首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative bacteriological and serological studies of three isolates and the reference strain of Bacillus thuringiensis subsp. darmstadiensis (serotype 10) were conducted. No difference was shown in the flagellar antigenic structure between the three isolates and the reference strain. Differences were observed in the O antigenic structures and in the following biochemical properties: lecithinase production, DNase production, arginine decarboxylase production, acid production from inulin, and malonate utilization. β-Exotoxin production was not detected in these three isolates. The reference strain produced parasporal inclusions toxic to the lepidopterous larvae but nontoxic to mosquito larvae. On the contrary, two among the three isolates, which produced spherical parasporal inclusions, were not toxic to the lepidopterous larvae but highly toxic to larvae of the mosquitoes, Culex tritaenlorhynchus, Culex molestus, and Aedes aegypti. Another isolate produced large irregular-shaped inclusions nontoxic to the insects of both orders. Accordingly, B. thuringiensis serotype 10 was divided into three groups from the viewpoint of toxicity against lepidopterous and mosquito larvae.  相似文献   

2.
The toxicity to mosquito larvae of the parasporal body produced by Bacillus thuringiensis subsp. israelensis and the PG-14 isolate of B. thuringiensis subsp. morrisoni is at least 20-fold greater than any of the four mosquitocidal proteins of which It is composed (CytA, CrylVA, B, and D). This high toxicity is postulated to be due to synergistic interactions among parasporal proteins. However, this remains controversial because values reported for the specific toxicity of individual proteins, especially the CytA protein, vary widely owing to the methods used to purify and assay toxins against larvae. In an attempt to resolve questions of purity, specific toxicity, and synergism, individual genes encoding the CytA and CrylVD toxins were cloned and expressed in acrystalliferous B. thuringiensis subsp. israelensis cells using the shuttle vector pHT3101. CytA and CryIVD inclusions were purified and their toxicity was determined alone and when combined at different ratios using bio-assays against first instars of Aedes aegypti. The LC50 for the CytA inclusion was 60 ng ml−1, whereas the LC50 for the CryIVD was 85ng ml−1 In comparison, the LC50s for different combinations of CytA and CrylVD inclusions ranged from 12–15 ng ml−1, 4–5 times higher than the toxicity of either protein alone, demonstrating marked synergism between these two proteins. These results suggest that the high toxicity of the wild-type parasporal bodies of B. thuringiensis subspp. israelensis and morrisoni Is due to synergism among three or four of their major proteins.  相似文献   

3.
A Brazilian Bacillus thuringiensis subspecies israelensis, toxic to Diptera, including mosquitoes, was found also to show toxicity to the coleopteran boll weevil Anthonomus grandis Boheman at an equivalent level to that of the standard coleopteran-active B. thuringiensis subspecies tenebrionis T08017. Recombinant B. thuringiensis strains expressing the individual Cyt1Aa, Cry4Aa, Cry4Ba and Cry11Aa toxins from this strain were assessed to evaluate their potential contribution to the activity against A. grandis, either alone or in combination. Whilst individual toxins produced mortality, none was sufficiently potent to allow calculation of LC50 values. Combinations of toxins were unable to attain the same potency as the parental B. thuringiensis subsp. israelensis, suggesting a major role for other factors produced by this strain.  相似文献   

4.
Bacteriological and serological characteristics of three Bacillus thuringiensis isolates obtained in Japan were investigated. They formed typical rhomboidal parasporal inclusions but flagellar (H) antigens of these isolates were different from those of the known 17 H serotypes of B. thuringiensis. The three isolates were divided into two new serotypes (serotypes 18 and 19). The serotype 18 isolate (3–71) produced thermostable exotoxin and the inclusions of this isolate were toxic to larvae of the silkworm, Bombyx mori, but nontoxic to larvae of the mosquito, Aedes aegypti. The other isolate (119-72) belonging to serotype 18 produced inclusions nontoxic to larvae of B. mori and A. aegypti and did not produce thermostable exotoxin. However, other bacteriological properties of the isolate 119-72 were similar to those of the isolate 3–71. The serotype 19 isolate (117-72) produced inclusions nontoxic to larvae of B. mori and A. aegypti and did not produce thermostable exotoxin. Acid production from saccharose and the production of brownish purple pigment were observed in the two serotype 18 isolates, while neither of them was observed in the serotype 19 isolate. In other 29 biochemical properties tested, there was no difference among the three isolates. Based on these characteristics, the following two subspecies names are proposed: Bacillus thuringiensis subsp. kumamotoensis (serotype 18) for the type strain 3–71 and Bacillus thuringiensis subsp. tochigiensis (serotype 19) for the type strain 117-72.  相似文献   

