首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
When benz[a] anthracene was oxidised in a reaction mixture containing ascorbic acid, ferrous sulphate and EDTA, the non-K-region dihydrodiols, trans-1,2-dihydro-1,2-dihydroxybenz[a] anthracene and trans-3,4-dihydro-3,4-dihydroxybenz[a] anthracene together with small amounts of the 8,9- and 10,11-dihydrodiols were formed. When oxidised in a similar system, 7,12-dimethylbenz[a] anthracene yielded the K-region dihydrodiol, trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a] anthracene and the non-K-region dihydrodiols, trans-3,4-dihydro-3,4-dihydroxy-7,12-dimethylbenz[a] anthracene, trans-8,9-dihydro-8,9-dihydroxy-7,12-dimethylbenz[a] anthracene, trans-10,11-dihydro-10,11-dihydroxy-7,12-dimethylbenz[a] anthracene and a trace of the 1,2-dihydrodiol. The structures and sterochemistry of the dihydrodiols were established by comparisons of their UV spectra and chromatographic characteristics using HPLC with those of authentic compounds or, when no authentic compounds were available, by UV, NMR and mass spectral analysis. An examination by HPLC of the dihydrodiols formed in the metabolism, by rat-liver microsomal fractions, of benz[a] anthracene and 7,12-dimethylbenz[a] anthracene was carried out. The metabolic dihydriols were identified by comparisons of their chromatographic and UV or fluorescence spectral characteristics with compounds of known structures. The principle metabolic dihydriols formed from both benz[a] anthracene and 7,12-dimethylbenz[a] anthracene were the trans-5,6- and trans-8,9-dihydrodiols. The 1,2- and 10,11-dihydrodiols were identified as minor products of the metabolism of benz [a] anthracene and the tentative identification of the trans-3,4-dihydriol as a metabolite was made from fluorescence and chromatographic data. The minor metabolic dihydriols formed from 7,12-dimethylbenz[a] anthracene were the trans-3,4-dihydrodiol and the trans-10,11-dihydriol but the trans-1,2-dihydrodiol was not detected in the present study.  相似文献   

2.
Through application of the exciton chirality method, absolute stereochemistry has been assigned to the (+)-and (-)-enantiomers of four of the five metabolically possible trans-dihydrodiols of the polycyclic hydrocarbon benzo[a]anthracene (BA). The (+)- and (-)-enantiomers of each of these dihydrodiols can be separated as their diastereomeric bis-esters with (-)-alpha-methoxy-alpha-trifluoromethylphenylacetic acid by high pressure liquid chromatography (HPLC). BA 3,4-, 5,6-, 8,9- and 10,11-dihydrodiol are formed in 38%, 36%, 78% and 66% enantiometric purity, respectively, by liver microsomes from phenobarbital-treated rats, whereas the liver microsomes from 3-methylcholanthrene(MC)-treated rats form BA 5,6-, 8,9- and 10,11-dihydrodiols with higher optical purity (62%, 96% and 96%, respectively). BA 3,4-dihydrodiol is formed from (+/-)-BA 3,4-oxide by microsomal epoxide hydrase in very high enantiometric purity (78%). The major enantiomer of the BA dihydrodiols formed by liver enzymes has R,R absolute stereochemistry in each case. In parallel with previous studies on the metabolism of benzo[a]pyrene, the more tumorigenic (-)-enantiomer is the predominant isomer of BA 3,4-dihydrodiol formed by liver microsomes from BA.  相似文献   

3.
Metabolism of 7-nitrobenz(a)anthracene (7-NO2-BA) by rat liver microsomes yielded 7-NO2-BA trans-3,4-dihydrodiol and 7-NO2-BA trans-8,9-dihydrodiol as major metabolites. Proton NMR spectral analyses indicate that 7-NO2-BA trans-3,4-dihydrodiol preferentially adopts a quasidiequatorial conformation and that 7-NO2-BA trans-8,9-dihydrodiol adopts a mixture of quasidiequatorial and quasidiaxial conformations. Circular dichroism spectral analyses of these compounds and their diacetoxy derivatives indicated that the major enantiomers of both dihydrodiols have R,R absolute stereochemistries. The identification of 7-NO2-BA trans-8,9-dihydrodiol as a metabolite of 7-NO2-BA indicates that oxidative metabolism can occur at position peri to the nitro substituent.  相似文献   

