首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
1. Maternal calcium homeostasis during pregnancy is strained due to fetal mineral requirements for bone formation. 2. In most species, the mother adjusts to the mineral requirements of the fetus with alterations in her metabolism of vitamin D that include a decrease in plasma 25-(OH)D levels and an increase in circulating levels of the hormone, 1,25-(OH)2D. 3. Plasma 25-(OH)D and 1,25-(OH)2D levels in adult male, adult female and pregnant sheep were measured by specific radioreceptor binding assays. 4. Pregnancy did not alter circulating levels of 25-(OH)D or 1,25-(OH)2D in the sheep. 5. The pregnant ewe differs from all species studied to date in that maternal plasma 1,25-(OH)2D levels do not rise as a result of pregnancy.  相似文献   

2.
During the perinatal period, calcium metabolism is stressed. As intestinal Ca-binding protein is considered as a molecular expression of the hormonal effect of 1,25-dihydroxycholecalciferol (1,25(OH)2D3), Ca-binding protin measurements may document the vitamin D roles during this period. We describe the variations of Ca-binding protein concentrations in the rat during the last 5 days of gestation, in the maternal duodenum, placentas, fetal membranes and fetal intestines. We also report intestinal Ca-binding protein changes from birth until weaning. The evolution of the maternal intestinal Ca-binding protein, which increases on day 19.5 of gestation, is consistent with that of calcium intestinal absorption and may be explained by increased 1,25(OH)2D3 production. Placental Ca-binding protein rises from day 17.5 until the end of gestation, and may be related to the profile of calcium transfer from mother to fetuses. It is noteworthy that the placental Ca-binding protein is predominantly found in the fetal part of the organ where materno-fetal exchanges occur. The yolk sac synthesizes substantial amounts of Ca-binding protein. In the fetal membranes, Ca-binding protein plateaus from day 17.5 until day 20.5 and decreases on day 21.5. The Ca-binding protein presence in the fetal placenta and in the yolk sac may suggest that these tissues are also targets for vitamin D. In the fetus the intestinal Ca-binding protein s is detected as early as day 17.5 of gestation and increases markedly during the last day of gestation. From birth and during the first 3 weeks of postnatal life, the intestinal Ca-binding protein concentration does not change. It undergoes a sharp rise just at the time of weaning. We have also shown that the specific distribution of Ca-binding protein along the intestine is acquired during intrauterine life and does not change with sucking or weaning. The two main changes of intestinal Ca-binding protein, observed just before birth and at weaning, may reflect the intestinal maturation and/or variations in vitamin D metabolism.  相似文献   

3.
The possible involvement of plasma calcium and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in the regulation of the concentration of kidney calcium-binding protein (CaBP) was investigated. Chicks were fed diets varying in Ca2+ and P, with or without vitamin D. CaBP and 1,25(OH)2D3 were determined by competitive binding assays. A significant correlation between plasma and kidney 1,25(OH)2D3 was found, the linear regression equation of best-fit was plasma 1,25(OH)2D3 = 0.14 + 1.56 kidney 1,25(OH)2D3. In the vitamin D-fed chicks, kidney CaBP varied independently of the circulating or organ level of 1,25(OH)2D3 (P greater than 0.05), but was lower in the vitamin D-deficient than in the vitamin D-fed birds. A significant correlation was observed between kidney CaBP and plasma calcium (Cap). The regression equations were CaBP = Cap/(85.57-4.00 Cap) (R = 0.845) and CaBP = 0.0558 + 0.0404 Cap (R = 0.749), for vitamin D-treated and vitamin D-deficient chicks, respectively. The results suggest that the concentration of kidney CaBP is modulated by plasma calcium, but one or more of the vitamin D metabolites may be required for its synthesis.  相似文献   

