首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The olfactory epithelium of mice generally consists of olfactory cells, progenitors of olfactory cells (globose basal cells), supporting cells, and horizontal basal cells. However, in the dorsal fossa (the roof) of the posterior nasal cavity of mice, we found seven epithelial patches consisting of only non-neuronal cell types, i.e., supporting cells and horizontal basal cells, among the normal olfactory epithelium. The supporting cells occupied three or four layers in the apical to middle regions; in the basal region, horizontal basal cells were localized in a single row adjacent to the basement membrane. Bowman's gland ducts were also present in the epithelium. Neuronal cells (olfactory cells and globose basal cells) were totally absent. The ultrastructure of the supporting cells, horizontal basal cells, and Bowman's glands was essentially similar to that in the normal olfactory epithelium. In the early postnatal period (P1-P7), cell types in the epithelium were the same as those in the normal olfactory epithelium. From P10 to P21, olfactory cells and globose basal cells had disappeared from the olfactory epithelium. At this period, the number of TUNEL-positive cells was significantly higher than that in the surrounding olfactory epithelium; ultrastructurally, many apoptotic figures were observed. This suggests that the epithelium consisting of supporting cells and horizontal basal cells is generated by the apoptotic death of olfactory cells and globose basal cells during postnatal development.  相似文献   

2.
吴孝彬  陈壁辉 《动物学报》1992,38(2):118-123
本文通过光镜和扫描电镜研究了爬行动物扬子鳄鼻腔上皮的组织学。结果表明:其嗅觉上皮的组成细胞类型与两栖类、鸟类和哺乳类基本相似,但嗅细胞纤毛形状则有所不同;扬子鳄与两栖类、鸟类嗅纤毛相似,呈丝状,而哺乳类嗅觉纤毛则呈棍棒状;据外,扬子鳄鼻腔不同部位可发现不同类型嗅纤毛,鸟兽则无此现象,扬子鳄嗅觉上皮的分布仅局限于鼻腔中部前甲区和鼻甲区狭小范围,而兽类嗅觉上皮一般分布较广;扬子鳄呼吸上皮下未见兽类具有的混合型粘液腺,也未见兽类用以温暖空气的静脉丛,这和扬子鳄属外温动物而兽类为恒温动物密切相关。  相似文献   

3.
The location and distribution of nerve fibres displaying substanceP (SP) immunoreactivity were studied in the frog olfactory mucosa.Many immunoreactive nerve fibres were noted in close associationwith Bowman's glands and blood vessels in the lamina propria.In addition, such fibres were also found beneath and withinthe olfactory epithelium proper. These fibres are clearly oftrigeminal origin since SP immunoreactivity was abolished aftersection of the trigeminal nerve. Functionally, they might influencelocal blood flow, secretion of Bowman's glands and/or activityof olfactory receptor cells.  相似文献   

4.
Location and distribution of nerve fibers immunoreactive to substance P were studied in the mouse olfactory mucosa. A moderately dense plexus of fibers is present at the interface of the olfactory epithelium and the connective tissue of the lamina propria. In addition, many immunoreactive nerve fibers are noted in close association with Bowman's glands and blood vessels in the lamina propria. However, such fibers were not observed in olfactory epithelium proper nor in the fila olfactoria. Substance-P-immunoreactivity is almost totally abolished by treatment of animals with capsaicin, an agent known to deplete substance P from primary sensory neurons. It is suggested that the substance-P-immunoreactive fibers are of sensory origin, with their perikarya most likely located in the trigeminal ganglia. Functionally, they might influence local blood flow and/or the secretion of Bowman's glands.  相似文献   

