首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actomyosin contractility is a major engine of preimplantation morphogenesis, which starts at the 8-cell stage during mouse embryonic development. Contractility becomes first visible with the appearance of periodic cortical waves of contraction (PeCoWaCo), which travel around blastomeres in an oscillatory fashion. How contractility of the mouse embryo becomes active remains unknown. We have taken advantage of PeCoWaCo to study the awakening of contractility during preimplantation development. We find that PeCoWaCo become detectable in most embryos only after the second cleavage and gradually increase their oscillation frequency with each successive cleavage. To test the influence of cell size reduction during cleavage divisions, we use cell fusion and fragmentation to manipulate cell size across a 20- to 60-μm range. We find that the stepwise reduction in cell size caused by cleavage divisions does not explain the presence of PeCoWaCo or their accelerating rhythm. Instead, we discover that blastomeres gradually decrease their surface tensions until the 8-cell stage and that artificially softening cells enhances PeCoWaCo prematurely. We further identify the programmed down-regulation of the formin Fmnl3 as a required event to soften the cortex and expose PeCoWaCo. Therefore, during cleavage stages, cortical softening, mediated by Fmnl3 down-regulation, awakens zygotic contractility before preimplantation morphogenesis.

During preimplantation morphogenesis, the mouse embryo relies on forces generated by the actomyosin cytoskeleton. This study uncovers how periodic actomyosin contractions increase in frequency during cleavage stages as blastomeres soften with each cleavage division.  相似文献   

2.
3.
L Guo  ST Qi  DQ Miao  XW Liang  H Li  XH Ou  X Huang  CR Yang  YC Ouyang  Y Hou  QY Sun  Z Han 《PloS one》2012,7(7):e40528
Parathyroid hormone-like hormone (PTHLH) was first identified as a parathyroid hormone (PTH)-like factor responsible for humoral hypercalcemia in malignancies in the 1980s. Previous studies demonstrated that PTHLH is expressed in multiple tissues and is an important regulator of cellular and organ growth, development, migration, differentiation, and survival. However, there is a lack of data on the expression and function of PTHLH during preimplantation embryonic development. In this study, we investigated the expression characteristics and functions of PTHLH during mouse preimplantation embryonic development. The results show that Pthlh is expressed in mouse oocytes and preimplantation embryos at all developmental stages, with the highest expression at the MII stage of the oocytes and the lowest expression at the blastocyst stage of the preimplantation embryos. The siRNA-mediated depletion of Pthlh at the MII stage oocytes or the 1-cell stage embryos significantly decreased the blastocyst formation rate, while this effect could be corrected by culturing the Pthlh depleted embryos in the medium containing PTHLH protein. Moreover, expression of the pluripotency-related genes Nanog and Pou5f1 was significantly reduced in Pthlh-depleted embryos at the morula stage. Additionally, histone acetylation patterns were altered by Pthlh depletion. These results suggest that PTHLH plays important roles during mouse preimplantation embryonic development.  相似文献   

4.
5.
Li W  Zhang J  Yu W  Liu G  Chen Q 《Zoological science》2003,20(11):1389-1393
The expression of mouse two-cell stage specific genes was studied using the modified DDRT-PCR method, which overcame the paucity of the experimental materials of preimplantation embryos. Embryo tissues equivalent to that of four blastomeres are sufficient for amplification of target genes as visualized using polyacrylamide gel. Sequence analyses and reverse Northern blots indicate that the genes of ATPase 6 and Ywhaz are expressed specifically in two-cell embryos. ATPase 6 is essential for one-cell to two-cell transition and plays an important role in establishment of oxidative phosphorylation, while Ywhaz is related to initiating cellular communication system.  相似文献   

6.
An antibody prepared against nullipotential teratocarcinoma stem cells (A-N1) detects cell surface antigens expressed by early mouse embryos and inhibits in vitro development of embryos in the absence of complement [Calarco and Banka, 1979]. Here we report the immunoprecipitation and electrophoretic characterization of A-N1-detected antigens from preimplantation mouse embryos. Predominant antibody activity is directed against a 67,000-dalton glycoprotein (p67) with a mean pI of 5.3, which has not been previously described. This protein is not detected, at least as p67, after culture of embryos in tunicamycin. The p67 antigen is also expressed by pluripotential PSA1 teratocarcinoma cells but not by several different differentiated mouse cell types.  相似文献   

