. thioparus is soluble, that of T. neapolitanus is partly soluble and partly particulate. All enzymes which function in the carbon reduction cycle were present at very high levels. In contrast, enzymes which operate exclusively in cycles other than the carbon reduction cycle were present at low levels. Of the enzymes not operative in the carbon reduction cycle that were examined, isocitric dehydrogenase had the highest specific activity. Both organisms possessed reduced nicotinamide adenine dinucleotide dehydrogenase activity. The qualitative and quantitative aspects of the data are discussed in relation to possible biochemical explanations of obligate autotrophy.  相似文献   

8.
Radiorespirometric and enzymatic analyses reveal that glucose-grown cells of Rhizobium japonicum isolates I-110 and L1-110, both derivatives of R. japonicum strain 3I1b110, possess an active tricarboxylic acid cycle and metabolize glucose by simultaneous operation of the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways. The hexose cycle may play a minor role in the dissimilation of glucose. Failure to detect the nicotinamide adenine dinucleotide phosphate-dependent decarboxylating 6-phosphogluconate dehydrogenase (EC 1.1.1.44) evidences absence of the pentose phosphate pathway. Transketolase and transaldolase reactions, however, enable R. japonicum to produce the precursors for purine and pyrimidine biosynthesis from fructose-6-phosphate and glyceraldehyde-3-phosphate. A constitutive nicotinamide adenine dinucleotide-linked 6-phosphogluconate dehydrogenase has been detected. The enzyme is stimulated by either mannitol or fuctose and might initiate a new catabolic pathway. R. japonicum isolate I-110, characterized by shorter generation times on glucose and greater nitrogen-fixing efficiency, oxidizes glucose more extensively than type L1-110 and utilizes preferentially the Embden-Meyerhof-Parnas pathway, whereas the Entner-Doudoroff pathway apparently predominates in type L1-110.  相似文献   

9.
The enzyme pattern of Saccharomyces cerevisiae was followed during batch growth and in continuous culture in a synthetic medium limited for glucose under aerobic conditions. Seven enzymes were measured: succinate-cytochrome c oxidoreductase, malate dehydrogenase, nicotinamide adenine dinucleotide-linked glutamate dehydrogenase, malate synthase, isocitrate lyase, aldolase, and nicotinamide adenine dinucleotide phosphate (NADP(+))-linked glutamate dehydrogenase. During fermentation of glucose and high growth rate (mu) during the first log phase in batch experiments, the first five enzymes (group I) were repressed, and aldolase and NADP(+)-linked glutamate dehydrogenase (group II) were derepressed. During growth on the accumulated ethyl alcohol and lower mu, the group I enzymes were preferentially formed and the other two were repressed. A sequence of derepression of the group I enzymes was found during the shift from glucose to ethyl alcohol metabolism, which can be correlated with a strong increase in the percentage of single (nonbudding) cells in the population. A correlation between the state of cells in the budding cycle and enzyme repression and derepression is suggested. In continuous culture, the enzyme pattern was shown to be related to the growth rate. The group I enzymes were repressed at high growth rates, while the group II enzymes were derepressed. Each enzyme exhibits a different dependence. The enzyme pattern is shown to depend on the rate of substrate consumption as well as on the type of metabolism and to be correlated with the budding cycle. The enzyme pattern is considered to be controlled by changes of intracellular catabolic or metabolic conditions inherent in the division cycle.  相似文献   

10.
Nicotinamide adenine dinucleotide phosphate-specific isocitrate dehydrogenase was extracted from etiolated pea (Pisum sativum L.) seedlings and was purified 65-fold. The purified enzyme exhibits one predominant protein band by polyacrylamide gel electrophoresis, which corresponds to the dehydrogenase activity as measured by the nitro blue tetrazolium technique. The reaction is readily reversible, the pH optima for the forward (nicotinamide adenine dinucleotide phosphate reduction) and reverse reactions being 8.4 and 6.0, respectively. The enzyme has different cofactor and inhibitor characteristics in the two directions. Manganese ions can be used as a cofactor for the reaction in each direction but magnesium ions only act as a cofactor in the forward reaction. Zinc ions, and to a lesser extent calcium ions, inhibit the enzyme at low concentrations when magnesium but not manganese is the metal activator. It is suggested that there is a fundamental difference between magnesium and manganese in the activation of the enzyme. The enzyme shows normal kinetics and the Michaelis contant for each substrate was determined. The inhibition by nucleotides, nucleosides, reaction products, and related compounds was studied. The enzyme shows a linear response to the mole fraction of reduced nicotinamide adenine dinucleotide phosphate when total nicotinamide adenine dinucleotide phosphate (nicotinamide adenine dinucleotide phosphate plus reduced nicotinamide adenine dinucleotide phosphate) is kept constant. Isocitrate in the presence of divalent metal ions will protect the enzyme from inactivation by p-chloromercuribenzoate. Protection is also afforded by manganese ions alone but not by magnesium ions alone There is a concerted inhibition of the enzyme by oxalacetate and glyoxylate.  相似文献   

