首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have investigated bacteriophage φX174 RF 2 DNA replication by electron microscopy. Three different, types of replicative intermediates were observed: rolling circles, partially duplex DNA circles and structures consisting of two DNA circles connected at a single point.Rolling circles with a single-stranded or partially double-stranded DNA tail were both observed. After cleavage of the rolling circles with the restriction endonuclease from Providentia stuartii 164 (PstI) the startpoint of rolling circle replication could be located at 21 map units from the PstI cleavage site in agreement with the previously determined position of the origin of φX RF DNA replication.Partially duplex DNA circles consist of circular viral DNA strands and incomplete complementary DNA strands. After cleavage of these molecules with PstI information about the startpoints of the synthesis of the complementary DNA strand was obtained.The connected DNA circles always contain one completely double-stranded DNA circle whereas the other circle consists of either single-stranded, partially duplex or completely duplex DNA.Part of the duplex-to-duplex DNA circles represent the well-known figure eight or catenated circular dimers. The other connected DNA circles presumably represent replication intermediates which arise by the association of the end of the genome length tail of the rolling circle with the origin-terminus region. This is suggested by the fact that the point of contact between the two DNA circles is located at approximately 21 map units from the Pst1 cleavage site, i.e. at the origin-terminus region of the φX genome. The connected DNA circles may be intermediates in the circularization and cleavage of the genome-length tail of the rolling circles in vivo.A model for φX174 RF DNA replication in vivo summarizing the data obtained by biochemical (Baas et al., 1978) and electron microscopic analysis of replicative intermediates is presented (Fig. 9).  相似文献   

4.
In this study we describe a novel method to investigate the RNA–RNA interactions between a small RNA and its target that we termed ‘RNA walk’. The method is based on UV-induced AMT cross-linking in vivo followed by affinity selection of the hybrid molecules and mapping the intermolecular adducts by RT–PCR or real-time PCR. Domains carrying the cross-linked adducts fail to efficiently amplify by PCR compared with non-cross-linked domains. This method was calibrated and used to study the interaction between a special tRNA-like molecule (sRNA-85) that is part of the trypanosome signal recognition particle (SRP) complex and the ribosome. Four contact sites between sRNA-85 and rRNA were identified by ‘RNA walk’ and were further fine-mapped by primer extension. Two of the contact sites are expected; one contact site mimics the interaction of the mammalian Alu domain of SRP with the ribosome and the other contact sites include a canonical tRNA interaction. The two other cross-linked sites could not be predicted. We propose that ‘RNA walk, is a generic method to map target RNA small RNAs interactions in vivo.  相似文献   

5.
6.
7.
Disulfide cross-linking is being used increasingly more to study the structure and dynamics of nucleic acids. We have previously developed a procedure for the formation of disulfide cross-links through the sugar-phosphate backbone of nucleic acids. Here we report the preparation and characterization of an RNA duplex containing a disulfide interstrand cross-link. A self-complementary oligoribonucleotide duplex containing an interstrand cross-link was prepared from the corresponding 2'-amino modified oligomer. Selective modification of the 2'-amino group with an aliphatic isocyanate, containing a protected disulfide, gave the corresponding 2'-urea derivative in excellent yield. An RNA duplex containing an intrahelical, interstrand disulfide cross-link was subsequently prepared by a thiol disulfide exchange reaction in nearly quantitative yield as judged by denaturing polyacrylamide gel electrophoresis (DPAGE). The cross-linked RNA was further characterized by enzymatic digestion and the Structure of the cross-link lesion was verified by comparison to an authentic sample, prepared by chemical synthesis. The effect of the chemical modifications on duplex stability was determined by UV thermal denaturation experiments. The intrahelical cross-link stabilized the duplex considerably: the disulfide cross-linked oligomer had a melting temperature that was ca. 40 degrees C higher than that of the noncross-linked oligomer.  相似文献   