4.
7-Methylbenz[a]anthracene (7-MBA) was metabolized stereoselectively by rat liver microsomes to form five optically active dihydrodiols as the predominant metabolites. The dihydrodiols were purified by a combination of reversed-phase and normal-phase high performance liquid chromatography (HPLC). By comparison of their circular dichroism (CD) spectra with the corresponding benz[a]anthracene (BA) dihydrodiols of known absolute stereochemistry, the major dihydrodiol enantiomers of 7-MBA have been determined to have 1R,2R-, 3R,4R- and 10R , 11R - absolute configurations, respectively. Due to their quasi- diaxial conformations, the absolute configuration of trans-5,6- and trans-8,9-dihydrodiols, the two most abundant metabolites of 7-MBA, could not be determined by simple comparisons of their circular dichroism spectra with those of the quasidi -equatorial BA 5R, 6R - and 8R , 9R -dihydrodiols. The major enantiomers of the quasi- diaxial trans-5,6- and trans-8,9-dihydrodiol metabolites of 7-MBA were determined by comparison to the CD spectrum of 7-bromo-BA 5R, 6R -dihydrodiol and by the exciton chirality method to have R,R absolute stereochemistry. This study also revealed that the circular dichroism Cotton effects of an enantiomeric dihydrodiol of polycyclic aromatic hydrocarbons can be drastically altered if the conformation (quasi- diaxial vs. quasi di-equatorial ) of the dihydrodiol is changed.  相似文献   

5.
Metabolism of 4-methylbenz[a]anthracene by the fungus Cunninghamella elegans was studied. C. elegans metabolized 4-methylbenz[a]anthracene primarily at the methyl group, this being followed by further metabolism at the 8,9- and 10,11-positions to form trans-8,9-dihydro-8,9-dihydroxy-4-hydroxymethylbenz[a]anthracene and trans-10,11-dihydro-10,11-dihydroxy-4-hydroxymethylbenz[a]anthracene. There was no detectable trans-dihydrodiol formed at the methyl-substituted double bond (3,4-positions) or at the 'K' region (5,6-positions). The metabolites were isolated by reversed-phase high-pressure liquid chromatography and characterized by the application of u.v.-visible-absorption-, 1H-n.m.r.- and mass-spectral techniques. The 4-hydroxymethylbenz[a]anthracene trans-8,9- and -10,11-dihydrodiols were optically active. Comparison of the c.d. spectra of the trans-dihydrodiols formed from 4-methylbenz[a]anthracene by C. elegans with those of the corresponding benz[a]anthracene trans-dihydrodiols formed by rat liver microsomal fraction indicated that the major enantiomers of the 4-hydroxymethylbenz[a]anthracene trans-8,9-dihydrodiol and trans- 10,11-dihydrodiol formed by C. elegans have S,S absolute stereochemistries, which are opposite to those of the predominantly 8R,9R- and 10R,11R-dihydrodiols formed by the microsomal fraction. Incubation of C. elegans with 4-methylbenz[a]anthracene under 18O2 and subsequent mass-spectral analysis of the metabolites indicated that hydroxylation of the methyl group and the formation of trans-dihydrodiols are catalysed by cytochrome P-450 mono-oxygenase and epoxide hydrolase enzyme systems. The results indicate that the fungal mono-oxygenase-epoxide hydrolase enzyme systems are highly stereo- and regio-selective in the metabolism of 4-methylbenz[a]anthracene.  相似文献   

