首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
3.
4.
Large amounts of sigA mRNA, encoding the primary sigma factor (PSF) in Synechocystis sp. strain PCC 6803, accumulated under standard growth conditions, while stress conditions like heat or high salinity led to a rapid decrease in sigA mRNA content. The sigB, sigC, sigD, and sigE genes, encoding PSF-like sigma factors, were under strict physiological control.  相似文献   

5.
PII is an important signal protein for regulation of nitrogen metabolism in bacteria and plants. We constructed a mutant of glnB, encoding PII, in a heterocystous cyanobacterium, Anabaena sp. PCC 7120, with a cre-loxP system. The mutant (MP2alpha) grew more slowly than the wild type under all nitrogen regimens. It excreted a large amount of ammonium when grown on nitrate due to altered activities of glutamine synthetase and nitrate reductase. MP2alpha had a low nitrogenase activity but was able to form heterocysts under diazotrophic conditions, suggesting that PII is not required for heterocyst differentiation. Analysis of the PII with mass spectroscopy found tyrosine nitration at Tyr-51 under diazotrophic conditions while no phosphorylation at Ser-49 was detected. The strains 51F and 49A, which have PII with mutations of Y51F and S49A, respectively, were constructed to analyze the functions of the two key residues on the T-loop. Like MP2alpha, they had low nitrogenase activity and grew slowly under diazotrophic conditions. 49A was also impaired in nitrate uptake and formed heterocysts in the presence of nitrate. The up-regulation of ntcA after nitrogen step-down, which was present in the wild type, was not observed in 51F and 49A. While our results showed that the Ser-49 residue is important to the function of PII in Anabaena sp. PCC 7120, evidence from the PII pattern of the wild type and 49A in non-denaturing gel electrophoresis suggested that Ser-49 is not modified. The possible physiological roles of tyrosine nitration of PII are discussed.  相似文献   

6.
7.
8.
鱼腥藻7120遗传转化的研究进展   总被引:1,自引:0,他引:1  
鱼腥藻7120作为模式生物被广泛用于光合、固氮、进化、代谢等基本生命现象的研究。近几年, 对其基因工程的研究使人们看到它在医药、环保、能源等方面的应用潜力, 但表达效率低是其发展的瓶颈。为了提高其表达效率, 研究者从鱼腥藻7120的载体(包括启动子、复制子、选择标记基因等)的改进、目的基因的优化(密码子和SD序列)、宿主的改善、转化方法的改变等方面进行了大量探索, 除了用于功能基因的研究, 已经有几十个外源基因在鱼腥藻7120中表达。除了研究载体, 诱变鱼腥藻7120形成有利于外源基因表达的突变体和摸索转基因蓝藻最佳生长条件和表达条件, 可能是新的发展方向。  相似文献   

9.
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium commonly used as a model organism for studying cyanobacterial cell differentiation and nitrogen fixation. For many decades, this cyanobacterium was considered an obligate photo-lithoautotroph. We now discovered that this strain is also capable of mixotrophic, photo-organoheterotrophic, and chemo-organoheterotrophic growth if high concentrations of fructose (at least 50 mM and up to 200 mM) are supplied. Glucose, a substrate used by some facultatively organoheterotrophic cyanobacteria, is not effective in Anabaena sp. PCC 7120. The gtr gene from Synechocystis sp. PCC 6803 encoding a glucose carrier was introduced into Anabaena sp. PCC 7120. Surprisingly, the new strain containing the gtr gene did not grow on glucose but was very sensitive to glucose, with a 5 mM concentration being lethal, whereas the wild-type strain tolerated 200 mM glucose. The Anabaena sp. PCC 7120 strain containing gtr can grow mixotrophically and photo-organoheterotrophically, but not chemo-organoheterotrophically with fructose. Anabaena sp. PCC 7120 contains five respiratory chains ending in five different respiratory terminal oxidases. One of these enzymes is a mitochondrial-type cytochrome c oxidase. As in almost all cyanobacteria, this enzyme is encoded by three adjacent genes called coxBAC1. When this locus was disrupted, the cells lost the capability for chemo-organoheterotrophic growth.  相似文献   

10.
Multiple rpoD-related genes of cyanobacteria.   总被引:3,自引:0,他引:3  
Genomes of many eubacterial strains have been shown to encode for multiple rpoD-related genes. In this report, we describe the identification of the multiple rpoD-related genes of cyanobacterial strains. DNAs of three cyanobacterial strains, Anabaena sp. PCC7120, Synechococcus sp. PCC7942, and Synechocystis sp. PCC6803, were examined by Southern hybridization, using a synthetic probe designed for detecting rpoD or rpoD-related genes. Four or five hybridization signals were found in each DNA. Four DNA regions of Synechococcus sp. PCC7942 corresponding to the hybridization signals were cloned and partially sequenced. The sequence data indicate the presence of genes, named rpoD1, rpoD2, rpoD3, and rpoD4, whose products are highly similar to the basic structure of the principal sigma factors of eubacterial strains. The rpoD1 gene showed the greatest similarity to the sigA gene of Anabaena sp. PCC7120.  相似文献   