5.
Bacillus thuringiensis 656-3, isolated from a soil sample collected at mushroom houses, showed high toxicity to mushroom flies, Lycoriella mali and Coboldia fuscipes. B. thuringiensis 656-3 produced bipyramidal inclusions and reacted with the H antiserum of B. thuringiensis subsp. morrisoni (H8a8b). The plasmid and protein profiles of B. thuringiensis 656-3 were similar to those of its reference strain, subsp. morrisoni PG-14. However, PCR analysis using cry gene primers showed that B. thuringiensis 656-3, unlike its reference strain, had cry4A, cry4B, cry10A, cry11A, and cry1Ac genes, suggesting that B. thuringiensis 656-3 was a unique strain with respect to gene type. In addition, B. thuringiensis 656-3 showed a high level of toxicity against mushroom flies, L. mali and C. fuscipes.  相似文献   

6.
The protein demonstrating larvicidal activity to the mosquito Aedes aegypti was purified from the alkali extract of the spore-parasporal inclusion complex of the isolate, 73-E-10-2, belonging to Bacillus thuringiensis serotype 10. By Sepharose CL-4B gel filtration and DEAE-cellulose column chromatography, a toxic protein was obtained, and its homogeneity was confirmed by Sephadex G-150 gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the toxic protein was 67,000, when estimated by SDS-PAGE. The LC50 of the toxic protein against 4-day-old larvae of A. aegypti was 16.8 μg/ml. There was no serological relationship between the toxic protein from the isolate 73-E-10-2 and that (Mr 67,000) from the type strain of B. thuringiensis subsp. israelensis.  相似文献   

7.
Park  Roh  Je  Jin  Oh  Park  & Kang 《Letters in applied microbiology》1998,27(1):62-66
Bacillus thuringiensis strains non-toxic to Lepidoptera, Bombyx mori and Diptera, Culex pipiens pallens larvae were isolated from Korean soil samples during an investigation of B. thuringiensis isolates highly toxic to insect pests. One of these isolates, NTB-88, produces parasporal inclusions about 138 kDa in size and is non-toxic to 19 insect species of three orders, Lepidoptera, Diptera and Coleoptera, even though it is highly susceptible to tryptic cleavage. Study of flagellar (H) antibodies of 33 B. thuringiensis strains revealed that NTB-88 has an H antigen identical with that of subsp. morrisoni (serotype 8a8b). Comparison of parasporal inclusion proteins and plasmid DNA patterns of strain NTB-88 with B. thuringiensis subsp. morrisoni HD-12 and B. thuringiensis subsp. morrisoni PG-14 showed that the isolate is a novel non-insecticidal B. thuringiensis strain belonging to serotype 8a8b.  相似文献   

8.
A novel recombinant Bacillus thuringiensis subsp. israelensis strain that produces the B. sphaericus binary toxin, Cyt1Aa, and Cry11Ba is described. The toxicity of this strain (50% lethal concentration [LC50] = 1.7 ng/ml) against fourth-instar Culex quinquefasciatus was higher than that of B. thuringiensis subsp. israelensis IPS-82 (LC50 = 7.9 ng/ml) or B. sphaericus 2362 (LC50 = 12.6 ng/ml).  相似文献   

9.
A lysozyme sensitive strain of B. thuringiensis (strain O 016) was isolated and shown to be effectively transformed with plasmids pC 194 and pHV 33 using the protoplast transformation technique. The plasmid pC 194 from one successful transformant, strain O 016–194, was subsequently transferred to B. thuringiensis subsp. israelensis by a “conjugation-like” process. The plasmid pBC 16 from B. cereus could also be transferred to B. thuringiensis subsp. israelensis with high frequency using the conjugation-like process. Further, both plasmids, pC 194 and pBC 16, were transferred between strains of B. thuringiensis subsp. israelensis to yield transcipient strains that harbored and expressed properties of both plasmids. This work constitutes effective gene transfer system in B. thuringiensis subsp. israelensis.  相似文献   