6.
The metabolism of the carcinogen benz[a]anthracene (BA), a tetracyclic aromatic hydrocarbon, by Cunninghamella elegans was investigated. C. elegans grown on Sabouraud dextrose broth transformed [14C]BA to labeled BA trans-8,9-dihydrodiol (90%), BA trans-10,11-dihydrodiol (6%), and BA trans-3,4-dihydrodiol (4%), but not to BA trans-5,6-dihydrodiol. These metabolites were separated by thin-layer chromatography and reversed-phase high-performance liquid chromatography and were identified by UV and mass spectral techniques. A BA tetraol, 8 beta,9 alpha,10 alpha,11 beta-tetrahydroxy-8 alpha, 9 beta,10 beta,11 alpha-tetrahydro-BA, was also identified as a metabolite and may have arisen as an additional oxidation product of either BA 8,9- or 10,11-dihydrodiol. This is the first study in which a biologically produced BA tetraol has been identified. Our results suggest that the transformation of BA to trans-dihydrodiols by C. elegans is similar to the transformation of BA found in mammals, except that BA 5,6-dihydrodiol is not produced.  相似文献   

7.
Two K-regions of 5-methylchrysene are sites of oxidative metabolism   总被引:1,自引:0,他引:1  
Two K-region trans-dihydrodiols were identified as products formed in the metabolism of 5-methylchrysene by liver microsomes from phenobarbital-treated male Sprague-Dawley rats. These two dihydrodiols were isolated from a mixture of metabolites by reversed-phase and normal-phase high-performance liquid chromatographies. Both K-region dihydrodiols were characterized by ultra-violet, mass, and circular dichroism spectral analyses. Chiral stationary phase high-performance liquid chromatographic analyses indicated that 5-methylchrysene 5,6-dihydrodiol and 11,12-dihydrodiol contain (S,S): (R,R) enantiomer ratios of 2:98 and 12:88, respectively. Although it is a bay-region dihydrodiol, the hydroxyl groups of 5-methylchrysene trans-5,6-dihydrodiol adopt a quasidiequatorial conformation.  相似文献   

8.
Syncephalastrum racemosum UT-70 and Cunninghamella elegans ATCC 36112 metabolized 7,12-dimethylbenz[a]anthracene (7,12-DMBA) to hydroxymethyl metabolites as well as 7-hydroxymethyl-12-methylbenz[a]anthracene trans-3,4-, -5,6-, -8,9-, and -10,11-dihydrodiols. The 7,12-DMBA metabolites were isolated by reversed-phase high-performance liquid chromatography and identified by their UV-visible absorption, mass, and nuclear magnetic resonance spectral characteristics. A comparison of the circular dichroism spectra of the K-region (5,6-position) dihydrodiol of both fungal strains with those of the 7,12-DMBA 5S,6S-dihydrodiol formed from 7,12-DMBA by rat liver microsomes indicated that the major enantiomer of the 7-hydroxymethyl-12-methylbenz[a]anthracene trans-5,6-dihydrodiol formed by both fungal strains had a 5R,6R absolute stereochemistry. Direct resolution of the fungal trans-5,6-dihydrodiols by chiral stationary-phase high-performance liquid chromatography indicated that the ratios of the R,R and S,S enantiomers were 88:12 and 77:23 for S. racemosum and C. elegans, respectively. These results indicate that the fungal metabolism of 7,12-DMBA at the K region (5,6-position) is highly stereoselective and different from that reported for mammalian enzyme systems.  相似文献   

9.
Syncephalastrum racemosum UT-70 and Cunninghamella elegans ATCC 36112 metabolized 7,12-dimethylbenz[a]anthracene (7,12-DMBA) to hydroxymethyl metabolites as well as 7-hydroxymethyl-12-methylbenz[a]anthracene trans-3,4-, -5,6-, -8,9-, and -10,11-dihydrodiols. The 7,12-DMBA metabolites were isolated by reversed-phase high-performance liquid chromatography and identified by their UV-visible absorption, mass, and nuclear magnetic resonance spectral characteristics. A comparison of the circular dichroism spectra of the K-region (5,6-position) dihydrodiol of both fungal strains with those of the 7,12-DMBA 5S,6S-dihydrodiol formed from 7,12-DMBA by rat liver microsomes indicated that the major enantiomer of the 7-hydroxymethyl-12-methylbenz[a]anthracene trans-5,6-dihydrodiol formed by both fungal strains had a 5R,6R absolute stereochemistry. Direct resolution of the fungal trans-5,6-dihydrodiols by chiral stationary-phase high-performance liquid chromatography indicated that the ratios of the R,R and S,S enantiomers were 88:12 and 77:23 for S. racemosum and C. elegans, respectively. These results indicate that the fungal metabolism of 7,12-DMBA at the K region (5,6-position) is highly stereoselective and different from that reported for mammalian enzyme systems.  相似文献   