8.
A detailed qualitative and quantitative comparison was made of the ultrastructure of single-stranded ribonucleic acid (RNA) from bacteriophage R17 and double-stranded replicative form (RF) and replicative intermediate (RI) from cells infected with this bacteriophage. The nucleic acids were prepared for electron microscopy by the protein monolayer spreading technique of Kleinschmidt. Single-stranded RNA aggregated during spreading in the absence of urea, whereas RF and RI did not. On the other hand, RF and RI appeared to be susceptible to shear during spreading, whereas R17 RNA was not. From the maximal length of RF, a base translation of 3.14 A was calculated. This value favors a 10-fold helix model of double-stranded RNA. The same base translation was found for R17 RNA, indicating a stacked base structure for single-stranded RNA spread in the presence of urea. RI is a branched structure and the branches are removed by ribonuclease treatment. The branches are believed to be nascent single-stranded viral RNA. The contour length of the branch was equal to the contour length of the main chain up to the branch point, as predicted from theoretical analysis of the replication of viral RNA. The structure of RF and the main chain of RI was also analyzed by plotting the log (end-to-end distance squared) versus log (contour length). This demonstrated structures intermediate in stiffness between a random coil and a rigid rod.  相似文献   

9.
Benzoylated-diethylaminoethyl cellulose (BD-cellulose) column chromatography was found to be useful in resolving most of the ribonucleic acid (RNA) forms from the replicative cycle of group A arbovirus Semliki Forect virus (SFV). The elution patterns were independent of molecular weight and appeared to be related to the degree of secondary structure in the molecule. Fractions of RNA were taken from a sucrose density gradient of cytoplasmic extracts of SFV-infected chick cells pretreated with actinomycin D. In a linear salt gradient, 16S material cochromatographed with the rapidly eluted ribonuclease resistant core of the double-stranded SFV-RNA and with the homopolymer duplex polyinosinic acid: polycytidylic acid. This fraction, therefore, probably contains an SFV-RNA form similar to the completely double stranded replicative form (RF) of several RNA viruses and bacteriophages. Faster moving (>20S) sucrose gradient fractions eluted more slowly, suggesting a decreasing proportion of secondary structure with increasing sedimentation value. The fractions, therefore, seemed to contain replicative intermediate (RI) structures. The two single stranded forms of SFV-RNA (42S and 26S) could only be eluted from BD-cellulose in the presence of urea or dimethyl sulfoxide, suggesting the presence of minimal secondary structure. Under these conditions, the single-stranded viral RNA forms could not be resolved. Molecular sieve chromatography of the single-stranded RNA forms, performed by passage through an agarose column, also failed to resolve these forms. The viral RNA forms containing a high degree of secondary structure, probably the RF and the RI, could, therefore, be rapidly separated from each other and from the single-stranded forms.  相似文献   

10.
11.

Background

RNA helicase A regulates a variety of RNA metabolism processes including HIV-1 replication and contains two double-stranded RNA binding domains (dsRBD1 and dsRBD2) at the N-terminus. Each dsRBD contains two invariant lysine residues critical for the binding of isolated dsRBDs to RNA. However, the role of these conserved lysine residues was not tested in the context of enzymatically active full-length RNA helicase A either in vitro or in the cells.

Methods

The conserved lysine residues in each or both of dsRBDs were substituted by alanine in the context of full-length RNA helicase A. The mutant RNA helicase A was purified from mammalian cells. The effects of these mutations were assessed either in vitro upon RNA binding and unwinding or in the cell during HIV-1 production upon RNA helicase A–RNA interaction and RNA helicase A-stimulated viral RNA processes.

Results

Unexpectedly, the substitution of the lysine residues by alanine in either or both of dsRBDs does not prevent purified full-length RNA helicase A from binding and unwinding duplex RNA in vitro. However, these mutations efficiently inhibit RNA helicase A-stimulated HIV-1 RNA metabolism including the accumulation of viral mRNA and tRNALys3 annealing to viral RNA. Furthermore, these mutations do not prevent RNA helicase A from binding to HIV-1 RNA in vitro as well, but dramatically reduce RNA helicase A–HIV-1 RNA interaction in the cells.

Conclusions

The conserved lysine residues of dsRBDs play critical roles in the promotion of HIV-1 production by RNA helicase A.