5.
Summary An indirect gold-labeling method utilizing the lectin from Limax flavus was employed to characterize the subcellular distribution of sialic acid in glycoconjugages of the salamander olfactory mucosa. The highest density of lectin binding sites was in secretory vesicles of sustentacular cells. Significantly lower densities of lectin binding sites were found in secretory granules of acinar cells of both Bowman's and respiratory glands. Lectin binding in acinar cells of Bowman's glands was confined primarily to electron-lucent regions and membranes of secretory granules. In the olfactory mucus, the density of lectin binding sites was greater in the region of mucus closest to the nasal cavity than in that closest to the epithelial surface. At the epithelial surface, the density of lectin binding sites associated with olfactory cilia was 2.4-fold greater than that associated with microvilli of sustentacular cells or non-ciliary plasma membranes of olfactory receptor neurons, and 7.9-fold greater than non-microvillar sustentacular cell plasma membranes. Lectin binding sites were primarily associated with the glycocalyx of olfactory receptor cilia. The cilia on cells in the respiratory epithelium contained few lectin binding sites. Thus, sialylated glycoconjugates secreted by sustentacular cells are preferentially localized in the glycocalyx of the cilia of olfactory receptor neurons.  相似文献   

6.
Centrifugal spread of the prion agent to peripheral tissues is postulated to occur by axonal transport along nerve fibers. This study investigated the distribution of the pathological isoform of the protein (PrP(Sc)) in the tongues and nasal cavities of hamsters following intracerebral inoculation of the HY strain of the transmissible mink encephalopathy (TME) agent. We report that PrP(Sc) deposition was found in the lamina propria, taste buds, and stratified squamous epithelium of fungiform papillae in the tongue, as well as in skeletal muscle cells. Using laser scanning confocal microscopy, PrP(Sc) was localized to nerve fibers in each of these structures in the tongue, neuroepithelial taste cells of the taste bud, and, possibly, epithelial cells. This PrP(Sc) distribution was consistent with a spread of HY TME agent along both somatosensory and gustatory cranial nerves to the tongue and suggests subsequent synaptic spread to taste cells and epithelial cells via peripheral synapses. In the nasal cavity, PrP(Sc) accumulation was found in the olfactory and vomeronasal epithelium, where its location was consistent with a distribution in cell bodies and apical dendrites of the sensory neurons. Prion spread to these sites is consistent with transport via the olfactory nerve fibers that descend from the olfactory bulb. Our data suggest that epithelial cells, neuroepithelial taste cells, or olfactory sensory neurons at chemosensory mucosal surfaces, which undergo normal turnover, infected with the prion agent could be shed and play a role in the horizontal transmission of animal prion diseases.  相似文献   

7.
The peripheral olfactory system has a remarkable capacity for repair. We have performed an immunohistochemical study of the cellular changes that occur after zinc sulfate irrigation of the nasal cavity. The rapid loss of epithelial cells was followed by the proliferation of basal cells and the restoration of the epithelium with olfactory tissue. Horizontal basal cell markers, anti-cytokeratin 5/6 (CK5/6), and the Bandeiraea simplicifolia (BS-1) lectin initially co-localized on day 1 after treatment but rapidly displayed a disparity in their staining profile, with CK5/6 immunoreactive cells having a profile more akin to cells expressing the sustentacular marker cytokeratin 18 (CK18). This suggests CK5/6 and BS-1 label a different subset of horizontal basal cells. Axonal degeneration and regeneration was studied with a panel of markers to olfactory receptor neurons, their terminals, and olfactory bulb dendrites. The glial cells of the peripheral olfactory system, olfactory ensheathing cells, remained in position, with little change in immunoreactivity to laminin, although an increase in the expression of glial fibrillary acidic protein was observed. The events and the extent of reconstitution of the olfactory system after degeneration serves as a foundation for future studies designed to understand the unique regenerative capacity of the olfactory system.  相似文献   

8.
Data considering the degeneration and regeneration of the midgut epithelium in the primitive wingless insects, such as Collembola, are rather poor. Also information, which treats the regenerative cells as the primordial cells, is poorly known. The midgut epithelium of Podura aquatica L. (Insecta, Collembola, Arthropleona) is formed by the epithelial and regenerative cells. The epithelial cells show distinct regionalisation in the organelles distribution. The ultrastructure of the basal, perinuclear and apical regions of the epithelial cells is described. As in insects without Malpighian tubules, structures which resemble urospherites occur in the cytoplasm of the epithelial cells. After degeneration of the entire midgut epithelium, a new epithelium is formed from regenerative cells. During the process of regeneration, the degenerated epithelium gradually is separated from the basal lamina by the newly formed one. Finally, the detached epithelium is moved into the midgut lumen. Regenerative cells play a role of primordial cells during epithelial regeneration.  相似文献   