10.
The K-region trans-5,6-dihydrodiols formed in the metabolism of 12-methylbenz[a]anthracene (12-MBA) by liver microsomal preparations from untreated, phenobarbital-treated and 3-methylcholanthrene-treated male Sprague-Dawley rats were found by chiral stationary-phase h.p.l.c. (c.s.p.-h.p.l.c.) analyses to contain (5S,6S)/(5R,6R) enantiomer ratios of 93:7, 88:12 and 97:3 respectively. The absolute stereochemistry of a 12-MBA trans-5,6-dihydrodiol enantiomer was elucidated by the exciton-chirality c.d. method. The 5,6-epoxides formed in the metabolism of 12-MBA by liver microsomal preparations from untreated, phenobarbital-treated and 3-methylcholanthrene-treated male Sprague-Dawley rats in the presence of the epoxide hydrolase inhibitor 3,3,3-trichloropropylene 1,2-oxide were isolated from a mixture of metabolites by normal-phase h.p.l.c., and their (5S,6R)/(5R,6S) enantiomer ratios were found by c.s.p.-h.p.l.c. analyses to be 73:27, 78:22 and 99:1 respectively. The absolute configurations of 12-MBA 5,6-epoxide enantiomers, resolved by c.s.p.-h.p.l.c., were determined via high-resolution (500 MHz) proton-n.m.r. and c.d. spectral analyses of the two isomeric methoxylation products derived from each of the 12-MBA 5,6-epoxide enantiomers. Enantiomeric pairs of the two methoxylation products were resolved by c.s.p.-h.p.l.c. The results indicate that enantiomeric 5S,6R-epoxide and 5S,6S-dihydrodiol were the major enantiomers preferentially formed in the metabolism at the K-region 5,6-double bond of 12-MBA by all three rat liver microsomal preparations. Optically pure 12-MBA 5S,6R-epoxide was hydrated predominantly at the C(6) position (R centre) to form 12-MBA trans-5,6-dihydrodiol with a (5S,6S)/(5R,6R) enantiomer ratio of 97:3. However, optically pure 12-MBA 5R,6S-epoxide was hydrated nearly equally at both C(5) and C(6) positions to form 12-MBA trans-5,6-dihydrodiol with a (5S,6S)/(5R,6R) enantiomer ratio of 57:43.  相似文献   

11.
Metabolism of trans-7,8-dihydroxy-7,8-dihydro-6-fluorobenzo(a)pyrene by liver microsomes from 3-methylcholanthrene-treated rats and by a highly purified monooxygenase system, reconstituted with cytochrome P-450c, has been examined. Although both the fluorinated and unfluorinated 7,8-dihydrodiol formed from benzo(a)pyrene by liver microsomes share (R,R)-absolute configuration, the fluorinated dihydrodiol prefers the conformation in which the hydroxyl groups are pseudodiaxial due to the proximate fluorine. The fluorinated 4,5- and 9,10-dihydrodiols are also greater than 97% the (R,R)-enantiomers. For benzo(a)pyrene, metabolism of the (7R,8R)-dihydrodiol to a bay-region 7,8-diol-9,10-epoxide in which the benzylic hydroxyl group and epoxide oxygen are trans constitutes the only known pathway to an ultimate carcinogen. With the microsomal and the purified monooxygenase system, this pathway accounts for 76-82% of the total metabolites from the 7,8-dihydrodiol. In contrast, only 32-49% of the corresponding diol epoxide is obtained from the fluorinated dihydrodiol and this fluorinated diol epoxide has altered conformation in that its hydroxyl groups prefer to be pseudodiaxial. Much smaller amounts of the diastereomeric 7,8-diol-9,10-epoxides in which the benzylic hydroxyl groups and the epoxide oxygen are cis are formed from both dihydrodiols. As the fluorinated diol epoxides are weaker mutagens toward bacteria and mammalian cells relative to the unfluorinated diol epoxides, conformation appears to be an important determinant in modulating the biological activity of diol epoxides. One of the more interesting metabolites of 6-fluorinated 7,8-dihydrodiol was a relatively stable arene oxide, probably the 4,5-oxide, which is resistant to the action of epoxide hydrolase.  相似文献   