4.
Renal calcium binding protein (CaBP), a vitamin D-dependent protein of 28,000 Mr, may be involved in calcium transport by cells of the renal tubule. The streptozotocin-diabetic rat is hypercalciuric and shows markedly decreased concentration of 1,25-dihydroxycholecalciferol [1,25-(OH)2D3] in serum and of CaBP in small intestine. To examine the relationship of renal CaBP in diabetes to 1,25-(OH)2D3 and urinary calcium excretion, renal CaBP, serum 1,25-(OH)2D3, and urinary calcium were measured in control, diabetic, and insulin-treated diabetic rats. Treatment of the diabetic rat with insulin decreased urinary calcium excretion and elevated 1,25-(OH)2D3 toward normal. Renal CaBP was found to be the same in controls and diabetics despite a tenfold difference in concentration of 1,25-(OH)2D3 in serum, and to be unaffected by insulin treatment, which elevated 1,25-(OH)2D3 by a factor of 7 above untreated diabetics. It is concluded that in the diabetic rat either (1) the threshold concentration of 1,25-(OH)2D3 for inducing synthesis of renal CaBP is set at a much lower level than that for intestinal CaBP, or (2) since both 1,25-(OH)2D3 and renal CaBP are produced in the kidney, 1,25-(OH)2D3 exerts a paracrine effect on renal CaBP production because of its high local concentration. The increased urinary calcium excretion in the untreated streptozotocin-diabetic rat is not secondary to an alteration in renal CaBP.  相似文献   

5.
Is 1,25-dihydroxyvitamin D required for reproduction?   总被引:1,自引:0,他引:1  
The role of 1,25-dihydroxyvitamin D (1,25-(OH)2D) in avian and mammalian reproduction is examined. 1,25-Dihydroxyvitamin D is required, in both the avian and mammalian species, for maintenance of normocalcemia, adequate intestinal calcium absorption, bone turnover, and mineral homeostasis throughout the reproductive cycle--just as it is required in the nonlaying bird or nonpregnant, nonlactating mammal. In the avian species, 1,25-(OH)2D is required for ovulation and shell formation, transfer of calcium from the egg shell across the chorioallantoic membrane to the fetal circulation, and maintenance of fetal serum calcium, bone metabolism, and mineral homeostasis. In the mammalian species, 1,25-(OH)2D is required for normal ovulation, normal fetal and neonatal bone metabolism, milk production, and maintenance of normocalcemia and mineral homeostasis in the neonate. In the absence of 1,25-(OH)2D, however, embryogenesis (rat and chick) and neonatal development (rat) can proceed in such a way as to produce viable, normal appearing offspring. The classical effects of 1,25-(OH)2D deficiency (hypocacemia, inadequate intestinal calcium absorption, and bone mineralization) become increasingly apparent with advancing age but there are no other apparent major developmental abnormalities.  相似文献   

6.
Betamethasone (50 micrograms/kg body weight/day) given to young pigs reduced calcium absorption, growth and plasma vitamin D dependent calcium binding protein (CaBP) concentration. No changes occurred in plasma 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and intestinal CaBP concentrations. 1,25(OH)2D3 (0.1 microgram/kg body weight/day) given with betamethasone increased calcium absorption although growth and plasma CaBP concentrations remained low. Intestinal CaBP levels remained unchanged. Plasma CaBP concentrations were not consistently related to intestinal CaBP or calcium absorption in the presence of betamethasone. We conclude that betamethasone-induced depression of calcium absorption was not mediated by alterations in intestinal CaBP, but the mechanism remains obscure.  相似文献   

7.
In rats, at day 20 of pregnancy, the placenta and the fetal intestine contain calcium-binding proteins (CaBPs) which closely resemble the vitamin D-dependent CaBP of the adult rat duodenal mucosa. A significant and specific increase of the dam intestinal CaBP likely synthesized as a result of pregnancy, is observed. A 5 week-vitamin D-depletion promoted a decrease of the CaBP content of the dam intestine and of its calcemia. No changes were detected in the non-pregnant animals. Likewise, neither fetal calcemia nor CaBP contents of the feto-placental unit were affected. Such findings suggest i) that pregnancy elicits the vitamin D-sensitivity of rats and ii) that a slight vitamin D-deficiency acts only on the maternal compartment. Although the vitamin D-dependence of placental and fetal CaBPs remains to be demonstrated, our results suggest that these proteins act in concert with the maternal CaBP, to favour a mother to fetus transfer of calcium in order to satisfy the needs of the mineralizing fetal skeleton.  相似文献   