9.
The Korean shuttles mudskipper Periophthalmus modestus has paired olfactory organs on its snout, consisting of anterior and posterior nostrils, a single olfactory canal with sensory and nonsensory epithelia, and a single accessory nasal sac. Its sensory epithelium consists of numerous islets forming a pseudostratified layer and contains various cells: olfactory receptor neurons, supporting cells, basal cells, lymphatic cells (LCs), and axon bundles. The sensory epithelium is a stratified squamous layer comprising stratified epithelial cells, mucous cells (MCs) with glycogen, flattened cells (FCs), LCs, and unidentified cells. Specific structures are as follows: (a) a tubular anterior nostril projecting outward, (b) a slit posterior nostril, (c) an elongated olfactory canal, (d) an ethmoidal accessory nasal sac, (e) axon bundles found only in the basal layer of the sensory epithelium, (f) FCs only at the top of the nonsensory epithelium, and (g) glycogen-containing MCs. Such structures seem to be unique in that they have not been observed in most teleost fishes spending their whole life in water.  相似文献   

10.
Summary The role of substance P in the regulation of secretion from sustentacular cells, Bowman's glands and deep glands in the amphibian olfactory mucosa was investigated using immunohistochemical, electrophysiological, and pharmacological methods. Substance P-like immunoreactive varicose fibers extended through the olfactory epithelium, terminating at or near the surface. In addition, immunoreactive varicose fibers innervated Bowman's glands, deep glands, and blood vessels in the lamina propria. Innervation of Bowman's gland was sparse, with fibers terminating on basal acinar cell membranes; deep gland innervation was abundant, with fibers often extending between acinar cells almost to the lumen. Stimulation of the ophthalmic branch of the trigeminal nerve resulted in slow potentials recorded at the surface of the olfactory epithelium. When the olfactory mucosae from trigeminal-stimulated animals were examined histologically, morphological signs of secretory activity were observed, suggesting that substance P was released from the trigeminal nerve terminals. Topical application of 10-5 to 10-3 mol substance P resulted in morphological signs of secretion that were very similar to those seen as a result of trigeminal stimulation. Thus, substance P released from trigeminal fibers may modulate secretory activity within the olfactory mucosa.  相似文献   

11.
We performed a detailed analysis of mouse cytochrome P450 2A5 (CYP2A5) expression by in situ hybridization (ISH) and immunohistochemistry (IHC) in the respiratory tissues of mice. The CYP2A5 mRNA and the corresponding protein co-localized at most sites and were predominantly detected in the olfactory region, with an expression in sustentacular cells, Bowman's gland, and duct cells. In the respiratory and transitional epithelium there was no or only weak expression. The nasolacrimal duct and the excretory ducts of nasal and salivary glands displayed expression, whereas no expression occurred in the acini. There was decreasing expression along the epithelial linings of the trachea and lower respiratory tract, whereas no expression occurred in the alveoli. The hepatic CYP2A5 inducers pyrazole and phenobarbital neither changed the CYP2A5 expression pattern nor damaged the olfactory mucosa. In contrast, the olfactory toxicants dichlobenil and methimazole induced characteristic changes. The damaged Bowman's glands displayed no expression, whereas the damaged epithelium expressed the enzyme. The CYP2A5 expression pattern is in accordance with previously reported localization of protein and DNA adducts and the toxicity of some CYP2A5 substrates. This suggests that CYP2A5 is an important determinant for the susceptibility of the nasal and respiratory epithelia to protoxicants and procarcinogens.  相似文献   