11.
12.
Dong Y  Huang X  Wu XY  Zhao J 《Journal of bacteriology》2000,182(6):1575-1579
HetR is a serine-type protease required for heterocyst differentiation in heterocystous cyanobacteria under conditions of nitrogen deprivation. We have identified the active Ser residue of HetR from Anabaena sp. strain PCC 7120 by site-specific mutagenesis. By changing the S152 residue to an Ala residue, the mutant protein cannot be labeled by Dansyl fluoride, a specific serine-type protein inhibitor. The mutant protein showed no autodegradation in vitro. The mutant hetR gene was introduced into Anabaena strain 884a, a hetR mutant. The resultant strain, Anabaena strain S152A, could not form heterocysts under conditions of nitrogen deprivation even though the up-regulation of the mutant hetR gene was induced upon removal of combined nitrogen. The Anabaena strain 216, which carries a mutant hetR gene encoding S179N HetR and could not form heterocysts, also produced HetR protein upon induction. Sequence comparison shows that Ser152 is conserved in all cyanobacterial HetR. Immunoblotting was used to study HetR induction in both the wild-type and mutant strains. The amount of mutant HetR in strain S152A and in strain 216 increased continuously for 24 h after nitrogen step-down, while the amount of HetR in wild-type cells reached a maximum level within 6 h after nitrogen step-down. Our results show the Ser152 is the active site of HetR. The protease activity is required for heterocyst differentiation and might be needed for repression of HetR overproduction under conditions of nitrogen deprivation.  相似文献   

13.
14.
15.
研究鉴定了All0769为鱼腥藻PCC 7120中乙酰辅酶A合成酶,通过CRISPR/Cpf1系统敲除鱼腥藻PCC7120中的乙酰辅酶A合成酶(由all0769编码),探究了乙酰辅酶A合成酶在异形胞分化中的调控机制。结果所示:All0769能在体外反应中催化乙酰辅酶A的生成。在供氮环境下,敲除all0769会影响藻细胞生长速率。而无论环境中是否存在化合氮,Δall0769突变株的乙酰辅酶A和α-酮戊二酸含量均显著减少。在供氮环境下,Δall0769突变株中检测到(26.17±1.55) nmol/mg protein的乙酰辅酶A,而在野生型中检测出(43.04±1.09) nmol/mg的乙酰辅酶A。Δall0769突变株的α-酮戊二酸[(1.41±0.24) nmol/mg protein]低于野生型的α-酮戊二酸[(2.13±0.05) nmol/mg protein]。在缺氮环境下,Δall0769突变株中检测到(10.00±2.81) nmol/mg protein的乙酰辅酶A,而在野生型中检测出(29.82±4.04) nmol/mg protein的乙酰辅酶A。Δall07...  相似文献   

16.
Growth of the cyanobacterium Anabaena sp. PCC 7120 and its nitrate assimilation-defective mutants was inversely proportional to the NaCl concentration in the medium. Presence of nitrate in the saline medium protected the growth of the parent but not of the mutant strains from salt toxicity. On the other hand, ammonium nitrogen protected the growth of all the strains from salt toxicity. However, the effect was less than that of nitrate. An altered sodium transport system was evident in the mutant strains and was most marked in mutant SP9. The cellular sodium concentration in parent and mutant strains also varied. Although mutant SP9 exhibited the lowest level of cellular sodium, it was as sensitive to salt toxicity as other strains. It is assumed that merely the presence of a toxic level of NaCl in the ambient environment is sufficient to damage the structural and functional components of the plasma membrane.  相似文献   

17.
18.
19.
To elucidate the biosynthetic pathways of carotenoids, especially myxol 2'-glycosides, in cyanobacteria, Anabaena sp. strain PCC 7120 (also known as Nostoc sp. strain PCC 7120) and Synechocystis sp. strain PCC 6803 deletion mutants lacking selected proposed carotenoid biosynthesis enzymes and GDP-fucose synthase (WcaG), which is required for myxol 2'-fucoside production, were analyzed. The carotenoids in these mutants were identified using high-performance liquid chromatography, field desorption mass spectrometry, and (1)H nuclear magnetic resonance. The wcaG (all4826) deletion mutant of Anabaena sp. strain PCC 7120 produced myxol 2'-rhamnoside and 4-ketomyxol 2'-rhamnoside as polar carotenoids instead of the myxol 2'-fucoside and 4-ketomyxol 2'-fucoside produced by the wild type. Deletion of the corresponding gene in Synechocystis sp. strain PCC 6803 (sll1213; 79% amino acid sequence identity with the Anabaena sp. strain PCC 7120 gene product) produced free myxol instead of the myxol 2'-dimethyl-fucoside produced by the wild type. Free myxol might correspond to the unknown component observed previously in the same mutant (H. E. Mohamed, A. M. L. van de Meene, R. W. Roberson, and W. F. J. Vermaas, J. Bacteriol. 187:6883-6892, 2005). These results indicate that in Anabaena sp. strain PCC 7120, but not in Synechocystis sp. strain PCC 6803, rhamnose can be substituted for fucose in myxol glycoside. The beta-carotene hydroxylase orthologue (CrtR, Alr4009) of Anabaena sp. strain PCC 7120 catalyzed the transformation of deoxymyxol and deoxymyxol 2'-fucoside to myxol and myxol 2'-fucoside, respectively, but not the beta-carotene-to-zeaxanthin reaction, whereas CrtR from Synechocystis sp. strain PCC 6803 catalyzed both reactions. Thus, the substrate specificities or substrate availabilities of both fucosyltransferase and CrtR were different in these species. The biosynthetic pathways of carotenoids in Anabaena sp. strain PCC 7120 are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号