12.
The K-region 5,6-epoxides, formed in the metabolism of benzo[c]phenanthrene (BcPh) in the presence of an epoxide hydrolase inhibitor 3,3,3-trichloropropylene 1,2-oxide (TCPO) by liver microsomes from untreated, phenobarbital-treated, 3-methylcholanthrene-treated, and polychlorinated biphenyls (Aroclor 1254)-treated rats of the Sprague-Dawley and the Long-Evans strains, were found by chiral stationary phase high-performance liquid chromatography analyses to be enriched (58-72%) in the 5S, 6R enantiomer. In the absence of TCPO, the metabolically formed BcPh trans-5,6-dihydrodiol was enriched (78-86%) in the 5S,6S enantiomer. The major enantiomer of the BcPh 3,4-epoxide metabolite was found to be enriched in the 3S,4R enantiomer which undergoes racemization under the experimental conditions. The major enantiomer of the 5,6-dihydrodiol metabolite was elucidated by the exciton chirality circular dichroism (CD) method to have a 5S,6S absolute stereochemistry. Absolute configurations of enantiomeric methoxylation products derived from each of the two BcPh 5,6-epoxide enantiomers. Optically pure BcPh 5S,6R-epoxide was enzymatically hydrated exclusively at the C6 position to form an optically pure BcPh 5S,6S-dihydrodiol. However, optically pure BcPh 5R,6S-epoxide was hydrated at both C5 and C6 positions to form a BcPh trans-5,6-dihydrodiol with a (5S,6S):(5R,6R) enantiomer ratio of 32:68.  相似文献   

13.
The enantiomers of K-region benz[a]anthracene (BA) 5,6-epoxide and benzo[a]pyrene (BP) 4,5-epoxide were resolved by chiral stationary-phase high-performance liquid chromatography (CSP-HPLC). The K-region epoxides formed in the metabolism of BA by liver microsomes from untreated (control), phenobarbital (PB)-treated, and 3-methylcholanthrene (MC)-treated male Sprague-Dawley rats were determined by CSP-HPLC to have a 5R,6S/5S,6R enantiomer ratio of 25:75, 21:79, and 4:96, respectively. The K-region 4,5-epoxide formed in the metabolism of BP by the same rat liver microsomal preparations contained a 4R,5S/4S,5R enantiomer ratio of 48:52 (control), 40:60 (PB), and 5:95 (MC), respectively. The results indicate that various cytochrome P-450 isozymes of rat liver exhibit different stereoselective properties in catalyzing the epoxidation reactions at the K region of BA and of BP.  相似文献   

14.
Stereoselective fungal metabolism of methylated anthracenes.   总被引:3,自引:3,他引:0       下载免费PDF全文
The metabolism of 9-methylanthracene (9-MA), 9-hydroxymethylanthracene (9-OHMA), and 9,10-dimethylanthracene (9,10-DMA) by the fungus Cunninghamella elegans ATCC 36112 is described. The metabolites were isolated by high-performance liquid chromatography and characterized by UV-visible, mass, and 1H nuclear magnetic resonance spectral techniques. The compounds 9-MA and 9,10-DMA were metabolized by two pathways, one involving initial hydroxylation of the methyl group(s) and the other involving epoxidation of the 1,2- and 3,4- aromatic double bond positions, followed by enzymatic hydration to form hydroxymethyl trans-dihydrodiols. For 9-MA metabolism, the major metabolites identified were trans-1,2-dihydro-1,2-dihydroxy and trans-3,4-dihydro-3,4-dihydroxy derivatives of 9-MA and 9-OHMA. 9-OHMA was also metabolized to trans-1,2- and 3,4-dihydrodiol derivatives. The absolute configuration and optical purity were determined for each of the trans-dihydrodiols formed by fungal metabolism and compared with previously published circular dichroism spectral data obtained from rat liver microsomal metabolism of 9-MA, 9-OHMA, and 9,10-DMA. Circular dichroism spectral analysis revealed that the major enantiomer for each dihydrodiol was predominantly in the S,S configuration, in contrast to the predominantly R,R configuration of the trans-dihydrodiol formed by mammalian enzyme systems. These results indicate that C. elegans metabolizes methylated anthracenes in a highly stereoselective manner that is different from that reported for rat liver microsomes.  相似文献   