12.
Summary Type IV collagen is the basic structural component of all basement membranes (BM), and forms the backbone to which other BM components attach. We have found that in the centre of the adult human cornea the epithelium does not display a type IV collagen immunoreactive BM. In fetal corneas (14 and 22 weeks of gestation), however, the epithelial BM shows uninterrupted type IV collagen immunoreactivity. In similar experiments laminin immunoreactivity was observed in the entire corneal epithelial BM, in fetal as well as adult corneas. Ultrastructurally, a normal BM with a lamina lucida and a lamina densa can be observed in the conjunctiva. The adult corneal centre, however, shows epithelium without a lamina densa. Focal deposits of electron-dense material are observed in conjunction with hemidesmosomes and anchoring fibres.These observations indicate that in the development of the eye, the cornea is initially covered with an epithelium which attaches to a normal BM. Later on, however, the BM type IV collagen disappears from the corneal centre. Assuming that highly differentiated epithelium cannot produce a BM, this could be due to the high level of differentiation of central corneal epithelium, which is generated in the limbal proliferation zone. Alternatively, the acellular Bowman's layer might lack triggers to induce type IV collagen production by the epithelial cells.  相似文献   

13.
The few and small renal corpuscles of the lizard Podarcis (= Lacerta) taurica are composed of a tuft of three to four capillaries (glomerulus), Bowman's capsule and mesangium. The thin interdigitated capillary endothelial cells are, in most regions, in contact with the mesangium. In some regions, however, they rest on a bilaminate basement membrane with an electron-dense lamina densa and a less dense lamina rara. Bowman's capsule is composed of visceral and parietal layers. The epithelial cells (podocytes) of the visceral layer bear trabeculae connected to pedicels with microvilli. The pedicels rest on a bilaminate basement membrane which in some regions has a double-layered densa with connecting bands. Generally, this basement membrane is thicker than that of the capillary endothelial cells. The mesangium is composed mostly of irregular satellite cells with large nuclei and cytoplasmic processes, but also has smaller cells with kidney-shaped nuclei and cytoplasmic processes containing microfilaments. The mesangium cells are embedded in a collagenous matrix which extends to invade the area between the epithelial basement membrane and the capillary endothelium. These observations are discussed in relation to the structure and function of vertebrate renal corpuscles with special reference to the mesangium.  相似文献   

14.
15.
In this paper the ultrastructural features of the epithelial-mesenchymal interface in mandibular processes of embryonic chicks have been examined using scanning electron microscopy. Mandibular epithelium is required for the mesenchyme to differentiate as osteoblasts and to deposit the membrane bones of the mandible. The surface morphology of the epithelium changes from the lateral to the medial face of the mandible from rounded cells, each with a central cilium to flattened cells with numerous microvilli. Treatment with trypsin and pancreatin was used to digest the basal lamina so as to separate epithelium from mesenchyme. This exposed a thick, fibrillar basement membrane (reticular lamina), which was thicker underlying the caudal epithelium than under the cephalad epithelium. Addition of collagenase to the trypsin/pancreatin solution degraded some of the basement lamella, especially that underlying epithelium on the caudal portion of each mandibular process. Selective degradation of basement lamella is postulated as one means of regulating inductive epithelial-mesenchymal interactions. EDTA was used to isolate basal laminae on mandibular mesenchyme. SEM was used to confirm the integrity of the basal lamina, its structure, and its association with overlying epithelial cells and underlying basement lamella.  相似文献   