8.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) induces de novo biosynthesis of a specific calcium-binding protein (CaBP) in embryonic chick duodenum in organ culture. Using a highly sensitive and specific, peroxidase-antiperoxidase immunocytochemical procedure, 1,25(OH)2D3-induced CaBP in the organ-cultured duodenum was found only in the cytoplasm of absorptive cells, corresponding to its localization in rachitic chick duodenal cells after a single injection of 1,25(OH)2D3 in vivo. This observation, along with evidence correlating CaBP with calcium transport, strongly supports the use of the embryonic chick duodenal organ culture system as a physiologically relevant model of the vitamin D-dependent calcium absorptive mechanism.  相似文献   

9.
The vitamin D-induced calcium-binding protein (CaBP) was localized in histological sections of chick duodenum using the peroxidase-antiperoxidase immunocytochemical technique. The time-course of appearance of CaBP in rachitic chicks was investigated from 0 to 120 hr after stimulation by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). CaBP was not routinely detected at 0 hr after 1,25(OH)2D3 administration. CaBP was first noted in some, but not all, of the samples taken 2 hr following 1,25(OH)2D3 and was detected in all 2 1/2 hr samples. The number of CaBP-containing absorptive cells and the apparent CaBP concentration both increased to a maximum at about 16-24 hr. At later times, as CaBP free cells migrated up the villi, the CaBP-containing cells decreased in number, but even at 120 hr post 1,25(OH)2D3 dose there were significant numbers of CaBP-containing cells present. The relationships between time-course of CaBP location on intestinal villi, enterocyte migration rates, and the time-course of 1,25(OH)2D3 stimulated intestinal calcium transport are discussed.  相似文献   

10.
The relationship of the metabolism of vitamin D3 and calcium-binding protein (CaBP) to calcium transport by the eggshell gland (ESG) was assessed in chickens. Plasma or ESG 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) and ESG CaBP were no different between periods of ESG inactivity and of shell calcification. A severe dietary calcium deficiency resulted in increased kidney 25-hydroxycholecalciferol-1-hydroxylase activity (542%), plasma and ESG 1,25(OH)2D3 concentrations (193 and 274%, respectively), but in decreased ESG CaBP (34%), associated with the production of poorly calcified eggs. Significant correlations were found between 25 hydroxycholecalciferol-1-hydroxylase, plasma 1,25(OH)2D3 and ESG 1,25(OH)2D3, but not between ESG 1,25(OH)2D3 and CaBP. Hens with a low shell density had a significantly lower (55%) ESG CaBP than those with high shell density, without any significant change in ESG 1,25(OH)2D3. Significant correlations were found between ESG CaBP and shell calcium. Total receptors for 1,25(OH)2D3 were lower in ESG than in the intestine. The results suggest that CaBP level and calcium transport in the ESG are not regulated by 1,25(OH)2D3.  相似文献   

11.
The administration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to rachitic chicks produces an increase in (a) RNA and protein synthesis, (b) calcium binding protein (CaBP) concentration, and (c) alkaline phosphatase activity in the duodenum. These events occur concomitantly with enhanced calcium transport. We inhibited RNA and protein synthesis in richitic chicks and measured the subsequent response to 1,25(OH)2D3. Actinomycin D, injected prior to and following 1,25(OH)2D3 administration, inhibited intestinal RNA polymerase activity, blocked the rise in serum calcium, reduced the amount of CaBP, and increased alkaline phosphatase activity. Cycloheximide injected in similar fashion, inhibited the 1,25(OH)2D3-mediated increase in intestinal protein synthesis, serum calcium, CaBP, and alkaline phosphatase activity. Neither inhibitor blocked the ability of 1,25(OH)2D3 to stimulate calcium transport as measured in isolated duodenal loops in vivo. The ability of either inhibitor to block 1,25(OH)2D3-mediated calcium transport despite inhibition of CaBP production and alkaline phosphatase activity (by cycloheximide) indicates that de novo RNA and protein synthesis, and in particular CaBP and alkaline phosphatase, are not required for the 1,25(OH)2D3 stimulation of calcium transport.  相似文献   