15.
The metabolism of 9-methylanthracene (9-MA), 9-hydroxymethylanthracene (9-OHMA), and 9,10-dimethylanthracene (9,10-DMA) by the fungus Cunninghamella elegans ATCC 36112 is described. The metabolites were isolated by high-performance liquid chromatography and characterized by UV-visible, mass, and 1H nuclear magnetic resonance spectral techniques. The compounds 9-MA and 9,10-DMA were metabolized by two pathways, one involving initial hydroxylation of the methyl group(s) and the other involving epoxidation of the 1,2- and 3,4- aromatic double bond positions, followed by enzymatic hydration to form hydroxymethyl trans-dihydrodiols. For 9-MA metabolism, the major metabolites identified were trans-1,2-dihydro-1,2-dihydroxy and trans-3,4-dihydro-3,4-dihydroxy derivatives of 9-MA and 9-OHMA. 9-OHMA was also metabolized to trans-1,2- and 3,4-dihydrodiol derivatives. The absolute configuration and optical purity were determined for each of the trans-dihydrodiols formed by fungal metabolism and compared with previously published circular dichroism spectral data obtained from rat liver microsomal metabolism of 9-MA, 9-OHMA, and 9,10-DMA. Circular dichroism spectral analysis revealed that the major enantiomer for each dihydrodiol was predominantly in the S,S configuration, in contrast to the predominantly R,R configuration of the trans-dihydrodiol formed by mammalian enzyme systems. These results indicate that C. elegans metabolizes methylated anthracenes in a highly stereoselective manner that is different from that reported for rat liver microsomes.  相似文献   

16.
The homogeneous 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50) of rat liver cytosol is indistinguishable from dihydrodiol dehydrogenase (trans-1,2-dihydrobenzene-1,2-diol dehydrogenase EC 1.3.1.20), Penning, T. M., Mukharji, I., Barrows, S., and Talalay, P. (1984) Biochem. J. 222, 601-611). Examination of the substrate specificity of the purified dehydrogenase for trans-dihydrodiol metabolites of polycyclic aromatic hydrocarbons indicates that the enzyme will catalyze the NAD(P)-dependent oxidation of trans-dihydrodiols of benzene, naphthalene, phenanthrene, chrysene, 5-methylchrysene, and benzo[a]pyrene under physiological conditions. Comparison of the utilization ratios Vmax/Km indicates that benzenedihydrodiol and the trans-1,2- and trans-7,8-dihydrodiols of 5-methylchrysene were most efficiently oxidized by the purified dehydrogenase, followed by the trans-7,8-dihydrodiol of benzo[a]pyrene and the trans-1,2-dihydrodiols of phenanthrene, chrysene, and naphthalene. The purified enzyme appears to display rigid regio-selectivity, since it will readily oxidize non-K-region trans-dihydrodiols but will not oxidize the K-region trans-dihydrodiols of phenanthrene and benzo[a]pyrene. The stereochemical course of enzymatic dehydrogenation was investigated by circular dichroism spectrometry. For the trans-1,2-dihydrodiols of benzene, naphthalene, phenanthrene, chrysene, and 5-methylchrysene, the dehydrogenase preferentially oxidized the (+)-[S,S]-isomer. Apparent inversion of this stereochemical preference occurred with the trans-7,8-dihydrodiol of 5-methylchrysene, as the (-)-enantiomer was preferentially oxidized. No change in the sign of the Cotton Effect was observed following oxidation of the racemic trans-7,8-dihydrodiol of benzo[a]pyrene, suggesting that both stereoisomers of this compound were substrates. Large-scale incubation of the [3H]-(+/-)-trans-7,8-dihydrodiol of benzo[a]pyrene with the purified dehydrogenase resulted in greater than 90% utilization of this potent proximate carcinogen, suggesting that the enzyme utilizes both the (-)-[R,R] and the (+)-[S,S]-stereoisomers, which confirms the circular dichroism result. These data show that dihydrodiol dehydrogenase displays the appropriate regio- and stereospecificity to catalyze the oxidation of both the major and minor non-K-region trans-dihydrodiols that arise from the microsomal metabolism of benzo[a]pyrene in vivo.  相似文献   