16.
Hexamethylphosphoramide (HMPA) is a rat nasal carcinogen that induces squamous cell carcinomas in the anterior portions of the nasal cavity following chronic inhalation exposures as low as 50 ppb. These tumors may arise as a result of P-450-mediated release of formaldehyde (HCHO), a known rat nasal carcinogen. The goal of this research was to investigate early responses of the nasal epithelium to inhaled HMPA. Rats were exposed nose-only to approximately 3 ppm HMPA for 6 h, and killed 18, 48, 96 or 144 h post-exposure. In a separate study, rats were exposed nose-only for 6 h for 1, 2, 3, or 5 consecutive days and killed 18 or 96 h post-exposure. With both single and repeated doses of HMPA, there was no evidence of cytotoxicity in the anterior nose. Olfactory degeneration and necrosis of the dorsal meatus, Bowman's glands and tips of the ethmoid turbinates increased in severity with repeated exposures to HMPA. Cell proliferation was assessed in levels of nasal tissue that included regions of squamous, respiratory, transitional and olfactory epithelium. Regional induction of cell proliferation was measured by BrdU incorporation, and reported as the number of labeled cells/mm basement membrane. At 18 h after a single exposure, there was an increase in cell proliferation in squamous epithelium, which returned to control levels within 48 h. A transitory increase in cell proliferation was observed regions of respiratory and transitional epithelium, although the response of each tissue, in terms of magnitude and peak time of response post-exposure, also differed. Along the dorsal meatus in Level 9, olfactory labeling initially decreased, returned to control levels by 96 h, but again declined at 144 h post-exposure. In repeat dose studies, the squamous epithelium response was variable 18 h post-exposure. For respiratory and transitional epithelium, increased cell proliferation 18 h post-exposure was correlated with increased dose (exposure) of HMPA. Cell proliferation responses following two or more exposures returned to near control levels within 96 h post-exposure. In conclusion, HMPA induced cell proliferation, but not cytotoxicity, in the anterior nose at approximately 3 ppm. These data suggest that HMPA induces proliferative, perhaps mitogenic, responses in the nasal epithelium, and this response may facilitate the fixation of low level genetic damage induced by liberated HCHO.  相似文献   

17.
The purpose of the present study was to characterize ultrastructurally the nonolfactory nasal epithelium of a nonhuman primate, the bonnet monkey. Nasal cavities from eight subadult bonnet monkeys were processed for light microscopy, and scanning and transmission electron microscopy. Nonolfactory epithelium covered the majority of the nasal cavity and consisted of squamous (SE), transitional (TE), and respiratory epithelium (RE). Stratified SE covered septal and lateral walls of the nasal vestibule, while ciliated pseudostratified RE covered most of the remaining nasal cavity. Stratified, nonciliated TE was present between SE and RE in the anterior nasal cavity. This epithelium was distinct from the other epithelial populations in abundance and types of cells present. TE was composed of lumenal nonciliated cuboidal cells, goblet cells, small mucous granule (SMG) cells, and basal cells, while RE contained ciliated cells, goblet cells, SMG cells, basal cells, and cells with intracytoplasmic lumina lined by cilia and microvilli. TE and RE contained similar numbers of total epithelial cells and basal cells per millimeter of basal lamina. TE was composed of more SMG cells but fewer goblet cells compared to RE. We conclude that nonolfactory nasal epithelium in the bonnet monkey is complex with distinct regional epithelial populations which must be recognized before pathologic changes within this tissue can be assessed adequately.  相似文献   

18.
We investigated the histological structure and histochemistry of the nasal conchae of geese and compared these structures with those of other avian species. The rostral, middle and caudal conchae were dissected from the nasal cavity of eight geese, fixed in Carnoy’s solution and embedded in paraffin. The entrance of the rostral concha was lined by keratinized stratified squamous epithelium, which toward the middle concha was replaced by modified keratinized squamous epithelium, the deep layer of which opened into tubular glandular structures containing secretory epithelium on crypt-like invaginations. The lamina propria of the rostral concha contained numerous Grandry’s and Herbst corpuscles, which are pressure-sensitive receptors peculiar to waterfowl. The lamina propria of the middle concha contained solitary lymphoid follicles and lymphocyte infiltrations. The cartilaginous component of the middle concha was highly convoluted and resembled a spiral of two and a half scrolls, which were lined by pseudostratified columnar epithelium. We observed that unlike mammals, this epithelium contained mostly intraepithelial alveolar glands rather than goblet cells. The caudal concha was similar to the middle concha, but less convoluted. It was lined by olfactory epithelium and its lamina propria contained serous Bowman’s glands as well as olfactory nerve fibers. Histochemical examination demonstrated that while none of the conchae contained sulfated mucins, except for the cartilage, the intraepithelial glands of the rostral and middle conchae contained mostly carboxylated acidic mucin and some neutral mucin, and were thus of the mixed type. The outermost scroll of the spiral of the middle concha contained some periodate-Schiff stained mucins. Of the glands of the mucosa of the middle concha, the deep tubuloalveolar glands in the convex parts of the scrolls contained primarily acidic mucins, while the shallow intraepithelial alveolar glands in the concave parts of the scrolls contained primarily neutral mucins. Our findings indicate that the rostral and caudal conchae primarily have a sensory function and the middle concha participates in mucosal defense.  相似文献   