7.
NEK5, a member of never in mitosis‐gene A‐related protein kinase, is involved in the regulation of centrosome integrity and centrosome cohesion at mitosis in somatic cells. In this study, we investigated the expression and function of NEK5 during mouse oocyte maturation and preimplantation embryonic development. The results showed that NEK5 was expressed from germinal vesicle (GV) to metaphase II (MII) stages during oocyte maturation with the highest level of expression at the GV stage. It was shown that NEK5 localized in the cytoplasm of oocytes at GV stage, concentrated around chromosomes at germinal vesicle breakdown (GVBD) stage, and localized to the entire spindle at prometaphase I, MI and MII stages. The small interfering RNA‐mediated depletion of Nek5 significantly increased the phosphorylation level of cyclin‐dependent kinase 1 in oocytes, resulting in a decrease of maturation‐promoting factor activity, and severely impaired GVBD. The failure of meiotic resumption caused by Nek5 depletion could be rescued by the depletion of Wee1B. We found that Nek5 depletion did not affect CDC25B translocation into the GV. We also found that NEK5 was expressed from 1‐cell to blastocyst stages with the highest expression at the blastocyst stage, and Nek5 depletion severely impaired preimplantation embryonic development. This study demonstrated for the first time that NEK5 plays important roles during meiotic G2/M transition and preimplantation embryonic development.  相似文献   

8.
Transcript profiling during preimplantation mouse development   总被引:2,自引:0,他引:2  
  相似文献   

9.
10.
Wang H  Luan L  Ding T  Brown N  Reese J  Paria BC 《Theriogenology》2011,76(4):678-686
The objective was to study the expression of zonula occludens-2, a tight junction protein, during preimplantation hamster embryonic development, to predict its possible localization, source, and roles in trophectoderm differentiation and blastocyst formation in this species. Comparison of zonula occludens-2 expression pattern between the hamster and mouse preimplantation embryos from the zygote up to the blastocyst stage was also an objective of this study. Zonula occludens-2 localization was noted in nuclei of blastomeres in all stages of hamster and mouse embryonic development. Compared to mice, where zonula occludens-2 was first localized in the interblastomere membrane at the morula stage, hamster embryos had membranous zonula occludens-2 localization from the 2-cell stage onwards. Based on combined results of immunolocalization study in parthenogenic embryos and ovarian and epididymal sections, and quantitative PCR done in oocytes and all developmental stages of preimplantation embryos, perhaps there was a carry-over of zonula occludens-2 proteins or mRNA from the dam to the embryo. Based on these findings, we inferred that maternally derived zonula occludens-2 was involved in nuclear functions, as well as differentiation of blastomeres and blastocoel formation during preimplantation embryonic development in the hamster.  相似文献   

11.
12.
13.
Previous studies have reported that promoters requiring enhancers for full activity in mammalian somatic cells also require enhancers when injected into mouse two-cell embryos, whereas the same promoters can be expressed just as efficiently in the absence of an enhancer when injected into arrested one-cell embryos. Experiments were designed to determine whether this phenomenon reflected normal developmental changes at the beginning of mammalian development, or simply differences in the physiological states of these cells under the experimental conditions employed. The activity of three different promoters that function in a wide variety of mammalian cells was measured both in embryos whose morphological development was arrested and in embryos that continued development in vitro. Expression of the injected gene was related to the onset of zygotic gene expression ("zygotic clock"), the phase of the cell proliferation cycle, the use of aphidicolin to arrest cell proliferation, and formation of two-cell embryos in vitro and in vivo. The results demonstrated that promoter activity was tightly linked to zygotic gene expression, while the need for enhancers to stimulate promoter activity depended only on formation of a two-cell embryo. These results further support the hypothesis that the first mitosis induces a general repression of promoters prior to initiation of zygotic gene expression that is relieved specifically by enhancers.  相似文献   