11.
This paper describes experiments conducted with membranous and soluble fractions obtained from Escherichia coli that had been grown on succinate, malate, or enriched glucose media. Oxidase and dehydrogenase activities were studied with the following substrates: nicotinamide adenine dinucleotide, reduced form (NADH), nicotinamide adenine dinucleotide phosphate, reduced form (NADPH), succinate, malate, isocitrate, glutamate, pyruvate, and α-ketoglutarate. Respiration was virtually insensitive to poisons that are commonly used to inhibit mitochondrial systems, namely, rotenone, antimycin, and azide. Succinate dehydrogenase and NADH, NADPH, and succinate oxidases were primarily membrane-bound whereas malate, isocitrate, and NADH dehydrogenases were predominantly soluble. It was observed that E. coli malate dehydrogenase could be assayed with the dye 2,6-dichlorophenol indophenol, but that porcine malate dehydrogenase activity could not be assayed, even in the presence of E. coli extracts. The characteristics of E. coli NADH dehydrogenase were shown to be markedly different from those of a mammalian enzyme. The enzyme activities for oxidation of Krebs cycle intermediates (malate, succinate, isocitrate) did not appear to be under coordinate genetic control.  相似文献   

12.
The Pseudomonas multivorans glucose-6-phosphate dehydrogenase (EC 1.1.1.49) active with nicotinamide adenine dinucleotide, which is inhibitable by adenosine-5'-triphosphate, was purified approximately 1,000-fold from extracts of glucose-grown bacteria, and characterized with respect to subunit composition, response to different inhibitory ligands, and certain other properties. The enzyme was found to be an oligomer composed of four subunits of about 60,000 molecular weight. Reduced nicotinamide adenine dinucleotide phosphate, but not reduced nicotinamide adenine dinucleotide, was found to be a potent inhibitor of its activity. The range of concentrations of reduced nicotinamide adenine dinucleotide phosphate over which inhibition occurred was about 100-fold lower than that for adenosine-5'-triphosphate. The data suggest that reduced nicotinamide adenine dinucleotide phosphate may play an important role in regulation of hexose phosphate metabolism in P. multivorans. Antisera prepared against the purified enzyme strongly inhibited its activity, but failed to inhibit the activity of the nicotinamide adenine dinucleotide phosphate-specific glucose-6-phosphate dehydrogenase which is also present in extracts of this bacterium. Immunodiffusion experiments confirmed the results of the enzyme inhibition studies, and failed to support the idea that the two glucose-6-phosphate dehydrogenase species from P. multivorans represent different oligomeric forms of the same protein.  相似文献   

13.
Ragland, T. E. (Brandeis University, Waltham, Mass.), T. Kawasaki, and J. M. Lowenstein. Comparative aspects of some bacterial dehydrogenases and transhydrogenases. J. Bacteriol. 91:236-244. 1966.-Twenty-eight diverse bacterial species were surveyed for the activities and coenzyme specificities of four enzymes: isocitrate dehydrogenase (ICDH), glucose-6-phosphate dehydrogenase (G-6-PDH), 6-phosphogluconate dehydrogenase (6-PGDH), and reduced nicotinamide adenine dinucleotide phosphate-nicotinamide adenine dinucleotide (NAD) transhydrogenase (TH). Most of the species that exhibited a nicotinamide adenine dinucleotide phosphate (NADP)-linked ICDH also showed significant TH activity, but there were several which did not. Only one of the organisms tested, Xanthomonas pruni, had an ICDH active with both NAD and NADP; it was devoid of TH activity. Acetobacter suboxydans, which lacks ICDH altogether, also had no TH. Some of the species examined had G-6-PDH or 6-PGDH (or both) of dual coenzyme specificity, but there was no apparent relation between these findings and the presence or absence of TH. The TH reaction was assayed by use of analogues of NAD as acceptors. The bacteria could be divided into two groups on the basis of TH specificity, one group reacting at a much faster rate with the 3-acetylpyridine analogue of NAD than with the thionicotinamide analogue, whereas the converse was true for the other group. A few organisms showed no marked specificity for either analogue. This division of specificity can be related to the currently accepted taxonomic classification of the organisms, although a few apparent anomalies were found.  相似文献   