10.
Two newly developed media, H4 and H7, were found to be highly suitable for culturing Bacillus thuringiensis subsp. israelensis and B. sphaericus, respectively. These media contained 0.05% K2HPO4 and 4% HDL (H4 medium) or 0.05% K2HPO4 and 7% HDL (H7 medium); HDL is the by-product from a monosodium glutamate factory. Tests to compare endospore formation and toxicity values of B. thuringiensis subsp. israelensis in H4 medium and nutrient broth supplemented with salts and glucose (NBSG) medium were carried out in a 3-liter fermentor. The viable cell count and LC50 value of B. thuringiensis subsp. israelensis in H4 medium at 48 hr were 2.5 × 108 cells/ml and 10?7.2 (dilution), respectively, while those in NBSG medium were 1.6 × 108 cells/ml and 10?6.5, respectively. In the case of B. sphaericus grown in H7 medium, the number of cells and LC50 value were found to be 1.4 × 109 cells/ml and 10?7.8, respectively. B. sphaericus grown in nutrient broth supplemented with salt and yeast extract (NBSY) were found to produce 6.4 × 108 cells/ml and an LC50 value of 10?6.8. The toxicity of B. thuringiensis subsp. israelensis was tested against Aedes aegypti larvae, while that of B. sphaericus was tested against Culex quinquefasciatus. The cost of 10 liters of medium for production of B. thuringiensis subsp. israelensis and in B. sphaericus and H4 and H7 was $0.02 and $0.03, respectively. The cost of these newly developed media was much less than that of NBSG medium ($7.05 per 10 liters) for cultivation of B. thuringiensis subsp. israelensis and NBSY medium ($11.67 per 10 liters) for cultivation of B. sphaericus.  相似文献   

11.
A novel mosquitocidal bacterium, Bacillus thuringiensis subsp. jegathesan, and one of its toxins, Cry11B, in a recombinant B. thuringiensis strain were evaluated for cross-resistance with strains of the mosquito Culex quinquefasciatus that are resistant to single and multiple toxins of Bacillus thuringiensis subsp. israelensis. The levels of cross-resistance (resistance ratios [RR]) at concentrations which caused 95% mortality (LC95) between B. thuringiensis subsp. jegathesan and the different B. thuringiensis subsp. israelensis-resistant mosquito strains were low, ranging from 2.3 to 5.1. However, the levels of cross-resistance to Cry11B were much higher and were directly related to the complexity of the B. thuringiensis subsp. israelensis Cry toxin mixtures used to select the resistant mosquito strains. The LC95 RR obtained with the mosquito strains were as follows: 53.1 against Cq4D, which was resistant to Cry11A; 80.7 against Cq4AB, which was resistant to Cry4A plus Cry4B; and 347 against Cq4ABD, which was resistant to Cry4A plus Cry4B plus Cry11A. Combining Cyt1A with Cry11B at a 1:3 ratio had little effect on suppressing Cry11A resistance in Cq4D but resulted in synergism factors of 4.8 and 11.2 against strains Cq4AB and Cq4ABD, respectively; this procedure eliminated cross-resistance in the former mosquito strain and reduced it markedly in the latter strain. The high levels of activity of B. thuringiensis subsp. jegathesan and B. thuringiensis subsp. israelensis, both of which contain a complex mixture of Cry and Cyt proteins, against Cry4- and Cry11-resistant mosquitoes suggest that novel bacterial strains with multiple Cry and Cyt proteins may be useful in managing resistance to bacterial insecticides in mosquito populations.  相似文献   

12.
Sprays of commercial preparations of the bacterium Bacillus thuringiensis subsp. israelensis are widely used for the control of mosquito larvae. Despite an abundant literature on B. thuringiensis subsp. israelensis field efficiency on mosquito control, few studies have evaluated the fate of spores in the environment after treatments. In the present article, two complementary experiments were conducted to study the effect of different parameters on B. thuringiensis subsp. israelensis persistence and recycling, in field conditions and in the laboratory. First, we monitored B. thuringiensis subsp. israelensis persistence in the field in two contrasting regions in France: the Rhône-Alpes region, where mosquito breeding sites are temporary ponds under forest cover with large amounts of decaying leaf matter on the ground and the Mediterranean region characterized by open breeding sites such as brackish marshes. Viable B. thuringiensis subsp. israelensis spores can persist for months after a treatment, and their quantity is explained both by the vegetation type and by the number of local treatments. We found no evidence of B. thuringiensis subsp. israelensis recycling in the field. Then, we tested the effect of water level, substrate type, salinity and presence of mosquito larvae on the persistence/recycling of B. thuringiensis subsp. israelensis spores in controlled laboratory conditions (microcosms). We found no effect of change in water level or salinity on B. thuringiensis subsp. israelensis persistence over time (75 days). B. thuringiensis subsp. israelensis spores tended to persist longer in substrates containing organic matter compared to sand-only substrates. B. thuringiensis subsp. israelensis recycling only occurred in presence of mosquito larvae but was unrelated to the presence of organic matter.  相似文献   