17.
7-Methylbenz[a]anthracene and the 1,2-, 3,4-, 5,6- and 8,9-dihydrodiols derived from this hydrocarbon have been tested for mutagenicity towards S. typhimurium TA 98 in the presence of rat-liver post-mitochondrial supernatant. At non-toxic concentrations, the mutagenicity of the non-K-region 3,4-dihydrodiol was more than ten-fold higher than that of the other K-region and non-K-region dihydrodiols and more than three-fold higher than that of the parent hydrocarbon. 1,1,1-Trichloropropene 2,3-oxide, an inhibitor of epoxide hydratase, increased the microsome-mediated mutagenicity of 7-methylbenz[a]anthracene but did not alter that of the four related dihydrodiols.  相似文献   

18.
The fungal metabolism of 7-methylbenz[a]anthracene (7-MBA) and 7-hydroxymethylbenz[a]anthracene (7-OHMBA) was studied. 7-MBA was metabolized by Cunninghamella elegans to form 7-OHMBA-trans-8,9-dihydrodiol and 7-OHMBA-trans-3,4-dihydrodiol as the predominant metabolites. Other metabolites were identified as 7-OHMBA, 7-MBA-trans-8,9-dihydrodiol and 7-MBA-trans-3,4-dihydrodiol, and 7-MBA-8,9,10,11-tetraol. Incubation of 7-OHMBA with C. elegans cells indicated that 7-OHMBA-trans-8,9-dihydrodiol and 7-OHMBA-trans-3,4-dihydrodiol were major metabolites. The metabolism of 7-MBA by rat liver microsomes from 3-methylcholanthrene-treated rats showed that the metabolites were qualitatively similar to those formed by C. elegans, except additional dihydrodiol metabolites were formed at the 5,6 and 10,11 positions. The metabolites formed were isolated by high-performance liquid chromatography and identified by comparing their chromatographic, UV-visible absorption and mass spectral properties with those of reference compounds.  相似文献   

19.
Experiments were performed to investigate the effects of 3 polycyclic aromatic hydrocarbons, benz[a]anthracene, dibenz[a,c]anthracene and dibenz[a,h]anthracene and K-regio epoxides and some of their related dihydrodiols on the chromosomes of Chinese hamster ovary cells in vitro. Of the 3 hydrocarbons only benz[a]anthracene showed any activity in inducing sister-chromatid exchanges. The K-region epoxide and the 3,4-dihydrodiol have been found to be more active than the corresponding K-region or the other non K-region dihydrodiols derived from benz[a]anthracene. Athough dibenz[a,c]anthracene was almost inactive, the K-region 5,6-epoxide and all 3 possible dihydrodiols, the 1,2-, 3,4- and 10,11-diols were active in inducing increased numbers of sister-chromatid exchanges in the chromosomes of these cells. The 3,4-dihydrodiol of dibenz[a,h]anthrecene was also active in inducing sister-chromatid exchanges whereas the 1,2- and 5,6-dihydrodiols were only weakly active. This study provides some support for the suggestiion that the activation of these 3 hydrocarbons proceeds by the metabolic conversion of non K-region dihydrodiols into vicinal diol-epoxides.  相似文献   

20.
The fluorescent reporter group, N-(5-FLUORESCEINYL),N'-(3-BORONATOPHENYL)THIOUREA (FABA) has been synthesized. This boronate group makes the reporter specific for cis vic-diols. The reporter group is bound to DNA-adducts formed from the reaction of calf-thymus DNA and benzanthracene trans-10,11-dihydrodiol,8,9-epoxide (anti), benzo(a)anthracene-trans-3,4-dihydrodiol-1,2-epoxide (anti) but is not bound to 3-methylcholanthrene-11,12 dihydro-epoxide. Femtomole quantities of adduct may be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号