14.
The antifungal antibiotic flavensomycin inhibited the oxidation of amino acids and of glucose by Penicillium oxalicum. The compound inhibited l-amino acid oxidase (EC 1.4.3.2) activity for l-leucine and l-phenylalanine, and also d-amino acid oxidase (EC 1.4.3.3) in the oxidation for dl-alanine. The addition of flavin adenine dinucleotide, which is a cofactor for this enzyme, antagonized the action of the antibiotic. Glucose oxidase (EC 1.1.3.4) was also inhibited. The antibiotic inhibited the reduced nicotinamide adenine dinucleotide (NADH(2)) cytochrome c reductase (EC 1.6.2.1) as well as the much slower nonenzymatic reduction of this cytochrome by the nucleotide. Reduced cytochrome c was also oxidized nonenzymatically by flavensomycin. The antibiotic completely inhibited the action of rabbit muscle lactic dehydrogenase (EC 1.1.1.27) in promoting the reduction of pyruvate by NADH(2) but only slightly affected the reverse reaction. Alcohol dehydrogenase (EC 1.1.1.1) was also similarly inhibited. Flavensomycin prevented the reduction of nicotinamide adenine dinucleotide phosphate by isocitrate in the presence of isocitrate dehydrogenase (EC 1.1.1.42). The hexokinase (EC 2.7.1.1)-catalyzed phosphorylation of glucose, in which the adenosine triphosphate acts as a phosphate donor, was only slightly affected. Flavensomycin also inhibited the action of yeast lactate dehydrogenase (EC 1.1.2.3) on the reduction of cytochrome c. High concentrations of cytochrome c were antagonistic to this reaction. The results point to an interference with enzymatically controlled hydrogen or electron transfer as the mechanism of the antifungal activity of flavensomycin.  相似文献   

15.
Selective Inhibition of Bacterial Enzymes by Free Fatty Acids   总被引:4,自引:2,他引:2       下载免费PDF全文
Octanoic acid inhibits, in vitro, the bacterial enzymes glucose-6-phosphate dehydrogenase, phosphofructokinase, pyruvate kinase, fumarase, lactate dehydrogenase, and the malic enzyme of Arthrobacter crystallopoietes. The free fatty acid appears to act as an inhibitor of lipogenesis, although it does not affect the rate of gluconeogenesis. To demonstrate that this inhibition may be of physiological significance in vivo, those enzymes not involved in lipogenesis, such as fructose-1, 6-diphosphatase, phosphoglucomutase, phosphohexoisomerase, aconitase, nicotinamide adenine dinucleotide phosphate (NADP) isocitrate dehydrogenase, NADP glutamate dehydrogenase, malate dehydrogenase, and isocitrate lyase, were assayed and found not to be inhibited by the free fatty acid.  相似文献   

16.
Cell-free extracts of Aspergillus niger UBC 814 grown in the presence of dl-mandelate oxidized both d(-)- and l(+)-mandelate via benzoylformate and benzaldehyde to benzoate. dl-p-Hydroxymandelate was oxidized, presumably through a parallel pathway, to p-hydroxybenzoate. A particulate d(-)-mandelate dehydrogenase and a supernatant fraction l(+)-mandelate dehydrogenase converted their respective substrates to benzoylformate. Both flavine adenine dinucleotide and flavine mononucleotide showed a stimulatory effect on the activity of the l(+)-mandelate dehydrogenase. Benzoylformate was decarboxylated to benzaldehyde by an enzyme requiring thiamine pyrophosphate for maximal activity. Two benzaldehyde dehydrogenases dependent on nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), respectively, for their activity dehydrogenated benzaldehyde to benzoate. In the presence of reduced NADP (NADPH), benzoate was oxidized via p-hydroxybenzoate and protocatechuate. Reduced NAD could not replace NADPH. Sensitive methods of assay for d(-)-mandelate dehydrogenase and benzoylformate decarboxylase are described. The fungal pathway is compared with these systems in bacteria.  相似文献   

17.
Metabolism of Carbohydrates by Pasteurella pseudotuberculosis   总被引:3,自引:2,他引:1  
Cell-free extracts of Pasteurella pseudotuberculosis and P. pestis catalyzed a rapid and reversible exchange of electrons between pyridine nucleotides. Although the extent of this exchange approximated that promoted by the soluble nicotinamide adenine dinucleotide (phosphate) transhydrogenase of Pseudomonas fluorescens, the reaction in the pasteurellae was associated with a particulate fraction and was not influenced by adenosine-2'-monophosphate. The ability of P. pseudotuberculosis to utilize this system for the maintenance of a large pool of nicotinamide adenine dinucleotide phosphate could not be correlated with significant participation of the Entner-Doudoroff path or catabolic use of the hexose-monophosphate path during metabolism of glucose. As judged by the distribution of radioactivity in metabolic pyruvate, glucose and gluconate were fermented via the Embden-Meyerhof and Entner-Doudoroff paths, respectively. With the exception of hexosediphosphatase, all enzymes of the three paths were detected, although little or no gluconokinase or phosphogluconate dehydrase was present unless the organisms were cultivated with gluconate. The significance of these findings is discussed with respect to the regulation of carbohydrate metabolism in the pasteurellae, related enteric bacteria, and P. fluorescens.  相似文献   