14.
15.
Expression of nuclear lamins during mouse preimplantation development   总被引:2,自引:0,他引:2  
The expression of nuclear lamins during mouse preimplantation development was studied by immunofluorescence, immunoblotting and immunoprecipitation. Two sera were used, specific either for lamin B or lamins A and C. Both sera gave a positive staining of the nuclear periphery throughout preimplantation development (fertilized eggs to late blastocysts). Immunoblots revealed that the three lamins were present in eggs and blastocysts. However, lamin A from eggs was found to have a higher apparent Mr than lamin A from blastocysts and other mouse cells. Using immunoprecipitation, synthesis of lamin A was detected in eggs while synthesis of lamin B was detected in 8-cell embryos and blastocysts, indicating that at least some of the lamins used during early development do not come from a store in the egg. These results are discussed in relation to the possible role of lamins during cell differentiation.  相似文献   

16.
Cell surface changes during preimplantation development in the mouse   总被引:4,自引:0,他引:4  
Scanning electron microscopy reveals microvilli on all preimplantation stages, indicates that their number and length may be dependent on embryo size, and provides examples of regional alterations in their number. Cellular adherence, as evidence by interactions of microvilli, migration of cellular processes, and junctional complexes, increases during development and is accompanied by changes in the shapes of cells and embryos. Cell surfaces bordering the blastocoel differ markedly from the outer cell surfaces of the embryo.  相似文献   

17.
Diploid parthenogenetic postimplantation mouse embryos, containing two maternal genomes, are characterized by poor development of extraembryonic membranes derived from the trophectoderm and primitive endoderm of the blastocyst. This is thought to be caused by a deficiency of expression of paternally derived imprinted genes. Here we have compared the inner cell mass, from which the primitive endoderm and fetal lineages are derived, and the trophectoderm, which forms a major component of the placenta, in parthenogenetic and fertilized preimplantation embryos. We have also studied the metabolism from the 1-cell to the blastocyst stage. Cell numbers were reduced in the ICM and TE of parthenogenetic blastocysts compared to fertilized blastocysts. This was thought to be due to the increased levels of cell death observed in these lineages. Pyruvate and glucose uptake by parthenogenetic embryos was similar to that by fertilized embryos throughout preimplantation development. However, at the expanded blastocyst stage glucose uptake by parthenogenetic embryos was significantly higher than by fertilized embryos. The implications of the actions of imprinted genes and of X-inactivation is discussed. © 1996 Wiley-Liss, Inc.  相似文献   

18.
19.
It has been proposed that vinculin is a microfilament bundle-membrane linking cytoskeletal protein. We used double-fluorescence microscopy to study the distribution of vinculin and F-actin in mouse oocytes and preimplantation embryos. In oocytes and in the cells of cleavage- and blastocyst-stage embryos, vinculin exhibited a diffuse cytoplasmic distribution and was concentrated in a submembranous layer. The presence of vinculin in oocytes was confirmed by immunoblotting. In oocytes, a distinct concentration of actin was observed above the second metaphase spindle. During the 8-cell stage, compacting blastomeres exhibited partial polarization of cortical vinculin and actin toward their outward-facing surfaces. In precompaction-stage blastomeres, the submembranous layer of vinculin contained a ring-like concentration in the most peripheral region of each intercellular contact area. During later development, the amount of vinculin localized in the areas of intercellular contacts became modified. In embryos ranging from the compacted 8-cell stage to the mid-morula stage, the vinculin-specific fluorescence was only intense in some intercellular contacts, being indistinct in most contact areas. In late morulae, the flattened outer cells increasingly exhibited concentration of vinculin in contact areas. In contrast, actin-specific fluorescence was clearly evident in most intercellular contacts throughout the morula stage. At the early blastocyst stage, all contacts of the trophectoderm (TE) cells again regularly exhibited concentration of both components. At the late blastocyst stage, the staining pattern changed once again: the contact-associated concentration of vinculin-specific fluorescence was not observed in polar TE cells, while remaining clear in mural TE cells. In blastocyst outgrowths, TE cells displayed typical vinculin plaques at the peripheries of the cells. The continuous changes in the distribution of vinculin and actin suggest that these components are involved in the control of cellular relationships during early development. Immunoelectron microscopy and experiments using cytochalasin were performed in an attempt to relate the distribution of vinculin to the ultrastructural features of embryo cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号