12.
The present studies were performed to further characterize a mouse yolk sac protein which is similar or identical to the vitamin D-dependent intestinal calcium-binding protein (CaBP). Yolk sac protein and purified rat intestinal CaBP displayed full identity upon immunodiffusion (Ouchterlony) using antiserum to the rat intestinal CaBP. Immunoreactive CaBP in yolk sac homogenates eluted from gel permeation columns with the low molecular weight peak of 45Ca2+ binding (Chelex assay), and the electrophoretic mobility of the protein was markedly increased by EDTA. On days 11-13 of gestation, the concentrations of immunoreactive CaBP in yolk sac were 4-5-fold higher than in placenta; by days 16-17, the concentrations in yolk sac and placenta were similar. Incubation of yolk sac with [3H]leucine demonstrated synthesis of immunoprecipitable [3H]CaBP. A single band of 3H-labeled protein was seen on sodium dodecyl sulfate gel electrophoresis of the immunoprecipitate. This protein co-migrated with radioactive placental CaBP with an apparent Mr of 10,050. Addition of 1,25-dihydroxycholecalciferol (calcitriol) to organ culture media with or without serum increased the amount and concentration of CaBP in yolk sac (p less than 0.001) at 48 h. CaBP synthesis in yolk sac appeared to be independent of calcitriol concentrations in the maternal circulation since injection of the hormone into the maternal compartment produced no change in yolk sac CaBP despite increases of maternal intestinal and renal CaBP. These studies demonstrate that yolk sac immunoreactive CaBP is synthesized in yolk sac and has an apparent molecular size and calcium-binding properties characteristic of mammalian vitamin D-dependent calcium-binding proteins. The in vitro response of yolk sac CaBP to calcitriol is the first evidence of a vitamin D effect on the fetal membranes and suggests one function for calcitriol receptors in these tissues.  相似文献   

13.
We employed a genetic approach to determine whether deficiency of 1,25-dihydroxyvitamin D (1,25(OH)2D) and deficiency of the vitamin D receptor (VDR) produce the same alterations in skeletal and calcium homeostasis and whether calcium can subserve the skeletal functions of 1,25(OH)2D and the VDR. Mice with targeted deletion of the 25-hydroxyvitamin D 1alpha-hydroxylase (1alpha(OH)ase-/-) gene, the VDR gene, and both genes were exposed to 1) a high calcium intake, which maintained fertility but left mice hypocalcemic; 2) this intake plus three times weekly injections of 1,25(OH)2D3, which normalized calcium in the 1alpha(OH)ase-/- mice only; or 3) a "rescue" diet, which normalized calcium in all mutants. These regimens induced different phenotypic changes, thereby disclosing selective modulation by calcium and the vitamin D system. Parathyroid gland size and the development of the cartilaginous growth plate were each regulated by calcium and by 1,25(OH)2D3 but independent of the VDR. Parathyroid hormone secretion and mineralization of bone reflected ambient calcium levels rather than the 1,25(OH)2D/VDR system. In contrast, increased calcium absorption and optimal osteoblastogenesis and osteoclastogenesis were modulated by the 1,25(OH)2D/VDR system. These studies indicate that the calcium ion and the 1,25(OH)2D/VDR system exert discrete effects on skeletal and calcium homeostasis, which may occur coordinately or independently.  相似文献   

14.
Activity of a HCO-3 stimulated Mg2+ dependent ATPase is demonstrated in mitochondrial fractions of the avian duodenum. Suppression of eggshell calcification resulted in a slight reduction in Mg2+, Ca2+ and Mg2+HCO-3 ATPase activities. Duodenal carbonic anhydrase activity was lower in birds laying soft-shelled eggs than in birds laying normal eggs. Alkaline phosphatase and calcium binding protein levels both decreased along the length of the small intestine, but the effect was more pronounced for alkaline phosphatase. Suppression of eggshell calcification and treatment of shell-less laying hens with 1,25(OH)2D3 influenced alkaline phosphatase activity only in the duodenal mucosa. Suppression of eggshell calcification reduced CaBP levels in all sections of the intestine. Treatment with 1,25(OH)2D3 restored CaBP levels. Regulation of intestinal CaBP levels by 1,25(OH)2D3 would therefore, seem to be controlled more directly by calcium requirements associated with eggshell calcification than by gonadal hormones.  相似文献   