General significance

The conserved lysine residues of dsRBDs are key to the interaction of RNA helicase A with substrate RNA in the cell, but not in vitro.  相似文献   

12.
Restriction ondonuclease EcoRI was used to study the structure of the free ribosomal DNA molecules from Tetrahymena pyriformis, strain GL. From the following observations we conclude that the free rDNA molecules from Tetrahymena are giant palindromes3, each containing two genes for preribosomal RNA arranged in rotational symmetry as inverted repeating sequences. Analyses of the sizes of products of partial or complete digestion and quantitative analyses of the products of complete digestion of uniformly 32P-labeled rDNA yielded an RI endonucleolytic cleavage map which showed that the EcoRI recognition sites are arranged symmetrically about the center of the rDNA molecule.When heat-denatured rDNA was rapidly cooled under conditions in which no renaturation would occur between separated complementary strands of DNA, molecules of half the size of the original rDNA molecule were produced. These were double-stranded DNA molecules as evidenced by their resistance to digestion with S1 nuclease. Moreover, they could be digested with EcoRI to produce fragments of sizes which would be predicted from the assumption that each single strand of the original rDNA molecule had folded back on itself to form a “hair-pin” double-stranded DNA structure. Hybridization experiments between ribosomal RNA and purified rDNA showed that each rDNA molecule contains two genes for rDNA. Hybridization of the isolated EcoRI fragments of rDNA with 25 S or 17 S rRNA suggested that the two structural genes for 17 S rRNA are located near the center of the rDNA molecule and the two genes for 25 S rRNA are found in distal positions.  相似文献   

13.
Double-stranded regions which comprise about 4% of isolated HeLa cell heterogeneous nuclear RNA have been characterized by RNA fingerprinting and sequencing analysis. The simplicity of the pattern in two-dimensional RNA fingerprints suggests a sequence complexity of about 1000 nucleotides. The nucleotide sequences of six prominent RNase T1-resistant oligonucleotides (ranging in size from 7 to 9 bases) have been determined using isolated double-stranded nuclear RNA labeled in vivo with 32P-labeled inorganic phosphate. We conclude that (here exists a substantial subpopulation of simple, potentially complementary sequences common to much of the heterogeneous nuclear RNA population and interspersed with other kinds of sequences.  相似文献   

14.
A portion of poliovirus double-stranded RNA (25 to 50%) isolated from infected HeLa cells contains hairpin loops at one end of the duplex structure. These structures rapidly reformed double-stranded molecules after denaturation and appeared as molecules of up to two times genome length upon electrophoresis in denaturing agarose gels. A second form of poliovirus double-stranded RNA was readily denaturable into genome length strands. When the hairpin RNA was treated with S1 nuclease, subsequent denaturation resulted in formation of strands of up to genome length. Hairpin molecules contained very little, if any, poly(A) sequences, suggesting that the hairpin forms after nucleolytic removal of the 3' end of plus-strand templates. We conclude that the hairpin double-stranded RNA found in infected cells is likely generated by intracellular nicking and self-priming and that it does not represent an intermediate in the process of RNA replication.  相似文献   

15.
Proteins of the Sac10b family are highly conserved in Archaea. Ssh10b, a member of the Sac10b family from the hyperthermophilic crenarchaeon Sulfolobus shibatae, binds to RNA in vivo. Here we show that binding by Ssh10b destabilizes RNA secondary structure. Structural analysis of Ssh10b in complex with a 25-bp RNA duplex containing local distortions reveals that Ssh10b binds the two RNA strands symmetrically as a tetramer with each dimer bound asymmetrically to a single RNA strand. Amino acid residues involved in double-stranded RNA binding are similar, but non-identical, to those in dsDNA binding. The dimer-dimer interaction mediated by the intermolecular β-sheet appears to facilitate the destabilization of base pairing in the secondary structure of RNA. Our results suggest that proteins of the Sac10b family may play important roles in RNA transactions requiring destabilization of RNA secondary structure in Sulfolobus.  相似文献   