18.
The effect of sugars on the production of d-arabitol and on the glucose catabolic pathways was investigated in the osmotrophic yeast Saccharomyces rouxii. The activity of d-arabitol dehydrogenase, which served as a measure of total d-arabitol production, increased when cells were grown in the presence of increasing glucose concentrations. Growth in sucrose had no effect on the enzyme activity. A high intracellular concentration of d-arabitol could be demonstrated when the cells were grown in a 60% glucose medium and could be eliminated by anaerobic growth or growth in the presence of 4 mg of chloramphenicol per ml. A mutant was isolated that would not grow in 60% glucose; although the regulation of d-arabitol dehydrogenase was altered in this strain, the production of d-arabitol was not eliminated. The activity of d-arabitol dehydrogenase followed the growth phases of the parent strain when the cells were preadapted to 30% glucose. If the cells were adapting from 1 to 30% glucose, a large increase in enzyme activity was detected before growth occurred. Protein synthesis was found to be involved in this increase in activity. There was an increased participation of the pentose phosphate pathway when the cells were grown in the presence of increasing glucose concentrations. The mutant strain had only an 11% pentose phosphate pathway participation compared with 20% for the parent strain in glucose. The results suggest that the active pentose phosphate pathway is involved in glucose tolerance by providing a plentiful supply of reduced nicotinamide adenine dinucleotide phosphate which is necessary for cell survival.  相似文献   

19.
Growth of Agrobacterium tumefaciens on d-glucuronic acid (GlcUA) or d-galacturonic acid (GalUA) induces formation of hexuronic acid dehydrogenase [d-aldohexuronic acid: nicotinamide adenine dinucleotide (NAD) oxidoreductase]. The dehydrogenase, which irreversibly converts GlcUA or GalUA to the corresponding hexaric acid with the concomitant reduction of NAD, but not of nicotinamide adenine dinucleotide phosphate was purified 60-fold by MnCl(2) treatment, (NH(4))(2)SO(4) fractionation, chromatography on diethylaminoethyl Sephadex and negative adsorption with Ca(3)(PO(4))(2) gel. The pH optimum is 8.0. Other uronic acids, aldohexoses, aldopentoses, and polyols, are not substrates. Reduced nicotinamide adenine dinucleotide is an inhibitor strictly competitive with NAD. Kinetic data indicate that the dehydrogenase induced by growth on GlcUA may not be identical with that induced by growth on GalUA.  相似文献   

20.
Tricarboyxlic acid cycle activity was examined in Neisseria gonorrhoeae CS-7. The catabolism of glucose in N. gonorrheae by a combination of the Entner-Doudoroff and pentose phosphate pathways resulted in the accumulation of acetate, which was not further catabolized until the glucose was depleted or growth became limiting. Radiorespirometric studies revealed that the label in the 1 position of acetate was converted to CO2 at twice the rate of the label in the 2 position, indicating the presence of a tricarboxylic acid cycle. Growth on glucose markedly reduced the levels of all tricarboxylic acid cycle enzymes except citrate synthase (EC 4.1.3.7). Extracts of glucose-grown cells contained detectable levels of all tricarboxylic acid cycle enzymes except aconitase (EC 4.2.1.3), isocitrate dehydrogenase (EC 1.1.1.42), and a pyridine nucleotide-dependent malate dehydrogenase (EC 1.1.1.37). Extracts of cells capable of oxidizing acetate lacked only the pyridine nucleotide-dependent malate dehydrogenase. In lieu of this enzyem, a particulate pyridine nucleotide-independent malate oxidase (EC 1.1.3.3) was present. This enzyme required flavin adenine dinucleotide for activity and appeared to be associated with the electron transport chain. Radiorespirometric studies utilizing labeled glutamate demonstrated that a portion of the tricarboxylic acid cycle functioned during glucose catabolism. In spite of the presence of all tricarboxylic acid cycle enzymes, N. gonorrhoeae CS-7 was unable to grow in medium supplemented with cycle intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号