15.
We utilized a vitamin D receptor (VDR) gene knockout model to study the effects of maternal and fetal absence of VDR on maternal fertility, fetal-placental calcium transfer, and fetal mineral homoeostasis. Vdr null mice were profoundly hypocalcemic, conceived infrequently, and had significantly fewer viable fetuses in utero that were also of lower body weight. Supplementation of a calcium-enriched diet increased the rate of conception in Vdr nulls but did not normalize the number or weight of viable fetuses. Among offspring of heterozygous (Vdr(+/-)) mothers (wild type, Vdr(+/-), and Vdr null fetuses), there was no alteration in serum Ca, P, or Mg, parathyroid hormone, placental (45)Ca transfer, Ca and Mg content of the fetal skeleton, and morphology and gene expression in the fetal growth plates. Vdr null fetuses did have threefold increased 1,25-dihydroxyvitamin D levels accompanied by increased 1alpha-hydroxylase mRNA in kidney but not placenta; a small increase was also noted in placental expression of parathyroid hormone-related protein (PTHrP). Among offspring of Vdr null mothers, Vdr(+/-) and Vdr null fetuses had normal ionized calcium levels and a skeletal ash weight that was appropriate to the lower body weight. Thus our findings indicate that VDR is not required by fetal mice to regulate placental calcium transfer, circulating mineral levels, and skeletal mineralization. Absence of maternal VDR has global effects on fetal growth that were partly dependent on maternal calcium intake, but absence of maternal VDR did not specifically affect fetal mineral homeostasis.  相似文献   

16.
Profound changes in calcium metabolism occur during pregnancy. The mother has to make available extra calcium for fetal requirements while ensuring that her plasma and bone calcium concentrations are satisfactorily maintained. In a cross-sectional study plasma concentrations of the major calcium-regulating hormones--namely, calcitonin, parathyroid hormone, 25-hydroxyvitamin D (25-OHD), and 1,25-dihydroxyvitamin D (1,25-(OH)2D)--were measured to establish their interrelations during normal pregnancy. The major changes observed were increases in the circulating concentrations of 1,25-(OH)2D and calcitonin. Concentrations of parathyroid hormone and 25-OHD remained within the normal range. The increased concentrations of 1,25-(OH)2D enable the increased physiological need for calcium to be met by enhancing intestinal absorption of this element. The simultaneous rise in calcitonin opposes the bone-resorbing activities of 1,25-(OH)2D, thereby protecting the integrity of the maternal skeleton. Maternal calcium homeostasis is thus maintained yet the requirements of the fetus are fulfilled.  相似文献   

17.
The role of 24,25(OH)2D3 in calcium homeostasis is still controversial. In the present study the administration of low doses of 1,25(OH)2D3 and of higher doses of 24,25(OH)2D3 either alone or in conjunction with each other, were studied in rachitic chicks and in Japanese quails. Whereas 24,25(OH)2D3 alone had no significant effect on duodenal CaBP and on alkaline phosphatase in chick serum, it increased the influence of 1,25(OH)2D3 on these two parameters strongly. Also, when 1,25(OH)2D3 and 24,25(OH)2D3 were given simultaneously to Japanese quails, calcium excretion via the egg shell was clearly higher than when either metabolite had been administered alone. These results indicate that 1,25(OH)2D3 and 24,25(OH)2D3 exert a strong synergistic effect in rachitic animals.  相似文献   