16.
17.
RNA recognition by a Staufen double-stranded RNA-binding domain   总被引:17,自引:6,他引:17       下载免费PDF全文
The double-stranded RNA-binding domain (dsRBD) is a common RNA-binding motif found in many proteins involved in RNA maturation and localization. To determine how this domain recognizes RNA, we have studied the third dsRBD from Drosophila Staufen. The domain binds optimally to RNA stem–loops containing 12 uninterrupted base pairs, and we have identified the amino acids required for this interaction. By mutating these residues in a staufen transgene, we show that the RNA-binding activity of dsRBD3 is required in vivo for Staufen-dependent localization of bicoid and oskar mRNAs. Using high-resolution NMR, we have determined the structure of the complex between dsRBD3 and an RNA stem–loop. The dsRBD recognizes the shape of A-form dsRNA through interactions between conserved residues within loop 2 and the minor groove, and between loop 4 and the phosphodiester backbone across the adjacent major groove. In addition, helix α1 interacts with the single-stranded loop that caps the RNA helix. Interactions between helix α1 and single-stranded RNA may be important determinants of the specificity of dsRBD proteins.  相似文献   

18.
Isolation and mapping of ribosomal RNA genes of Caulobacter crescentus   总被引:5,自引:0,他引:5  
Ribosomal DNA fragments of 1.0, 3.4, 3.7 and 6.1 kb2 produced by EcoRI digestion of the Caulobacter crescentus genome were identified by hybridization to a labeled ribosomal RNA probe. These genomic sequences were further characterized by the isolation of 13 hybrid λ Charon 4 phages with rDNA inserts, and two of the recombinant phages, Ch4Cc773 and Ch4Cc1880, were examined extensively. The Cc773 insert contains EcoRI fragments of 1.0 kb, 3.4 kb and 3.7 kb and the Cc1880 insert contains EcoRI fragments of 1.0 kb, 3.4 kb and 6.1 kb that hybridized to 32P-labeled rRNA. Thus, the two clones contain different DNA inserts which together account for all of the rDNA fragments detected in digests of the C. crescentus genome. Hybridization with isolated transfer RNA and individual rRNA species indicated that the arrangement of genes in both units is 16 S-spacer tRNA(s)-23 S-5 S, tRNA(s). Homology between the DNA inserts is largely restricted to the rRNA coding regions, which suggests that the two rDNA units are located in different regions of the chromosome. Results of quantitative hybridization experiments are most consistent with a single Cc1880 and Cc773 unit per genome equivalent of 2.7 × 109 daltons. The relatively simple organization of rDNA sequences in the C. crescentus chromosome compared to Escherichia coli is discussed.  相似文献   

19.
A protein similar to that previously demonstrated on poliovirus RNA and replicative intermediate RNA (VPg) was found on all sizes of nascent viral RNA molecules and on the polyuridylic acid isolated from negative-strand RNA. 32P-labeled nascent chains were released from their template RNA and fractionated by exclusion chromatography on agarose. Fingerprint analysis using two-dimensional polyacrylamide gels of RNase T1 oligonucleotides derived from nascent chains of different lengths showed that a size fractionation of nascent chains was achieved. VPg was recovered from nascent chains varying in length from 7,500 nucleotides (full-sized RNA) to about 500 nucleotides. No other type of 5' terminus could be demonstrated on nascent RNA, and the yield of VPg was consistent with one molecule of the protein on each nascent chain. These results are consistent with the concept that the protein is added to the 5' end of the growing RNA chains at a very early stage, possibly as a primer of RNA synthesis. Analysis of the polyuridylic acid tract isolated from the replicative intermediate and double-stranded RNAs indicated that a protein of the same size as that found on the nascent chains and virion RNA is also linked to the negative-strand RNAs. It is likely that a similar mechanism is responsible for initiation of synthesis of both plus- and minus-strand RNAs.  相似文献   

20.
Stalled elongation complexes of Escherichia coli RNA polymerase were prepared carrying the photo-cross-linkable 8-azido derivative of adenine at the 3'-terminus of the nascent RNA chain. Ultraviolet irradiation of such complexes resulted in the cross-linking of radiolabeled RNA exclusively to the beta' subunit of RNA polymerase. The adduct was mapped between Met932 and Trp1020 in the linear sequence of the beta' polypeptide using specific chemical degradation of the cross-linked species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号