13.
With the recombinant pVB131 plasmid, which encodes the mosquitocidal 130 kilodalton peptide ofBacillus thuringiensis var.israelensis as a probe, DNA homology between crystal toxin genes of several dipteran-toxic strains was tested. Results from this study indicate that, while the crystal toxin genes ofB. thuringiensis var.kyushuensis and var.morrisoni isolate PG-14 share homology to the crystal toxin gene of var.israelensis, the -endotoxin genes of other dipteran-active strains tested (i.e., var.colmeri and var.kurstaki) do not exhibit any homology. The crystal toxin genes of vars.kyushuensis andmorrisoni isolate PG-14 were found to be located on plasmids of 60 and 94 megadaltons, respectively.  相似文献   

14.
Spores of Bacillus thuringiensis subsp. israelensis and their toxic crystals are bioencapsulated in the protozoan Tetrahymena pyriformis, in which the toxin remains stable. Each T. pyriformis cell concentrates the spores and crystals in its food vacuoles, thus delivering them to mosquito larvae, which rapidly die. Vacuoles containing undigested material are later excreted from the cells. The fate of spores and toxin inside the food vacuoles was determined at various times after excretion by phase-contrast and electron microscopy as well as by viable-cell counting. Excreted food vacuoles gradually aggregated, and vegetative growth of B. thuringiensis subsp. israelensis was observed after 7 h as filaments that stemmed from the aggregates. The outgrown cells sporulated between 27 and 42 h. The spore multiplication values in this system are low compared to those obtained in carcasses of B. thuringiensis subsp. israelensis-killed larvae and pupae, but this bioencapsulation represents a new possible mode of B. thuringiensis subsp. israelensis recycling in nontarget organisms.  相似文献   

15.
Laboratory trials of Bacillus thuringiensis var. israelensis (serotype 14) and B. sphaericus strain 1593 against field-collected Aedes stimulans showed that susceptibility declined with increasing instar and decreasing temperature. Test results with B. sphaericus were more erratic than with B. thuringiensis, and the efficacy of the former declined more rapidly with decreasing temperature. B. thuringiensis was significantly more active than B. sphaericus under all treatment conditions. These results indicate that the effective use of this strain of B. sphaericus as a mosquito biological control agent may be limited to warm water situations against more susceptible species.  相似文献   

16.
The cry4Ba gene from Bacillus thuringiensis subsp. israelensis and the binary toxin gene from B. sphaericus C3-41 were cloned together into a shuttle vector and expressed in an acrystalliferous strain of B. thuringiensis subsp. israelensis 4Q7. Transformed strain Bt-BW611, expressing both Cry4Ba protein and binary toxin protein, was more than 40-fold more toxic to Culex pipiens larvae resistant to B. sphaericus than the transformed strains expressing Cry4Ba protein or binary toxin protein independently. This result showed that the coexpression of cry4Ba of B. thuringiensis subsp. israelensis with B. sphaericus binary toxin gene partly suppressed more than 10,000-fold resistance of C. pipiens larvae to the binary toxin. It was suggested that production of Cry4Ba protein and binary toxin protein interacted synergistically, thereby increasing their mosquito-larvicidal toxicity.  相似文献   