19.
During mammalian development, a pair of shelves fuses to form the secondary palate, a process that requires the adhesion of the medial edge epithelial tissue (MEE) of each shelf and the degeneration of the resulting medial epithelial seam (MES). It has been reported that epithelial-mesenchymal transformation (EMT) occurs during shelf fusion and is considered a fundamental process for MES degeneration. We recently found that cell death is a necessary process for shelf fusion. These findings uncovered the relevance of cell death in MES degeneration; however, they do not discard the participation of other processes. In the present work, we focus on the evaluation of the processes that could contribute to palate shelf fusion. We tested EMT by traditional labeling of MEE cells with a dye, by infection of MEE with an adenovirus carrying the lacZ gene, and by fusing wild-type shelves with the ones from EGFP-expressing mouse embryos. Fate of MEE labeled cells was followed by culturing whole palates, or by a novel slice culture system that allows individual cells to be followed during the fusion process. Very few labeled cells were found in the mesenchyme compartment, and almost all were undergoing cell death. Inhibition of metalloproteinases prevented basal lamina degradation without affecting MES degeneration and MEE cell death. Remarkably, independently of shelf fusion, activation of cell death promoted the degradation of the basal lamina underlying the MEE ('cataptosis'). Finally, by specific labeling of periderm cells (i.e. the superficial cells that cover the basal epithelium), we observed that epithelial triangles at oral and nasal ends of the epithelial seam do not appear to result from MEE cell migration but rather from periderm cell migration. Inhibition of migration or removal of these periderm cells suggests that they have a transient function controlling MEE cell adhesion and survival, and ultimately die within the epithelial triangles. We conclude that MES degeneration occurs almost uniquely by cell death, and for the first time we show that this process can activate basal lamina degradation during a developmental process.  相似文献   

20.
Basal cells in the nasal epithelium (olfactory and airway epithelia) are stem/progenitor cells that are capable of dividing, renewing and differentiating into specialized cells. These stem cells can sense their biophysical microenvironment, but the underlying mechanism of this process remains unknown. Here, we demonstrate the prominent expression of the transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca2+-permeable channel that is known to act as a sensor for hypo-osmotic and mechanical stresses, in the basal cells of the mouse nasal epithelium. TRPV4 mRNA was expressed in the basal portions of the prenatal mouse nasal epithelium, and this expression continued into adult mice. The TRPV4 protein was also detected in the basal layers of the nasal epithelium in wild-type but not in TRPV4-knockout (TRPV4-KO) mice. The TRPV4-positive immunoreactions largely overlapped with those of keratin 14 (K14), a marker of basal cells, in the airway epithelium, and they partially overlapped with those of K14 in the olfactory epithelium. Ca2+ imaging analysis revealed that hypo-osmotic stimulation and 4α-phorbol 12,13 didecanoate (4α-PDD), both of which are TRPV4 agonists, caused an increase in the cytosolic Ca2+ concentration in a subset of primary epithelial cells cultured from the upper parts of the nasal epithelium of the wild-type mice. This response was barely noticeable in cells from similar parts of the epithelium in TRPV4-KO mice. Finally, there was no significant difference in BrdU-labeled proliferation between the olfactory epithelia of wild-type and TRPV4-KO mice under normal conditions. Thus, TRPV4 channels are functionally expressed in basal cells throughout the nasal epithelium and may act as sensors for the development and injury-induced regeneration of basal stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号