18.
The active form of vitamin D, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], is an endocrine hormone whose classic role is the maintenance of calcium homeostasis. It is well documented that 1,25(OH)(2)D(3) also has anti-tumor effects on a number of cancers and cancer cell lines including breast, colorectal, gastric, liver, ovarian, prostate, and non-melanoma skin cancers. Included in the anti-tumor activities of 1,25(OH)(2)D(3) are its ability to cause antiproliferation, prodifferentation and decrease angiogenesis. Furthermore, through regulation of the plaminogen activator (PA) system and a class of proteolytic enzymes called matrix metalloproteinases (MMPs), 1,25(OH)(2)D(3) reduces the invasive spread of tumor cells. Because of the calcemic limitations of using 1,25(OH)(2)D(3) as a therapy, we have tested the effects of a novel Gemini vitamin D analogue, Deuterated Gemini (DG), on mouse colorectal cancer. We demonstrated that DG is more potent in reducing tumor volume and mass, compared to control and 1,25(OH)(2)D(3). DG significantly prevented (100% reduction, p<0.05) the invasive spread of colorectal tumor cells into the surrounding muscle, and had no effect on serum calcium levels. Thus, DG acts as a selective vitamin D receptor modulator (SVDRM) by enhancing select anti-tumor characteristic 1,25(OH)(2)D(3) activities, without inducing hypercalcemia. Thus, DG shows promise in the development of colorectal cancer therapies.  相似文献   

19.
The renal 25-hydroxyvitamin D-3-1 alpha-hydroxylase (1 alpha-hydroxylase) activity and circulating levels of 1,25-dihydroxyvitamin D (1,25(OH)2D) were measured in pregnant guinea-pigs and their offspring. Serum levels of 1,25(OH)2D were significantly elevated in pregnant guinea-pigs but the renal enzyme activity was not different from non-pregnant animals. The fetal renal 1 alpha-hydroxylase activity was about 6-fold higher than the maternal level, whereas circulating 1,25(OH)2D was low. Treatment with pharmacological doses of 1,25(OH)2D3 increased circulating 1,25(OH)2D and depressed the renal 1 alpha-hydroxylases both in the mother and the fetus. In newborn guinea-pigs the enzyme activity was up to 10-times that seen in adults. It declined over the first 3 weeks, showing no difference between the sexes. In sexually mature animals the males had a significantly higher 1 alpha-hydroxylase activity than the female. However, this higher enzyme activity was not correlated to serum testosterone. Around the time the animals reached sexual maturity serum 1,25(OH)2D increased in both sexes. In the males this rise was correlated to an increase in serum testosterone. It is concluded that the maternal renal 1 alpha-hydroxylase activity is unchange in late pregnancy, compared to non-pregnant females. The data indicate that the fetus produces 1,25(OH)2D, and may contribute to the maternal circulating 1,25(OH)2D. The sex difference in 1 alpha-hydroxylase activity previously demonstrated is manifest at about the time of puberty.  相似文献   

20.
The placental trophoblastic epithelium functions to transport nutrients needed by the fetus, including calcium, which is required in the greatest amounts during the last third of pregnancy when the majority of fetal skeletal mineralization occurs. The mechanism of placental calcium transport and the developmental changes in the trophoblast that facilitate this process are currently incompletely understood. We have previously identified a 57-kDa, Ca(2+)-binding protein (CaBP) functionally implicated in placental calcium transport and trophoblast differentiation. In this study we have directly examined the role of CaBP in these processes by (1) recombinantly overexpressing CaBP in an inducible manner and (2) downregulating CaBP expression using antisense technology, using the rat choriocarcinoma cell line Rcho-1 as a trophoblastic cell model system. Our results show that overexpression of CaBP stimulates both cellular calcium uptake and vectorial calcium transport activities in Rcho-1 cells. Those cells stably expressing CaBP also exhibit higher levels of steady-state intracellular calcium and enhanced calcium-buffering ability. In addition, prolonged overexpression of CaBP in Rcho-1 cultures promotes trophoblast differentiation. Conversely, downregulation of CaBP expression had a negative effect on calcium uptake, calcium transport, and trophoblast differentiation in Rcho-1 cells. These data indicate that CaBP plays a direct role in placental calcium transport, functioning both as an intracellular calcium buffer and as a shuttle. These results also support a more direct role for CaBP in the trophoblast differentiation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号