17.
To isolate a naturally occurring novel Bacillus thuringiensis strain, we investigated the distribution, toxicity, morphology, H serotype, and gene type of B. thuringiensis from residue samples of granary in Korea. A total of 163 B. thuringiensis isolates out of 411 samples producing spore and crystal were obtained. In toxicity tests, 80% of all isolates were toxic to lepidoptera, and 12% were not toxic to any of tested insects. And dipteran-active and lepidopteran/dipteran-active isolates were rare (2% and 6%, respectively). 152 B. thuringiensis isolates produced typical rhomboidal crystals, and the remainder produced parasporal inclusions with various morphologies. Serological test showed that B. thuringiensis isolates in granary represented 12 H serotypes, indicating varied distribution of B. thuringiensis. Of these, the serotype 3ab predominated, followed by the serotype 7 and 4ac. B. thuringiensis isolates of the serotype 3ab, 4ac, 5ab, 7, 8ab, 9, and 23 were toxic to lepidoptera, and the serotype 8bd, 12, 18, and 20ac were nontoxic, while 14 isolates were untypable by 33 B. thuringiensis H antisera. The frequency of toxicity against lepidoptera and diptera was primarily highly toxic. PCR analysis using cryI gene type-specific primers showed that cryIA(b) genes are frequently found and cryIE gene exists in only one isolate. Analysis of B. thuringiensis crystals and plasmid DNAs indicated a diversity of crystal and gene types. Received: 15 January 1998 / Accepted: 18 February 1998  相似文献   

18.
Insecticides based on Bacillus thuringiensis subsp. israelensis have been used for mosquito and blackfly control for more than 20 years, yet no resistance to this bacterium has been reported. Moreover, in contrast to B. thuringiensis subspecies toxic to coleopteran or lepidopteran larvae, only low levels of resistance to B. thuringiensis subsp. israelensis have been obtained in laboratory experiments where mosquito larvae were placed under heavy selection pressure for more than 30 generations. Selection of Culex quinquefasciatus with mutants of B. thuringiensis subsp. israelensis that contained different combinations of its Cry proteins and Cyt1Aa suggested that the latter protein delayed resistance. This hypothesis, however, has not been tested experimentally. Here we report experiments in which separate C. quinquefasciatus populations were selected for 20 generations to recombinant strains of B. thuringiensis that produced either Cyt1Aa, Cry11Aa, or a 1:3 mixture of these strains. At the end of selection, the resistance ratio was 1,237 in the Cry11Aa-selected population and 242 in the Cyt1Aa-selected population. The resistance ratio, however, was only 8 in the population selected with the 1:3 ratio of Cyt1Aa and Cry11Aa strains. When the resistant mosquito strain developed by selection to the Cyt1Aa-Cry11Aa combination was assayed against Cry11Aa after 48 generations, resistance to this protein was 9.3-fold. This indicates that in the presence of Cyt1Aa, resistance to Cry11Aa evolved, but at a much lower rate than when Cyt1Aa was absent. These results indicate that Cyt1Aa is the principal factor responsible for delaying the evolution and expression of resistance to mosquitocidal Cry proteins.  相似文献   

19.
Culex quinquefasciatus mosquitoes with high levels of resistance to single or multiple toxins from Bacillus thuringiensis subsp. israelensis were tested for cross-resistance to the Bacillus thuringiensis subsp. jegathesan polypeptide Cry19A. No cross-resistance was detected in mosquitoes that had been selected with the Cry11A, Cry4A and Cry4B, or Cry4A, Cry4B, Cry11A, and CytA toxins. A low but statistically significant level of cross-resistance, three to fourfold, was detected in the colony selected with Cry4A, Cry4B, and Cry11A. This cross-resistance was similar to that previously detected with B. thuringiensis subsp. jegathesan in the same colony. These data help explain the toxicity of B. thuringiensis subsp. jegathesan against the resistant colonies and indicate that the Cry19A polypeptide might be useful in managing resistance and/or as a component of synthetic combinations of mosquitocidal toxins.  相似文献   

20.
Cry2Aa, one of the major insecticidal proteins produced by Bacillus thuringiensis subsp. kurstaki HD1, is known to be active against both lepidopteran and dipteran larvae. In order to determine whether Cry2Aa could enhance or synergize the mosquitocidal activity of B. thuringiensis subsp. israelensis, we constructed a plasmid vector that harbored the cry2Aa operon and transformed crystalliferous and acrystalliferous strains of this bacterium. The wild-type B. thuringiensis subsp. israelensis, a recombinant B. thuringiensis subsp. israelensis producing Cry2A along with its native major mosquitocidal proteins, and a recombinant B. thuringiensis subsp. israelensis producing Cry2Aa alone were tested against three major mosquito species — Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus. Our results demonstrated that Cry2Aa does not synergize or enhance the mosquitocidal activity of B. thuringiensis subsp. israelensis against these important vectors of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号